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Abstract. At the present paper, by using Fan-KKM principle in minimal generalized convex

spaces, a minimax inequality of Ky Fan is proved. Also, Fan’s well known two-functions

minimax inequality in this new setting is given.

1. Introduction

It is known that the famous Fan-KKM principle and Fan’s minimax inequal-
ity [15], have played very important roles in the study of the modern nonlinear
analysis. The Fan minimax inequality has become one of the most applica-
ble tools in mathematical economics which, its relation with many concepts in
nonlinear analysis is well known. Moreover, a great deal of effort has gone into
the theory and applications of the Fan-KKM theorem and Fan’s minimax in-
equality [8, 10, 14, 34]. Some general minimax theorems and several extensions
of these inequalities have been obtained in convex spaces for functions with
KKM property under weaker various conditions [18, 19, 21, 31, 33, 35, 36].
Recently, these inequalities are considered in generalized convex (G-convex)
spaces (generalization of many famous spaces with convex structure) which
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improved and generalized a large number of Ky Fan’s type minimax inequali-
ties [9, 13, 20, 22, 32]. In this work, we use the concept of minimal generalized
convex spaces and some new result about compactness and product spaces
in minimal spaces to establish generalization of the above mentioned results.
We establish two minimax inequalities in minimal generalized convex spaces.
The first one originally goes back to Fan [15]. The second is famous two-
function minimax inequality also due to Fan in [16], which improved the Von
Neumann-Sion minimax principle [30] in minimal generalized convex spaces.

The concept of minimal structures and minimal spaces, as a generaliza-
tion of topology and topological spaces were introduced in [25]. For easy
understanding of the material incorporated in this paper we recall some ba-
sic definitions and results. For details on the following notions we refer to
[2, 5, 6, 7, 11, 24, 25] and [29] and references therein.

A family M ⊆ P(X) is said to be a minimal structure on X if ∅, X ∈ M.
In this case (X,M) is called a minimal space. For some examples in this set-
ting see [24]. In a minimal space (X,M), A ∈ P(X) is said to be an m-open
set if A ∈ M and also B ∈ P(X) is an m-closed set if Bc ∈ M. We set
m-Int(A) =

⋃
{U : U ⊆ A,U ∈ M} and m-Cl(A) =

⋂
{F : A ⊆ F, F c ∈ M}.

We say, the minimal space (X,M) enjoys the property I, if any finite intersec-
tion of m-open sets is m-open. For any x ∈ X, N(x) is said to be a minimal
neighborhood of x, if for any z ∈ N(x) there is an m-open subset Gz ⊆ N(x)
such that z ∈ Gz.

Proposition 1.1. ([24]) For any two sets A and B,

(a) m-Int(A) ⊆ A and m-Int(A) = A if A is an m-open set.

(b) A ⊆ m-Cl(A) and A = m-Cl(A) if A is an m-closed set.

(c) m-Int(A) ⊆ m-Int(B) and m- Cl(A) ⊆ m-Cl(B) if A ⊆ B.

(d) m-Int(A∩B) ⊆ (m-Int(A))∩(m-Int(B)) and (m-Int(A))∪(m-Int(B)) ⊆
m-Int(A ∪B).

(e) m-Cl(A∪B) ⊇ (m-Cl(A))∪(m-Cl(B)) and m-Cl(A∩B) ⊆ (m-Cl(A))∩
(m-Cl(B)).

(f) m-Int(m-Int(A)) = m-Int(A) and m-Cl(m-Cl(B)) = m-Cl(B).

(g) (m-Cl(A))c = m-Int(Ac) and (m-Int(A))c = m-Cl(Ac).

Definition 1.2. ([29]) Let (X,M) and (Y,N ) be two minimal spaces. A func-
tion f : (X,M)→ (Y,N ) is called minimal continuous (briefly m-continuous)
if f−1(U) ∈M for any U ∈ N .

Definition 1.3. ([2]) Suppose (X, τ) is a topological space and also suppose
(Y,N ) is a minimal space. A function f : (X, τ) → (Y,N ) is called (τ,m)-
continuous if f−1(U) ∈ τ for any U ∈ N .
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Similar to topological spaces some basic concepts can be obtained in the
minimal spaces. In the following it is shown that the minimal product of any
m-compact minimal spaces is m-compact; that is the Thychonoff’s compact-
ness Theorem holds for the product of minimal spaces.

Definition 1.4. ([29]) For a minimal space (X,M),

(a) a family A = {Aj : j ∈ J} of m-open sets in X is called an m-open
cover of K if K ⊆

⋃
j Aj . Any subfamily of A which is also an m-open cover

of K is called a subcover of A for K;

(b) a subset K of X is m-compact whenever any given m-open cover of K,
has a finite subcover.

Theorem 1.5. ([29]) Suppose that X and Y are two minimal spaces and
f : X → Y is an m-continuous function. For any m-compact subset K ⊆ X,
f(K) is m-compact in Y .

In [7] authors achieved product minimal structure for an arbitrary family
{(Xα,Mα) : α ∈ I} of minimal spaces. Product minimal structure on X =∏
α∈I

Xα is the weakest minimal structure on X (denoted by M =
∏
α∈I
Mα),

such that for each β ∈ I the canonical projection πβ :
∏
α∈I

Xα −→ Xβ is

m-continuous. In fact,
∏
α∈I
Mα = {π−1α (Uα) : Uα ∈Mα}.

Theorem 1.6. The product minimal space (
∏
α∈I

Xα,
∏
α∈I
Mα) is m-compact if

and only if (Xα,Mα) is an m-compact minimal space, for any α ∈ I.

Proof. One direction is an immediate consequence of Theorem 1.5. For the
converse, on the contrary suppose that A ⊆

∏
α∈I
Mα, is an m open cover

of
∏
α∈I

Xα without any finite subcover include
∏
α∈I

Xα. For any α ∈ I, set

Uα = {V ∈ Mα : π−1α (V ) ∈ A}. Since A has no finite subcover for
∏
α∈I

Xα, so

no finite subcover of Uα can cover Xα, for any α ∈ I. m-compactness of Xα

implies that Uα can not cover Xα. Therefore there exists xα ∈ Xα \
⋃
{V :

V ∈ Uα}, for any α ∈ I. Set x = (xα)α∈I . Then x ∈
∏
α∈I

Xα \
⋃
{A : A ∈ A},

which implies that A is not an m-open cover for
∏
α∈I

Xα, a contradiction. �

2. Minimax inequality and KKM maps

Recently, authors in [1, 2] and [4] introduced and investigated the notion of
minimal generalized convex space as an extended version of generalized convex
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space. Suppose X and Y are two minimal spaces. A multimap F : X ( Y
is a function from a set X into the power set of Y ; that is, a function with
the values F (x) ⊆ Y for all x ∈ X. Given A ⊆ X, set F (A) =

⋃
x∈A F (x).

Define F−(y) = {x ∈ X : y ∈ F (x)}, for all y ∈ Y . The multimap F is said
to be minimal transfer open [3] if for any x ∈ X and y ∈ F (x) there exists an
x0 ∈ X such that y ∈ m-Int(F (x0)). For a such multimap F , a point x0 ∈ X
is called fixed point if, x0 ∈ F (x0).

Let 〈D〉 denote the set of all nonempty finite subsets of a set D and let
∆n be the n-simplex with vertices e0, e1, · · ·, en, ∆J be the face of ∆n cor-
responding to J ∈ 〈A〉, where A ∈ 〈D〉; for example, if A = {a0, a1, · · ·, an}
and J = {ai0 , ai1 , · · ·, aik} ⊆ A, then ∆J = co{ei0 , ei1 , · · ·, eik}, where co(A)
denotes the convex hull of A. A minimal generalized convex space (briefly
MG-convex space) (X,D,Γ) consists of a minimal space (X,M), a nonempty
set D, and a multimap Γ : 〈D〉 ( X in which for A ∈ 〈D〉 with n + 1 el-
ements, there exists a (τ,m)-continuous function φA : ∆n → ΓA := Γ(A)
for which J ∈ 〈A〉 implies that φA(∆J) ⊆ ΓJ = Γ(J). In case to empha-
size X ⊇ D, (X,D,Γ) will be denoted by (X ⊇ D,Γ); and if X = D, then
(X ⊇ X; Γ) by (X,Γ). For any MG-convex space (X,D,Γ), the multimap
F : D ( X is called a KKM multimap if ΓA ⊆ F (A) for any A ∈ 〈D〉.
Clearly, any G-convex space is an MG-convex space. On the other hand,
suppose (X,M) is a minimal vector space which is not a topological vector
space (for example see [2]). Consider the multimap Γ : 〈X〉 ( X defined

by Γ({a0, a1, · · ·, an}) = {
n∑
i=0

λiai : 0 ≤ λi ≤ 1,
n∑
i=0

λi = 1}. One can deduce

that (X,Γ) is a minimal generalized convex space, but it is not a generalized
convex space [2].

Theorem 2.1. ([4]) Suppose (X,D,Γ) is an m-compact MG-convex space, Y
is a minimal space, S : X ( D, F : X ( Y and T : X ( X are multimaps
such that:

(a) x ∈ X and M ∈ 〈S(x)〉 imply that ΓM ⊆ T (x),

(b) F− : Y ( X is minimal transfer open and F (x) is nonempty,

(c) for any y ∈ Y there exists z ∈ D such that F−(y) ⊆ S−(z).
Then T has a fixed point.

Definition 2.2. Suppose that X is a nonempty set, Y is a minimal space and
f : X × Y −→ R. Then f is said to be

(a) minimal upper semicontinuous in the second variable, if for each γ ∈ R,
x ∈ X and y ∈ Y with f(x, y) < γ, imply that there exist x0 ∈ X and a
minimal neighborhood N(y) containing y in Y such that f(x0, u) < γ for any
u ∈ N(y).
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(b) minimal lower semicontinuous in the second variable, if for each γ ∈ R,
x ∈ X and y ∈ Y with f(x, y) > γ, imply that there exist x0 ∈ X and a
minimal neighborhood N(y) containing y in Y such that f(x0, u) > γ for any
u ∈ N(y).

Lemma 2.3. Suppose that X is a nonempty set, Y is a minimal space and
f : X ×Y → R is a function. Then f is minimal upper semicontinuous in the
first variable if and only if the multimap F : Y ( X defined by F (y) = {x ∈
X : f(x, y) < γ} is minimal transfer open.

Proof. Let f be minimal upper semicontinuous in the first variable, (y, x) ∈
Y × X and x ∈ F (y) (i.e., f(x, y) < γ). Then there is y0 and a minimal
neighborhood N(x) ⊆ X containing x such that f(y0, u) < γ for all u ∈ N(x).
So x ∈ N(x) ⊆ F (y0) and hence x ∈ m-Int(N(x)) ⊆ m-Int(F (y0)). Therefore
F is minimal transfer open.
Conversely, suppose that (y, x) ∈ Y × X and f(x, y) < γ. So x ∈ F (y) and
by the hypothesis, there exists ȳ ∈ Y such that x ∈ m-Int(F (ȳ)) ⊆ F (ȳ). Set
m-Int(F (ȳ)) = N(x), which is a minimal neighborhood containing x. Then
f(ȳ, u) > γ for all u ∈ N(x). �

Definition 2.4. Let (X,D,Γ) be an MG-convex space, Y be a nonempty set
and f : X × Y → R , g : D × Y → R. f is said to be

(a) minimal g-quasiconvex in the first variable if for any {z1, z2, . . . , zn} ∈
〈D〉 and each y ∈ Y ,

f(u, y) ≤ max
1≤i≤n

g(zi, y) for all u ∈ Γ({z1, z2, . . . , zn}).

(b) minimal g-quasiconcave in the first variable if for any {z1, z2, . . . , zn} ∈
〈D〉 and each y ∈ Y ,

min
1≤i≤n

g(zi, y) ≤ f(u, y) for all u ∈ Γ({z1, z2, . . . , zn}).

Note that f is minimal g-quasiconvex if and only if −f is minimal −g-
quasiconcave. These concepts originally go back to the notion of g-concavity
(convexity), introduced by Chang and Yen [12].

Theorem 2.5. Suppose (X,D,Γ) is an m-compact MG-convex space and Y
is a minimal space. Let f : X × Y → R, g : X ×D → R and h : X ×X → R
satisfying

(a) h is minimal g-quasiconvex in the second variable,

(b) f is minimal upper semicontinuous in the first variable,

(c) for any y ∈ Y there exists z ∈ D such that g(x, z) ≤ f(x, y).
Then

inf
x∈X

h(x, x) ≤ sup
x∈X

inf
y∈Y

f(x, y).
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Proof. Suppose that sup
x∈X

inf
y∈Y

f(x, y) <+∞. Let γ > sup
x∈X

inf
y∈Y

f(x, y) be a fixed

real number. Define the multimaps T : X ( X, S : X ( D and F : X ( Y
by

T (x) = {u ∈ X : h(x, u) < γ}

S(x) = {z ∈ D : g(x, z) < γ}

F (x) = {y ∈ Y : f(x, y) < γ}.
Since γ > sup

x∈X
inf
y∈Y

f(x, y), F has nonempty values. Lemma 2.3 implies that

F− is minimal transfer open. According to (c), for any y ∈ Y there exists
z ∈ D such that F−(y) ⊆ S−(z). Let x ∈ X and {y1, y2, . . . , yn} ∈ 〈S(x)〉 and
u ∈ Γ({y1, y2, . . . , yn}). According to (a) and yi ∈ S(x) we have

h(x, u) ≤ max
1≤i≤n

g(x, yi) < γ.

Therefore, u ∈ T (x) and by Theorem 2.1, T has a fixed point x̄. Then
inf
x∈X

h(x, x) ≤ h(x̄, x̄) < γ and hence we have

inf
x∈X

h(x, x) ≤ sup
x∈X

inf
y∈Y

f(x, y).

�

Remark 2.6. Another forms of Theorem 2.5 can be found in [9, 26, 27] and
[28].

3. Two-function Minimax Inequality

Theorem 3.1. ([7]) Suppose {(Xα,Mα) : α ∈ I} is a family of minimal
spaces and also suppose that (Y,N) is a minimal space. Then f : (Y,N) −→
(
∏
α∈I

Xα,
∏
α∈I
Mα) is m-continuous if and only if παof is m-continuous for all

α ∈ I.

Consider a family of minimal generalized convex spaces {(Xα, Dα,Γα) :
α ∈ I}. Set X =

∏
α∈I

Xα and D =
∏
α∈I

Dα. Choose A = {a0, . . . , an} ∈

〈D〉 and for each α ∈ I let Aα = {πα(ai0), πα(ai1), . . . , πα(ainα )}, where
πα(ai0), πα(ai1), . . . , πα(ainα ) are distinct elements of πα(A) and 0 ≤ i0 <
i1 < . . . < inα ≤ n. Now, define Γ : 〈D〉( X by Γ(A) =

∏
α∈I

Γα(Aα).

Lemma 3.2. Suppose {(Xα, Dα,Γα) : α ∈ I} is a family of MG-convex spaces.
Also suppose that X,D,Aα’s and Γ are defined as the above paragraph. Then
(X,D,Γ) is an MG-convex space.
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Proof. Since (Xα, Dα,Γα)’s are MG-convex spaces and since Aα ∈ 〈Dα〉 for
each α ∈ I, so there are (τ,m)-continuous functions ϕAα : ∆nα −→ Γα(Aα) in
which ϕAα(∆Jα) ⊆ Γα(Jα). Define ψAα : ∆n −→ ∆nα by

ψAα

( n∑
j=0

λjej

)
=

nα∑
t=0

( ∑
πα(aj)=πα(ait )

λj

)
et.

Now, consider the map ϕA : ∆n −→ Γ(A) defined by ϕA(z) = (ϕAαoψAα(z))α∈I
for all z ∈ ∆n. It is easy to see that ψAα’s are continuous and hence ϕAαoψAα
is (τ,m)-continuous for all α ∈ I. It follows from Theorem 3.1 that ϕA is
(τ,m)-continuous. For any J ⊆ A, put Jα = πα(J). By the definition of ϕA
and the fact that ϕAα(∆Jα) ⊆ Γα(Jα), one can deduce that ϕA(∆J) ⊆ Γ(J).
This completes our proof. �

Theorem 3.3. Suppose that (X1, D1,Γ1) and (X2, D2,Γ2) are two m-compact
MG-convex spaces with property I, Y1 and Y2 are two nonempty sets. Let
f1 : Y1 ×X2 → R, f2 : X1 × Y2 → R, g1 : D1 ×X2 → R, g2 : X1 ×D2 → R
and h1, h2 : X1 ×X2 → R be functions satisfying

(a) h1(z1, z2) ≤ h2(z1, z2) for each (z1, z2) ∈ X1 ×X2.

(b) h1 is minimal g1-quasiconcave in the first variable.

(c) h2 is minimal g2-quasiconvex in the second variable.

(d) f1 is minimal lower semi continuous in the second variable.

(e) f2 is minimal upper semi continuous in the first variable.

(f) for any y1 ∈ Y1 there is d1 ∈ D1 such that g1(d1, x2) ≥ f1(y1, x2) for all
x2 ∈ X2.

(g) for any y2 ∈ Y2 there is d2 ∈ D2 such that g2(x1, d2) ≤ f2(x1, y2) for all
x1 ∈ X1.
Then

inf
x2∈X2

sup
y1∈Y1

f1(y1, x2) ≤ sup
x1∈X1

inf
y2∈Y2

f2(x1, y2).

Proof. Consider any A = {(x10, x20), (x11, x21), . . . , (x1n, x2n)} ∈ 〈D1 × D2〉. For

j = 1, 2, let Aj = {zj0, z
j
1, . . . , z

j
nj}, where zj0, z

j
1, . . . , z

j
nj are distinct elements

of πj(A). Theorem 1.6 and Lemma 3.2 imply that (X1 × X2, D1 × D2,Γ)
is m-compact MG-convex space, where, Γ({(x10, x20), (x11, x21), . . . , (x1n, x2n)}) =
Γ1(A1) × Γ2(A2). On the contrary, suppose that the inequality is incorrect.
So there exists a fixed γ ∈ R, such that

sup
x1∈X1

inf
y2∈Y2

f2(x1, y2) < γ < inf
x2∈X2

sup
y1∈Y1

f1(y1, x2) (3.1)

Consider the multimaps T : X1 × X2 ( X1 × X2, S : X1 × X2 ( D1 × D2

and F : X1 ×X2( Y1 × Y2 defined by

T (x1, x2) = {t1 ∈ X1 : h1(t1, x2) > γ} × {t2 ∈ X2 : h2(x1, t2) < γ}
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S(x1, x2) = {d1 ∈ D1 : g1(d1, x2) > γ} × {d2 ∈ D2 : g2(x1, d2) < γ}
F (x1, x2) = {y1 ∈ Y1 : f1(y1, x2) > γ} × {y2 ∈ Y2 : f2(x1, y2) < γ}.

(3.1) implies that, F has nonempty values. By (f) and (g), for any (y1, y2) ∈
Y1 × Y2 there is (d1, d2) ∈ D1 × D2 such that F−(y1, y2) ⊆ S−(d1, d2). F

−

is minimal transfer open. Since for any (y1, y2) ∈ Y1 × Y2 and (x1, x2) ∈
F−(y1, y2), we have f1(y1, x2) > γ and f2(x1, y2) < γ. It follows from (d) and
(e), there are y′1 ∈ Y1, y′2 ∈ Y2 and minimal neighborhoods N1(x1) and N2(x2)
containing x1 and x2 respectively, such that f1(y

′
1, u2) > γ and f2(u1, y

′
2) < γ,

for any (u1, u2) ∈ N1(x1) ×N2(x2). Since, X1 and X2 have property I, then
one can deduce that N(x1, x2) = N1(x1) ×N2(x2) ⊆ F−(y′1, y

′
2) is a minimal

neighborhood of (x1, x2) and so

(x1, x2) ∈ m-Int(N(x1, x2)) ⊆ m-Int(F−(y′1, y
′
2))

which it gives the result. Choose (z1, z2) ∈ X1 × X2, {(x10, x20), (x11, x21), . . . ,
(x1n, x

2
n)} ∈ 〈S(z1, z2)〉 and

(t1, t2) ∈ Γ({(x10, x20), (x11, x21), . . . , (x1n, x2n)})
= Γ1({z10 , z11 , . . . , z1n1

})× Γ2({z20 , z21 , . . . , z2n2
}),

where z10 , z
1
1 , . . . , z

1
n1

and z20 , z
2
1 , . . . , z

2
n2

are distinct elements of {x10, x11, . . . , x1n}
and {x10, x11, . . . , x1n} respectively. Since (x1i , x

2
i ) ∈ S(z1, z2) for i = 0, 1, . . . , n,

so g2(z1, x
2
i ) < γ < g1(x

1
i , z2) for each i = 0, 1, . . . , n. By (b) and (c) we have

h1(t1, z2) ≥ min
0≤i≤n1

g1(z
1
i , z2) > γ

and

h2(z1, t2) ≤ max
0≤i≤n2

g2(z1, z
2
i ) < γ.

Therefore, (t1, t2) ∈ T (z1, z2), hence ΓM ⊆ T (z1, z2). Apply Theorem 2.1 to
obtain a point (z̄1, z̄2) ∈ X1 × X2 for which (z̄1, z̄2) ∈ T (z̄1, z̄2). Finally (a)
implies that γ < h1(z̄1, z̄2) ≤ h2(z̄1, z̄2) < γ, which it is a contradiction. �

Remark 3.4. Theorem 3.3 is an extension of corresponding theorems in [9,
17, 18, 23] for minimal generalized convex spaces.
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Sci. Paris., 300 (1985), 347–350.
[18] A. Granas and F.-C. Liu, Coincidences for set-valued maps and minimax inequalities,

J. Math. Pures Appl., 65 (1986), 119–148.
[19] C. W. Ha, Minimax and fixed point theorem, Math. Ann., 248 (1980), 73–77.
[20] T. Y. Kuo, J. C. Jeng and Y. Y. Huang, Fixed point theorems for compact multimaps

on almost Γ-convex sets in generalized convex spaces, Nonlinear Anal., 66(2) (2007),
415–426.

[21] K. Q. Lan, New fixed-point theorems for two maps and applications to problems on sets
with convex section and minimax inequalities, Comput. Math., 47 (2004), 195–205.

[22] L. J. Lin, Applications of a fixed point theorem in G-convex spaces, Nonlinear Anal., 46
(2001), 601–608.

[23] F.-C. Liu, A note on the Von-Neumann-Sion minimax principle, Bull. Inst. Math. Acad.
Sinica, 6 (1978), 517–524.

[24] H. Maki, On generalizing semi-open sets and preopen sets, Meeting on Topolgical Spaces
Theory and its Application, Augoust, 1996, 13–18.

[25] H. Maki, J. Umehara and T. Noiri, Every topological space is pre T 1
2
, Mem. Fac. Sci.

Kochi Univ. Ser A. Math., 17 (1996), 33–42.
[26] S. Park, Foundations of the KKM theory via coincidences of composites of upper semi-

continuous maps, J. Korean Math. Soc., 31 (1994), 493–519.
[27] S. Park, Foundations of the KKM theory on generalized convex spaces, J. Math. Anal.

Appl., 209 (1997), 551–571.
[28] S. Park and H. Kim, Admissible classes of multifunctions on generalized convex spaces,

Proc. Coll. Nature. Sci. SNU, 18 (1993), 1–21.



210 M.R. Delavar, S.A. Mohammadzadeh and M. Roohi

[29] V. Popa and T. Noiri, On M-continuous functions, Anal. Univ. Dunarea Jos-Galati,
Ser. Mat. Fiz. Mec. Teor. Fasc. II, 18(23) (2000), 31–41.

[30] M. Sion, On general minimax theorems, Pacific J. Math., 8 (1958), 171–176.
[31] K.-K. Tan and J. Yu, New minimax inequality with applications to existence theorems

of equilibrium points, J. Optim. Theory Appl., 82 (1994), 105–120.
[32] K.-K. Tan, G-KKM theorem, minimax inequalities and saddle points, Nonlinear Anal.,

32 (1997), 4151–4160.
[33] E. Tarafdar and P. J. Watson, A coincidence point theorem and related results, Appl.

Math. Lett., 11(1) (1998), 37–40.
[34] G.-Q. Tian, Generalizations of the FKKM theorem and the Ky Fan minimax inequality,

with applications to maximal elements, price equilibrium, and complementarity, J. Math.
Anal. Appl., 170 (1992), 457–471.

[35] J.-H. Zhang, Some minimax inequalities for mapping with noncompact domain, Appl.
Math. Lett., 17 (2003), 717–720.

[36] X. Zhang, Some intersection theorems and minimax inequalities, J. Optim. Theory
Appl., 94 (1997), 195-207.


