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Abstract. Some random coincidence point theorems satisfying a generalized contractive

condition have been established. As application, random best approximation results have

also been derived.

1. Introduction

The interplay between the geometry of Banach spaces and fixed point theory
has been very strong and fruitful. In particular, geometric properties play a
key role in metric fixed point problems, see for example [15] and references
mentioned therein. These results mainly rely on geometric properties of Ba-
nach spaces. These results were the starting point for a new mathematical
field: the application of geometric theory of Banach spaces to fixed point the-
ory. The fixed point theory of multi-valued nonexpansive mappings is much
more complicated than the corresponding theory of single-valued nonexpansive
mappings.

Probabilistic functional analysis is an important mathematical discipline be-
cause of its applications to probabilistic models in applied problems. Random
operator theory is needed for the study of various classes of random equa-
tions. The theory of random fixed point theorems was initiated by the Prague
school of probabilistic in the 1950s. The interest in this subject enhanced
after publication of the survey paper by Bharucha Reid [7]. Random fixed
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point theorems for contraction mappings were first studies by Spacek [30] and
Hans [11, 12]. Itoh [16, 17, 18] gave several random fixed point theorems for
various single and multivalued random operators. Random fixed point theory
has received much attention in recent years(see [2, 23, 24, 32]).

Random coincidence point theorems and random approximations are sto-
chastic generalization of classical coincidence point and approximation theo-
rems, and have application in probability theory and nonlinear analysis. The
random fixed point theory for self-maps and non-self maps has been devel-
oped during the last decade by various author, (see e.g. [2, 13]). Recently,
this theory has been further extended for 1-set contractive, nonexpansive,
semi-contractive and completely continuous random maps, etc.

Random fixed point theorems have been applied in many instances in the
field of random best approximation theory and several interesting and mean-
ingful results have been studied. The theory of approximation has become so
vast that it intersects with every other branch of analysis and plays an im-
portant role in the applied sciences and engineering. Approximation theory
is concerned with the approximation of functions of a certain kind by other
functions. In this point of view, in the year 1963, Meinardus [21] was first
to observe the general principle and to use a Schauder fixed point theorem
for finding deterministic version fixed point theorem as best approximation.
Afterwards, number of results were developed in this direction under different
conditions following the line made by Meinardus (see [8, 26, 27]).

On the other hand, In the year 2000, Shahzad and Latif [28, Theorem 3.2]
proved the random coincidence point which is further extended by Shahzad
and Nawab [29, Theorem 3.1]. Shahzad and Nawab [29] has also given the
invariant approximation result (Theorem 3.8) for single-valued mappings and
extends and complements the results of Beg and Shahzad [4, 6]. The result of
Shahzad and Latif [28, Theorem 3.2] and Xu [31, Theorem 1] is also generalized
and improved by Khan et al. [19, Theorem 3.13], in the sense that the maps S
and T need not be commuting for the existence of random coincidence, T (ω, .)
is not necessarily S(ω, .)- nonexpansive, and S is not affine. As application,
random invariant approximation results has also been obtained for single-
valued mappings.

The purpose of this paper is to generalize Khan et al. [19] for more gen-
eralized nonexpansive mappings. In this way, related results of Beg and
Shahzad [3, 4, 5], Nashine [22], Shahzad and Latif [28], Shahzad and Latif [29]
and Xu [31] are improve and generalized for multivalued random operators.
Incidently, these results also give multivalued random version generalization of
Dotson [9], Sahab et al. [25] and Singh [26, 27] and many more related results.
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2. Preliminaries

In the material to be produced here, the following definitions have been
used:

Definition 2.1. [6]. Let (Ω,Σ) be a measurable space with Σ a sigma algebra
of subsets of Ω and let M be a subset of metric space (X , d). We denote by
2X the family of all subsets of X , by CB(X ) the family of all nonempty closed
and bounded subsets of X , and by H the Hausdorff metric on CB(X ), induced
by the metric d. For any x ∈ X and A ⊆ X , by d(x,A) we denote the distance
between x and A, that is, d(x,A) = inf{d(x, a) : a ∈ A}.

A mapping T : Ω → 2X is called measurable (respectively, weakly measur-
able) if, for any closed (respectively, open) subset B of X , T −1(B) = {ω ∈ Ω :
T (ω) ∩ B 6= φ} ∈ Σ. Note that, if T (ω) ∈ C(X ) for every ω ∈ Ω, then T is
weakly measurable if and only if measurable.

A mapping ξ : Ω → X is said to be measurable selector of a measurable
mapping T : Ω → 2X , if ξ is measurable and, for any ω ∈ Ω, ξ(ω) ∈ T (ω). A
mapping S : Ω×X → X is called a random operator if, for any x ∈ X , T (., x)
is measurable. A mapping T : Ω × X → CB(X ) is called a multivalued ran-
dom operator if for every x ∈ X, T (., x) is measurable. A measurable mapping
ξ : Ω→ X is called a random fixed point of a random operator T : Ω×X → X ,
if for every ω ∈ Ω, ξ(ω) = T (ω, ξ(ω)). A measurable mapping ξ : Ω → X is
called a random coincidence of T : Ω × CB(X ) → X and S : Ω × X → X if
S(ω, ξ(ω)) ∈ T (ω, ξ(ω)) for all ω ∈ Ω. We denote by F(T ) the set of fixed
points of T and by C(S ∩ T ) the set of coincidence points of S and T .

A map T : X → X is said to be S-nonexpansive, if there exists a self-map
S on X such that d(T x, T y) ≤ d(Sx,Sy) for all x, y ∈ X .

Let T : M → CB(M). The mapping S : M →M is said to be T -weakly
commuting if for all x ∈M, SSx ∈ T Sx.

A set M is said to have property (N) [14], if

(1) T :M→ CB(M),

(2) (1−kn)p+knT x ⊆M, for some p ∈M and a fixed sequence of real num-
bers kn(0 < kn < 1) converging to 1 and for each x ∈ M. Each p-starshaped
set has the property (N ) with respect to any map T :M→ CB(M) but the
converse does not hold, in general.

A random operator T : Ω× X → X is continuous (respectively, nonexpan-
sive, S-nonexpansive) if, for each ω ∈ Ω, T (ω, .) is continuous(respectively,
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nonexpansive, S-nonexpansive). Let T : Ω × X → CB(X ) be a random op-
erator. Then, random operators S : Ω × X → X is T -weakly commuting, if
S(ω, .) is T -weakly commuting, for each ω ∈ Ω.

Definition 2.2. [6]. Let M be a nonempty subset of a normed space X . For
x0 ∈ X , let us define

dist(x0,M) = inf
y∈M

‖x0 − y‖

and
PM(x0) = {y ∈M : ‖x0 − y‖ = dist(x0,M)}.

An element y ∈ PM(x0) is called a best approximant of x0 out of M. The set
PM(x0) is the set of all best approximation of x0 out of M.

The following result is also needed in the sequel:

Theorem 2.3. [10]. Let (X , d) be a complete separable metric space, let
(Ω,Σ) be a measurable space, and let T : Ω×X → CB(X ) and S : Ω×X → X
be mappings such that

(i) T (ω, .), S(ω, .) are continuous for all ω ∈ Ω,

(ii) T (ω, .), S(ω, .) are measurable for all x ∈ X ,

(iii) they satisfy for each ω ∈ Ω

H(T (ω, x), T (ω, y))

≤ α(ω) max{d(S(ω, x),S(ω, y)), d(S(ω, x), T (ω, x)), d(S(ω, y), T (ω, y)),

1

2
[d(S(ω, x), T (ω, y)) + d(S(ω, y), T (ω, x))]}

+β(ω) max{d(S(ω, x), T (ω, x)), d(S(ω, y), T (ω, y))}
+γ(ω)[d(S(ω, x), T (ω, y)) + d(S(ω, y), T (ω, x))]

for every x, y ∈ X , where α, β, γ : Ω → [0, 1) are measurable mappings such
that for all ω ∈ Ω, β(ω) > 0, γ(ω) > 0, α(ω)+β(ω)+2γ(ω) = 1. If S(Ω×X ) =
X for each ω ∈ Ω, then there is a measurable mapping ξ : Ω → X such that
S(ω, ξ(ω)) ∈ T (ω, ξ(ω)) for all ω ∈ Ω(i.e., T and S have a random coincidence
point).

3. Main Results

Following is a common random fixed point theorem for multivalued random
operator:
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Theorem 3.1. Let (Ω,Σ) be a measurable space, let M be a nonempty subset
of a normed space X , and S : Ω ×M → M a random operators such that
S(ω,M) = M for each ω ∈ Ω. Assume that T : Ω × M → CB(M) a
continuous random operators and satisfies, for each ω ∈ Ω, x, y ∈ M and
λ ∈ [0, 1]

H(T (ω, x), T (ω, y))

≤ max{‖S(ω, x)− S(ω, y)‖, dist(S(ω, x), Tλ(ω, x)), dist(S(ω, y), Tλ(ω, y)),

1

2
[dist(S(ω, x), Tλ(ω, y)) + dist(S(ω, y), Tλ(ω, x))]}

+[
1− k(ω)

2k(ω)
] max{dist(S(ω, x), Tλ(ω, x)), dist(S(ω, y), Tλ(ω, y))}

+[
1− k(ω)

4k(ω)
][dist(S(ω, x), Tλ(ω, y)) + dist(S(ω, y), Tλ(ω, x))] (3.1)

where k : Ω→ (0, 1) are measurable mappings such that for all ω ∈ Ω. Suppose
that M has the property (N), then S and T have a random coincidence point,
if one of the following conditions is satisfied:

(1) M is separable compact and S is continuous;

(2) X is Banach space, M is separable weakly compact, S is weakly con-
tinuous and (S − T )(ω, .) is demiclosed at 0;

(3) X is Banach space, M is separable weakly compact, T is completely
continuous, and S is continuous;

(4) M is separable complete, T (M) is bounded and (S − T )(M) is closed.

Moreover, if for each ω ∈ Ω and any x ∈ M, S(ω, x) ∈ T (ω, x) implies
S(ω,S(ω, x)) = S(ω, x), and S is T -weakly commuting random operator, then
T and S have a common random fixed point.

Proof. Choose a fixed sequence of measurable mappings kn : Ω → (0, 1) such
that kn(ω)→ 1 as n→∞. For n ≥ 1, define a sequence of random operators
Tn : Ω×M→ CB(M) as

Tn(ω, x) = kn(ω)T (ω, x) + (1− kn(ω))p (3.2)

for all x ∈M. Then, each Tn is a well-defined map fromM into CB(M) and
ω ∈ Ω as M has property (N). It follows from (3.1) and (3.2) that
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H(Tn(ω, x), Tn(ω, y)) = kn(ω)H(T (ω, x), T (ω, y))

≤ kn(ω) max{‖S(ω, x)− S(ω, y)‖,
1

2
[‖S(ω, x)− Tn(ω, y)‖+ ‖S(ω, y)− Tn(ω, x)‖]}

+[
1− kn(ω)

2
] max{‖S(ω, x)− Tn(ω, x)‖, ‖S(ω, y)− Tn(ω, y)‖}

+[
1− kn(ω)

4
][‖S(ω, x)− Tn(ω, y)‖+ ‖S(ω, y)− Tn(ω, x)‖]

for all x, y ∈ M and ω ∈ Ω. Note that for all ω ∈ Ω, (1−kn(ω)2 ) > 0,

(1−kn(ω)4 ) > 0 and [kn(ω) + (1−kn(ω)2 ) + 2(1−kn(ω)4 )] = 1 for each n.

(1) SinceM is compact, thus, all the condition of the Theorem 2.3 are satisfied
on M and so, there exists a coincidence random fixed point ξn of Tn and S
such that Sn(ω, ξn(ω)) ∈ T (ω, ξn(ω)).

For each n, define Gn : Ω→ C(M) by Gn = cl{ξi(ω) : i ≥ n} where C(M) is
the set of all nonempty compact subset ofM. Let G : Ω→ C(M) be a mapping
defined as G(ω) = ∩∞n=1Gn(ω). By Himmelberg [13, Theorem 4.1] implies that
G is measurable. The Kuratowski and Ryll-Nardzewski selection Theorem [20]
further implies that G has a measurable selector ξ : Ω→M. We show that ξ
is the random fixed point of T and S. Fix ω ∈ Ω. Since ξ(ω) ∈ G(ω), therefore
there exists a subsequence {ξm(ω)} of {ξn(ω)} that converges to ξ(ω); that is
ξm(ω)→ ξ(ω). Also, for every ω ∈ Ω, Since ξm(ω) ∈ Tm(ω, ξm(ω)), we have

Tm(ω, ξm(ω)) = km(ω)T (ω, ξm(ω)) + (1− km(ω))p→ T (ω, ξ(ω))

as km(ω)→ 1 and H(T (ω, ξm(ω)), T (ω, ξ(ω)))→ 0, for every ω ∈ Ω. Now,

‖ξ(ω)− T (ω, ξ(ω))‖ ≤ ‖ξ(ω)− ξm(ω)‖+ ‖ξm(ω)− T (ω, ξ(ω))‖

≤ ‖ξ(ω)− ξm(ω)‖+H(Tm(ω, ξm(ω)), T (ω, ξ(ω)))→ 0

as m→∞, for every ω ∈ Ω. Since T (ω, ξ(ω)) is closed for each ω ∈ Ω. Hence
ξ(ω) ∈ T (ω, ξ(ω)). Also from the continuity of S, we have

S(ω, ξ(ω)) = S(ω, lim
m→∞

ξm(ω)) = lim
m→∞

S(ω, ξm(ω)) = lim
m→∞

ξm(ω) = ξ(ω).

If S is T -weakly commuting at υ(ω) ∈ C(S, T ), then

S(ω,S(ω, υ(ω))) = T (ω,S(ω, υ(ω)))

and hence

S(ω, υ(ω)) = S(ω,S(ω, υ(ω))) ∈ T (ω,S(ω, υ(ω))).
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Thus F(S) ∩ F(T ) 6= φ.

(2) Since weak topology is Hausdorff and M is weakly compact, it follows
that M is strongly closed and is a completely metric space. Thus by weakly
continuity of S and Theorem 2.3, there exists a random fixed point ξ of Tn
such that S(ω, ξn(ω)) ∈ Tn(ω, ξn(ω)) for each ω ∈ Ω. By the definition of
T (ω, ξn(ω)), there is a ζn(ω) ∈ T (ω, ξn(ω).

For each n, define Gn : Ω → WC(M) by Gn = w − cl{ξi(ω) : i ≥ n},
where WC(M) is the set of all nonempty weakly compact subset of M and
w − cl denotes the weak closure. Defined a mapping G : Ω → WC(M) by
G(ω) = ∩∞n=1Gn(ω). Because M is weakly compact and separable, the weak
topology on M is a metric topology. Then by Himmelberg [13, Theorem
4.1] implies that G is w−measurable. The Kuratowski and Ryll-Nardzewski
selection Theorem [20] further implies that G has a measurable selector ξ :
Ω → M. We show that ξ is the random fixed point of T . Fix ω ∈ Ω. Since
ξ(ω) ∈ G(ω), therefore there exists a subsequence {ξm(ω)} of {ξn(ω)} that
converges weakly to ξ(ω); that is ξm(ω)→ ξ(ω). Now, from weakly continuity
of S, we have

S(ω, ξ(ω)) = S(ω, lim
m→∞

ξm(ω)) = lim
m→∞

S(ω, ξm(ω)) = lim
m→∞

ξm(ω) = ξ(ω).

Now,

S(ω, ξm(ω))− ζm(ω) = kn(ω)ζm(ω) + (1− kn(ω))p− ζm(ω)

= (1− km(ω))(p− ζm(ω)).

Since M is bounded and km(ω)→ 1, it follows that

‖S(ω, ξm(ω))− ζm(ω)‖ → 0.

Now, ym = S(ω, ξm(ω)) − ζm(ω)) = (S − T )(ω, ξm(ω)) and ym → 0. Since
(S − T )(ω, .) is demiclosed at 0, so 0 ∈ (S − T )(ω, ξ(ω)). This implies that
S(ω, ξ(ω)) ∈ T (ω, ξ(ω)). As in the proof of (i), thus F(S) ∩ F(T ) 6= φ.

(3) As in (ii) there exists a random fixed point ξn of Tn such that ξn =
S(ω, ξn(ω)) = Tn(ω, ξn(ω)) for each ω ∈ Ω. For each n, define Gn : Ω →
WC(M) by Gn = w − cl{ξi(ω) : i ≥ n}, where WC(M) is the set of all
nonempty weakly compact subset of M and w − cl denotes the weak closure.
Defined a mapping G : Ω → WC(M) by G(ω) = ∩∞n=1Gn(ω). Because M is
weakly compact and separable, the weak topology onM is a metric topology.
Then by Himmelberg([13], Theorem 4.1) implies that G is w−measurable. The
Kuratowski and Ryll-Nardzewski selection Theorem [20] further implies that
G has a measurable selector ξ : Ω→M. We show that ξ is the random fixed
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point of T . Fix ω ∈ Ω. Since ξ(ω) ∈ G(ω), therefore there exists a subsequence
{ξm(ω)} of {ξn(ω)} that converges weakly to ξ(ω); that is ξm(ω) →w ξ(ω).
Since T is completely continuous, T (ω, ξm(ω)) → T (ω, ξ(ω)) as m → ∞.
Since km → 1, we get

ξm(ω) = (1− km)q + kmT (ω, ξm(ω)) = T (ω, ξ(ω)).

Thus T (ω, ξm(ω))→ T 2(ω, ξ(ω)) as m→∞ and consequently T 2(ω, ξ(ω)) =
T (ω, ξ(ω)) implies that T (ω, ζ(ω)) = ζ(ω), where ζ(ω) = T (ω, ξ(ω)). But,
since S(ω, ξm(ω)) = ξm(ω)→ T (ω, ξ(ω)) = ζ(ω), using the continuity of S and
the uniqueness of the limit, we have S(ω, ζ(ω)) = ζ(ω). Hence S(ω, ζ(ω)) =
T (ω, ζ(ω)) = ζ(ω).

(4) By Theorem 2.3, for each n ≥ 1, there exists ξn(ω) ∈ M such that
S(ω, ξn(ω)) ∈ Tn(ω, ξn(ω)) for each ω ∈ Ω. This implies that there is a
ζn(ω) ∈ T (ω, ξn(ω) such that

S(ω, ξn(ω))− ζn(ω) = kn(ω)ζn(ω) + (1− kn(ω))p− ζn(ω)

= (1− kn(ω))(p− ζn(ω)).

Since T (M) is bounded and kn(ω) → 1, it follows that ‖S(ω, ξm(ω)) −
ζm(ω)‖ → 0. as n → ∞. As (S − T )(ω, .) is closed, so 0 ∈ (S − T )(ω, ξ(ω)).
This implies that S(ω, ξ(ω)) ∈ T (ω, ξ(ω)). As in the proof of (i), thus
F(S) ∩ F(T ) 6= φ. �

Remark 3.2. If in Theorem 3.1, S(ω, x) = x for all (ω, x) ∈ Ω×M, then we
get the following random fixed point theorem.

Corollary 3.3. Let (Ω,Σ) be a measurable space, letM be a nonempty subset
of a normed space X , and T : Ω × M → CB(M) a continuous random
operators and satisfies, for each ω ∈ Ω, x, y ∈M and λ ∈ [0, 1]

H(T (ω, x), T (ω, y))

≤ max{‖x− y‖, dist(x, Tλ(ω, x)), dist(y, Tλ(ω, y)),

1

2
[dist(x, Tλ(ω, y)) + dist(y, Tλ(ω, x))]}

+[
1− k(ω)

2k(ω)
] max{dist(x, Tλ(ω, x)), dist(y, Tλ(ω, y))}

+[
1− k(ω)

4k(ω)
][dist(x, Tλ(ω, y)) + dist(y, Tλ(ω, x))] (3.3)

where k : Ω→ (0, 1) are measurable mappings such that for all ω ∈ Ω. Suppose
that M has the property (N), then there exists a measurable map ξ : Ω→M
such that ξ(ω) ∈ T (ω, ξ(ω)), if one of the following conditions is satisfied:
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(1) M is separable compact;
(2) X is Banach space, M is separable weakly compact, and (I − T )(ω, .)

is demiclosed at 0, where I is identity operator;
(3) X is Banach space, M is separable weakly compact, T is completely

continuous;
(4) M is separable complete, T (M) is bounded and (I − T )(M) is closed,

where I is identity operator;

Corollary 3.4. Let (Ω,Σ) be a measurable space, letM be a nonempty subset
of a normed space X , and S : Ω ×M → M a random operators such that
S(ω,M) = M for each ω ∈ Ω. Assume that T : Ω × M → CB(M) a
continuous random operators and satisfies, for each ω ∈ Ω, x, y ∈ M and
λ ∈ [0, 1]

H(T (ω, x), T (ω, y))

≤ max{‖S(ω, x)− S(ω, y)‖, dist(S(ω, x), Tλ(ω, x)), dist(S(ω, y), Tλ(ω, y)),

1

2
[dist(S(ω, x), Tλ(ω, y)) + dist(S(ω, y), Tλ(ω, x))]}. (3.4)

Suppose that M has the property (N), then S and T have a random coinci-
dence point under each of the condition of Theorem 3.1. Moreover, if for each
ω ∈ Ω and any x ∈ M, S(ω, x) ∈ T (ω, x) implies S(ω,S(ω, x)) = S(ω, x),
and S is T -weakly commuting random operator, then T and S have a common
random fixed point.

Remark 3.5. If in Corollary 3.4, S(ω, x) = x for all (ω, x) ∈ Ω ×M, then
we obtain the following random fixed point theorem.

Corollary 3.6. Let (Ω,Σ) be a measurable space, letM be a nonempty subset
of a normed space X , and T : Ω × M → CB(M) a continuous random
operators and satisfies, for each ω ∈ Ω, x, y ∈M and λ ∈ [0, 1]

H(T (ω, x), T (ω, y)) ≤ max{‖x− y‖, dist(x, Tλ(ω, x)), dist(y, Tλ(ω, y)),

1

2
[dist(x, Tλ(ω, y)) + dist(y, Tλ(ω, x))]} (3.5)

then there exists a measurable map ξ : Ω → M such that ξ(ω) ∈ T (ω, ξ(ω))
under each of the condition of Theorem 3.3.

As application of Theorem 3.1, following are common random fixed point
theorems for random invariant approximation:

Theorem 3.7. Let M be a subset of normed space of X , S : Ω ×M → M
and T : Ω×M→ CB(M) is continuous. Suppose that

(a) T and S satisfy for all x, y ∈ PM(x0) and λ ∈ [0, 1]
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H(T (ω, x), T (ω, y))

≤



max{‖S(ω, x)− S(ω, x0)‖,
dist(S(ω, x), Tλ(ω, x)), dist(S(ω, y), Tλ(ω, y)),

1
2 [dist(S(ω, x), Tλ(ω, y)) + dist(S(ω, y), Tλ(ω, x))]}

+[1−k(ω)2k(ω) ] max{dist(S(ω, x), Tλ(ω, x)), dist(S(ω, y), Tλ(ω, y))}

+[1−k(ω)4k(ω) ][dist(S(ω, x), Tλ(ω, y)) + dist(S(ω, y), Tλ(ω, x))]

(3.6)
where k : Ω→ (0, 1) are measurable mappings such that for all ω ∈ Ω;

(b) PM(x0) is nonempty and has the property (N);
(c) PM(x0) is both T −invariant and S−invariant.

Then PM(x0) ∩ C(S, T ) 6= φ, if one of the following conditions is satisfied:

(1) PM(x0) is separable compact and S is continuous;
(2) X is Banach space, PM(x0) is separable weakly compact, S is weakly

continuous and (S − T )(ω, .) is demiclosed at 0;
(3) X is Banach space, PM(x0) is separable weakly compact, T is com-

pletely continuous, and S is continuous;
(4) PM(x0) is separable complete, T (M) is bounded and (S − T )(M) is

closed.

Moreover, if for each ω ∈ Ω and any x ∈ M, S(ω, x) ∈ T (ω, x) implies
S(ω,S(ω, x)) = S(ω, x), and S is T -weakly commuting random operator, then
PM(x0) ∩ F(S) ∩ F(T ) 6= φ.

Proof. Since PM(x0) is both T −invariant and S−invariant, it follows that
S : Ω × PM(x0) → PM(x0), T : Ω × PM(x0) → CB(PM(x0)). The results
now follow from Theorem 3.1. �

Theorem 3.8. Let M be a subset of normed space of X , S : Ω ×M →M,
T : Ω×M→ CB(M) such that T (ω, .) : ∂M∩M→M, where ∂M stands
for the boundary of M. Let x0 ∈ X and S(ω, x0) ∈ T (ω, x0) = {x0} ω ∈ Ω.
Suppose that
(a) T and S satisfy for all x ∈ PM(x0) ∪ {x0} and λ ∈ [0, 1]
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H(T (ω, x), T (ω, y))

≤



‖S(ω, x)− S(ω, x0)‖, if y = x0,

max{‖S(ω, x)− S(ω, y)‖,

dist(S(ω, x), Tλ(ω, x)), dist(S(ω, y), Tλ(ω, y)),

1
2 [dist(S(ω, x), Tλ(ω, y)) + dist(S(ω, y), Tλ(ω, x))]}

+[1−k(ω)2k(ω) ] max{dist(S(ω, x), Tλ(ω, x)), dist(S(ω, y), Tλ(ω, y))}

+[1−k(ω)4k(ω) ][dist(S(ω, x), Tλ(ω, y)) + dist(S(ω, y), xTλ(ω, x))],

if y ∈ PM(x0),
(3.7)

where k : Ω→ (0, 1) are measurable mappings such that for all ω ∈ Ω;
(b) PM(x0) is nonempty and has the property (N);
(c) S(ω,PM(x0)) = PM(x0), i.e., PM(x0) is S−invariant.

Then PM(x0) ∩ C(S, T ) 6= φ, under each of the conditions of Theorem 3.7.
Moreover, if for each ω ∈ Ω and any x ∈ M, S(ω, x) ∈ T (ω, x) implies

S(ω,S(ω, x)) = S(ω, x), and S is T -weakly commuting random operator, then
PM(x0) ∩ F(S) ∩ F(T ) 6= φ.

Proof. Let y ∈ PM(x0). Then ‖y − x0‖ = dist(x,M). Note that for any
t(ω) ∈ (0, 1),

‖t(ω)x0 + (1− t(ω))y − x0‖ = (1− t(ω))‖y − x0‖ < dist(x0,M).

It follows that the line segment {t(ω)x0 + (1− t(ω))y : 0 < t(ω) < 1} and the
set M are disjoint. Thus y is not in the interior of M and so y ∈ ∂M∩M.
Since T (∂M∩M) ⊂M, T x must be in M. Let z ∈ T (ω, y).

‖z − x0‖ ≤ H(T (ω, y), T (ω, x0)

≤ ‖S(ω, y)− S(ω, x0)‖ = ‖S(ω, y)− x0‖ = dist(x0,M).

Now z∈M and S(ω, y)∈PM(x0), imply that z∈PM(x0). Thus T (ω,PM(x0))
⊆ PM(x0). Hence T maps PM(x0)) into CB(PM(x0)). Thus, the result
follows from Theorem 3.1. �

Define CSM(x0) = {x ∈ M : Sx ∈ PM(x0)} and DSM(x0) = PM(x0) ∩
CSM(x0) [1].
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Theorem 3.9. Let M be a subset of normed space of X , S : Ω ×M →M,
T : Ω×M→ CB(M) such that T (ω, .) : ∂M∩M→M, where ∂M stands
for the boundary of M. Let x0 ∈ X and S(ω, x0) ∈ T (ω, x0) = {x0} ω ∈ Ω.
Suppose that
(a) T and S satisfy for all x ∈ DSM(x0)(= D) ∪ {x0} and λ ∈ [0, 1]

H(T (ω, x), T (ω, y))

≤



‖S(ω, x)− S(ω, x0)‖, if y = x0,

max{‖S(ω, x)− S(ω, y)‖,

dist(S(ω, x), Tλ(ω, x)), dist(S(ω, y), Tλ(ω, y)),

1
2 [dist(S(ω, x), Tλ(ω, y)) + dist(S(ω, y), Tλ(ω, x))]}

+[1−k(ω)2k(ω) ] max{dist(S(ω, x), Tλ(ω, x)), dist(S(ω, y), Tλ(ω, y))}

+[1−k(ω)4k(ω) ][dist(S(ω, x), Tλ(ω, y)) + dist(S(ω, y), Tλ(ω, x))],

if y ∈ D,
(3.8)

where k : Ω→ (0, 1) are measurable mappings such that for all ω ∈ Ω;
(b) D is nonempty and has the property (N);
(c) S(ω,D) = D, i.e., D is S−invariant;
(d) S is nonexpansive on PM(x0) ∪ {x0}.
Then PM(x0) ∩ C(S, T ) 6= φ, under each of the conditions of Theorem 3.7.
Moreover, if for each ω ∈ Ω and any x ∈ M, S(ω, x) ∈ T (ω, x) implies
S(ω,S(ω, x)) = S(ω, x), and S is T -weakly commuting random operator, then
PM(x0) ∩ F(S) ∩ F(T ) 6= φ.

Proof. Let y ∈ D, then S(ω, y) ∈ D, since S(ω,D) = D for each ω ∈ Ω. Also,
if y ∈ ∂M and so T (ω, y) ∈ M, since T (ω, ∂M) ⊆ M for each ω ∈ Ω. Let
z ∈ T (ω, y).

‖z − x0‖ ≤ H(T (ω, y), T (ω, x0) ≤ ‖S(ω, y)− S(ω, x0)‖

= ‖S(ω, y)− x0‖ = dist(x0,M).

Now z ∈M and S(ω, y) ∈ PM(x0), imply that z ∈ PM(x0). This implies that
T (ω, y) is also closest to x0, so, T (ω, y) ∈ PM(x0); consequently PM(x0) is
T (ω, .)-invariant, that is, T (ω, .) ⊆ PM(x0).As S is nonexpansive on PM(x0)∪
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{x0}, so for each ω ∈ Ω, we have

‖ST (ω, y)− x0‖ = ‖ST (ω, y)− S(ω, x0)‖ ≤ ‖T (ω, y)− x0‖

= ‖T (ω, y)− T (ω, x0)‖ ≤ ‖S(ω, y)− S(ω, x0)‖

= ‖S(ω, y)− x0‖.

Thus, ST (ω, y) ∈ PM(x0). This implies that T (ω, y) ∈ CSM(x0) and hence
T (ω, y) ∈ D. So, T maps PM(x0) into CB(PM(x0)) and S(ω, .) is self-map
on D. Hence, all the condition of the Theorem 3.7 are satisfied. Thus, there
exists a measurable map ξ : Ω→ D such that ξ(ω) = T (ω, ξ(ω)) = S(ω, ξ(ω))
for each ω ∈ Ω. �

Remark 3.10. If in Theorem 3.7, S(ω, x) = x for all (ω, x) ∈ Ω × PM(x0),
then we get the following random best approximation theorem:

Corollary 3.11. Let M be a subset of normed space of X , T : Ω ×M →
CB(M) and satisfies for all x, y ∈ PM(x0) and λ ∈ [0, 1]

H(T (ω, x), T (ω, y))

≤



max{‖x− y‖, dist(x, Tλ(ω, x)), dist(y, Tλ(ω, y)),

1
2 [dist(x, Tλ(ω, y)) + dist(y, Tλ(ω, x))]}

+[1−k(ω)2k(ω) ] max{dist(x, Tλ(ω, x)), dist(y, Tλ(ω, y))}

+[1−k(ω)4k(ω) ][dist(x, Tλ(ω, y)) + dist(y, Tλ(ω, x))]

(3.9)

where k : Ω → (0, 1) are measurable mappings such that for all ω ∈ Ω. If
PM(x0) is nonempty and has the property (N) and PM(x0) is both T −invariant,
then PM(x0) ∩ F(T ) 6= φ, under each of the conditions of Theorem 3.7.

Corollary 3.12. Let M be a subset of normed space of X , T : Ω ×M →
CB(M) such that T (ω, .) : ∂M∩M→M, where ∂M stands for the bound-
ary of M. Let x0 ∈ X and T (ω, x0) = {x0}, for all ω ∈ Ω. Suppose that T
satisfy for all x ∈ PM(x0) ∪ {x0} and λ ∈ [0, 1]
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H(T (ω, x), T (ω, y))

≤



‖x− x0‖, if y = x0,

max{‖x− y‖, dist(x, Tλ(ω, x)), dist(y, Tλ(ω, y)),

1
2 [dist(x, Tλ(ω, y)) + dist(y, Tλ(ω, x))]}

+[1−k(ω)2k(ω) ] max{dist(x, Tλ(ω, x)), dist(y, Tλ(ω, y))}

+[1−k(ω)4k(ω) ][dist(x, Tλ(ω, y)) + dist(y, Tλ(ω, x))],

if y ∈ PM(x0),

(3.10)

where k : Ω → (0, 1) are measurable mappings such that for all ω ∈ Ω. If
PM(x0) is nonempty and has the property (N). Then PM(x0) ∩ F(T ) 6= φ,
under each of the conditions of Theorem 3.11.

Corollary 3.13. Let M be a subset of normed space of X , T : Ω ×M →
CB(M) such that T (ω, .) : ∂M∩M→M, where ∂M stands for the bound-
ary of M. Let x0 ∈ X and T (ω, x0) = {x0}, for all ω ∈ Ω. Suppose that T
satisfies for all x ∈ D ∪ {x0} and λ ∈ [0, 1]

H(T (ω, x), T (ω, y))

≤



‖x− x0‖, if y = x0,

max{‖x− y‖, dist(x, Tλ(ω, x)), dist(y, Tλ(ω, y)),

1
2 [dist(x, Tλ(ω, y)) + dist(y, Tλ(ω, x))]}

+[1−k(ω)2k(ω) ] max{dist(x, Tλ(ω, x)), dist(y, Tλ(ω, y))}

+[1−k(ω)4k(ω) ][dist(x, Tλ(ω, y)) + dist(y, Tλ(ω, x))], if y ∈ D,

(3.11)

where k : Ω → (0, 1) are measurable mappings such that for all ω ∈ Ω. If D
nonempty and has the property (N). Then PM(x0) ∩ F(T ) 6= φ, under each
of the conditions of Theorem 3.7.

Corollary 3.14. Let M be a subset of normed space of X , S : Ω×M→M,
T : Ω ×M → CB(M). Suppose that T and S satisfy for all x, y ∈ PM(x0)
and λ ∈ [0, 1]
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H(T (ω, x), T (ω, y))

≤ max{‖S(ω, x)− S(ω, x0)‖, dist(S(ω, x), Tλ(ω, x)),

dist(S(ω, y), Tλ(ω, y)), 12 [dist(S(ω, x), Tλ(ω, y))

+dist(S(ω, y), Tλ(ω, x))]}

(3.12)

where k : Ω → (0, 1) are measurable mappings such that for all ω ∈ Ω. If
PM(x0) is nonempty and has the property (N) and PM(x0) is both T −invariant
and S−invariant. Then PM(x0)∩C(S, T ) 6= φ, under each of the conditions of
Theorem 3.7. Moreover, if for each ω ∈ Ω and any x ∈M, S(ω, x) ∈ T (ω, x)
implies S(ω,S(ω, x)) = S(ω, x), and S is T -weakly commuting random oper-
ator, then PM(x0) ∩ F(S) ∩ F(T ) 6= φ.

Corollary 3.15. Let M be a subset of normed space of X , T : Ω ×M →
CB(M) and satisfies for all x, y ∈ PM(x0) and λ ∈ [0, 1]

H(T (ω, x), T (ω, y))

≤


max{‖x− x0‖, dist(x, Tλ(ω, x)), dist(y, Tλ(ω, y)),

1
2 [dist(x, Tλ(ω, y)) + dist(y, Tλ(ω, x))]}

(3.13)

where k : Ω→ (0, 1) are measurable mappings such that for all ω ∈ Ω. PM(x0)
is nonempty and has the property (N) and PM(x0) is T −invariant. Then
PM(x0) ∩ F(T ) 6= φ, under each of the conditions of Theorem 3.11.
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