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Abstract. In this paper, by constructing a special cone and using fixed point theorem on

cone, the author established the existence of at least one positive unbounded solutions for

infinite boundary value problems.

1. Introduction

In this paper, we are concerned with the existence of positive solutions
for the following nonlinear singular boundary value problems (BVP) on the
half-line: 

(p(t)x′(t))′ + φ(t)f(t, x(t)) = 0, 0 < t < +∞,
ax(0)− b lim

t→0+
p(t)x′(t) = y0 ≥ 0,

lim
t→+∞

p(t)x′(t) = k > 0,

(1.1)

where a, b > 0, φ, f are continuous functions and φ may be singular at t = 0.
Boundary value problems on the half-line have been studied extensively by

many authors over the last two decades due to its extensive application in
the study of radial solutions of nonlinear elliptic equations and models of gas
pressure in a semi-infinite porous medium[1-4]. In [3], with p(t) ≡ 1, φ(t) ≡ 1,
b = 0, Ning and Wang discussed the fixed theorem for BVP(1.1) and presented
the sufficient conditions for the existence of positive solutions to BVP(1.1) with
the superlinearity and sublinearity conditions f(t, x) = f1(t, x) + f2(t, x). In
[5], Yan et al. studied the equation x′′(t) + φ(t)f(t, x(t)) = 0 and proved the
positive unbounded solutions by the lower and upper solution technique. In
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this paper, unbounded solutions means the solution x(t) in [0,+∞) satisfying
limt→+∞ x(t) = +∞, which not means the solution blow-up in a finite time,
it depicts the solution(the system trajectory) removes far away from origins
as time increases by the determinable gradual velocities.

Lemma 1.1. Let P be a positive cone in a real Banach space E, Ω1, Ω2 are
bounded open sets in E, θ ∈ Ω1, Ω1 ⊂ Ω2, A : P ∩Ω2\Ω1 → P is a completely
continuous operator. If the following conditions are satisfied:
‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂Ω1; ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂Ω2

or
‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂Ω1; ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂Ω2,

then A has at least one fixed points in P ∩ (Ω2\Ω1).

2. Preliminaries and some lemmas

Let p ∈ C([0,+∞),R) ∩ C1(0,+∞), p(t) > 0, t ∈ (0,+∞), and
∫ 1
0

1
p(t)dt <

+∞,
∫∞
1

1
p(t)dt = +∞.

G(t, s) =

{
τ0(s), 0 ≤ s ≤ t < +∞,
τ0(t), 0 ≤ t ≤ s < +∞,

(2.1)

e(t) = kτ0(t) +
a

b
k +

y0
a
, (2.2)

here τ0(t) =
∫ t
0

1
p(s)ds + a

b , then there exists [a∗, b∗] ⊂ (0,+∞), 0 < c∗ =

c∗(a∗, b∗) ≤ 1, such that

G(t, s)

1 + τ0(t)
≥ c∗ G(t′, s)

1 + τ0(t′)
, t ∈ [a∗, b∗], t′, s ∈ [0,+∞). (2.3)

e(t)

1 + τ0(t)
≥ c∗ e(s)

1 + τ0(s)
, t ∈ [a∗, b∗], s ∈ [0,+∞). (2.4)

This paper, we use the basic space:

C∞([0,+∞),R) =

{
x ∈ C([0,+∞),R) : sup

t∈[0,+∞)

|x(t)|
1 + τ0(t)

< +∞

}
.

Obviously, for any x ∈ C∞([0,+∞),R), it is a Banach space with the norm

‖x‖∞ =: supt∈[0,+∞)
|x(t)|

1+τ0(t)
. Define

P =

{
x∈C∞([0,+∞),R), x(t) ≥ 0, t ≥ 0,

x(t)

1+τ0(t)
≥ c∗‖x‖∞, t ∈ [a∗, b∗]

}
.

In evidence, P is a cone of the Banach space C∞([0,+∞),R).
In this paper, we discuss the existence of positive solutions for the BVP(1.1)

in the space C∞([0,+∞),R). If x ∈ C2([0,+∞),R) and satisfies BVP (1.1),
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then x is the solution of BVP(1.1). What’s more, If x satisfies x(t) > 0 when
t > 0, then we say x is the positive solution of BVP(1.1). Especially, If b 6= 0,
the positive solution is certainly unbounded.

3. Main results

Let us list the following assumptions:
(H1) f(t, u) ∈ C([0,+∞)× [0,+∞), [0,+∞)), φ ∈ C((0,+∞), [0,+∞)), there
are constants λ1, µ1(1 < λ1 ≤ µ1 < +∞), such that

cµ1f(t, u) ≤ f(t, cu) ≤ cλ1f(t, u), ∀c ∈ [0.1],

cλ1f(t, u) ≤ f(t, cu) ≤ cµ1f(t, u), ∀c ∈ [1,+∞).

(H2) There are constants λ2, µ2(0 < λ2 ≤ µ2 < 1), such that

cµ2f(t, u) ≤ f(t, cu) ≤ cλ2f(t, u), ∀c ∈ [0.1],

cλ2f(t, u) ≤ f(t, cu) ≤ cµ2f(t, u), ∀c ∈ [1,+∞).

(H3) 0 <
∫∞
0 (1 + τ0(s))

µ1φ(s)f(s, 1)ds < +∞.

Theorem 3.1. Assume (H1), (H3) hold, when k, y0 are sufficient small,
BVP(1.1) has at least one positive solution for any x ∈ P . Especially when
y0 > 0, BVP(1.1) exists the unbounded positive solutions x ∈ C2([0,+∞),
[0,+∞)).

Proof. By (H1)(H3), let

(Ax)(t) = e(t) +

∫ ∞
0

G(t, s)φ(s)f(s, x(s))ds, x ∈ P, t ∈ [0,+∞).

Obviously the BVP(1.1) has a solution x if and only if x ∈ P is a fixed point
of the operator A. In the following, we prove A : P → P is a completely
continuous operator.

First, we prove that A(P ) ⊂ P . Clearly, (Ax)(t) ≥ 0, t ∈ [0,+∞). For any
x ∈ P , there exists a constant c > 0, such that c‖x‖∞ ≤ 1, 1

c ≥ 1,then from
(H1),

f(t, x(t)) =f

(
t,

cx(t)

1 + τ0(t)
· 1 + τ0(t)

c

)
≤ cλ1

∣∣∣∣ x(t)

1 + τ0(t)

∣∣∣∣λ1f (t, 1 + τ0(t)

c

)
≤cλ1−µ1‖x‖∞λ1(1 + τ0(t))

µ1f(t, 1).
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Then for any t ∈ [0,+∞),

(Ax)(t)

1 + τ0(t)

=
e(t)

1 + τ0(t)
+

∫ ∞
0

G(t, s)

1 + τ0(t)
φ(s)f(s, x(s))ds

≤ k +
y0
a+ b

+ cλ1−µ1‖x‖∞λ1
∫ ∞
0

p(s)φ(s)(1 + τ0(s))
µ1f(s, 1)ds

< +∞.

(3.1)

Thus supt∈[0,+∞)
(Ax)(t)
1+τ0(t)

< +∞, (Ax)(t) ∈ C∞([0,+∞),R).

For any x ∈ P , t ∈ [a∗, b∗], from (2.3)(2.4)

(Ax)(t)

1 + τ0(t)
=

e(t)

1 + τ0(t)
+

∫ ∞
0

G(t, s)

1 + τ0(t)
φ(s)f(s, x(s))ds

≥ c∗ e(t′)

1 + τ0(t′)
+ c∗

∫ ∞
0

G(t′, s)

1 + τ0(t′)
φ(s)f(s, x(s))ds

= c∗
[

e(t′)

1 + τ0(t′)
+

∫ ∞
0

G(t′, s)

1 + τ0(t′)
φ(s)f(s, x(s))ds

]
= c∗

(Ax)(t′)

1 + τ0(t′)
, ∀t′ ∈ [0,+∞).

So (Ax)(t)
1+τ0(t)

≥ c∗‖Ax‖∞, A(P ) ∈ P .

Next, we prove A : P → P is a bounded operator, let M ⊂ P is a bounded
set, there exists N > 0, for any x ∈ M , we have ‖x‖∞ ≤ N , From(3.1), for
any x ∈M, t ∈ [0,+∞),

| (Ax)(t)

1 + τ0(t)
| = e(t)

1 + τ0(t)
+

∫ ∞
0

G(t, s)

1 + τ0(t)
φ(s)f(s, x(s))ds

≤k +
y0
a+ b

+ cλ1−µ1‖x‖∞λ1
∫ ∞
0

p(s)φ(s)(1 + τ0(s))
µ1f(s, 1)ds

≤k +
y0
a+ b

+ cλ1−µ1Nλ1

∫ ∞
0

p(s)φ(s)(1 + τ0(s))
µ1f(s, 1)ds,

i.e. AM is bounded in C∞([0,+∞),R), so A : P → P is a bounded operator.
At last, just as [3, 4], by lemma 2.1, (3.1), we can see A : P → P is completely
continuous.

Choose the constant c1 > 1, so as to c1c
∗ ≥ 1, 1+τ0(t)

c1
≤ 1+τ0(b∗)

c1
≤ 1, when

t ∈ [a∗, b∗], then for x ∈ P and ‖x‖∞ > 1, t ∈ [a∗, b∗], we have

c1
x(t)

1 + τ0(t)
≥ c1c∗‖x‖∞ ≥ c1c∗ > 1.
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From (H1),

f(t, x(t)) ≥ cλ1−µ11

∣∣∣∣ x(t)

1 + τ0(t)

∣∣∣∣λ1 (1 + τ0(t))
µ1f(t, 1), t ∈ [a∗, b∗], ‖x‖∞ > 1.

Thus, for any x ∈ P , ‖x‖∞ > 1, t ∈ [a∗, b∗],

(Ax)(t)

1 + τ0(t)
=

e(t)

1 + τ0(t)
+

∫ ∞
0

G(t, s)

1 + τ0(t)
φ(s)f(s, x(s))ds

≥
∫ b∗

a∗

G(t, s)

1 + τ0(t)
φ(s)f(s, x(s))ds

≥ cλ1−µ11 c∗λ1‖x‖∞λ1
∫ b∗

a∗

G(t, s)

1 + τ0(t)
φ(s)(1 + τ0(s))

µ1f(s, 1)ds

≥ cλ1−µ11 c∗λ1‖x‖∞λ1 min
t∈[a∗,b∗]

G(t, s)

1 + τ0(t)

∫ b∗

a∗
φ(s)(1+τ0(s))

µ1f(s, 1)ds.

In that λ1 > 1, choose

R=:max

2,

[
cλ1−µ11 c∗λ1 min

t∈[a∗,b∗]

G(t, s)

1 + τ0(t)

∫ b∗

a∗
φ(s)(1+τ0(s))

µ1f(s, 1)ds

] 1
1−λ1


> 1.

Then, we obtain

‖Ax‖∞ ≥ ‖x‖∞, ∀x ∈ P, ‖x‖∞ = R. (3.2)

On the other hand, get the constant c2(0 < c2 ≤ 1), by (H1), when x ∈ P ,
‖x‖∞ ≤ 1, t ∈ [0,+∞),we can obtain

f(t, x(t)) = f

(
t,

c2x(t)

1 + τ0(t)
· 1 + τ0(t)

c2

)
≤ cλ1−µ12 ‖x‖∞λ1(1 + τ0(t))

µ1f(t, 1).

Thus

(Ax)(t)

1 + τ0(t)

=
e(t)

1 + τ0(t)
+

∫ ∞
0

G(t, s)

1 + τ0(t)
φ(s)f(s, x(s))ds

≤ k +
y0
a+ b

+

∫ ∞
0

p(s)φ(s)f(s, x(s))ds

≤ k +
y0
a+ b

+ cλ1−µ12 ‖x‖∞λ1
∫ ∞
0

p(s)φ(s)(1 + τ0(s))
µ1f(s, 1)ds.

(3.3)
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Take

r =: min

{
1

2
,

[
cλ1−µ12

∫ ∞
0

p(s)φ(s)(1 + τ0(s))
µ1f(s, 1)ds

] 1
1−λ1

}
< 1.

We can see from (3.3), when k, y0 are sufficient small, i.e.,

0 ≤ k +
y0
a
≤ r − rλ1cλ1−µ12

∫ ∞
0

p(s)φ(s)(1 + τ0(s))
µ1f(s, 1)ds,

we have
‖Ax‖∞ ≤ ‖x‖∞, ∀x ∈ P, ‖x‖∞ = r. (3.4)

From (3.2), (3.4), Lemma 1.1, we can obtain that the operator A has fixed
point x ∈ P when a, y0 are sufficient small, which satisfying r < ‖x‖∞ < R.
It is easy to see that x is a positive solution of BVP (1.1). �

Similarly, we can get the following theorem.

Theorem 3.2. Assume (H2), (H3) hold, then for any a ≥ 0, y0 ≥ 0, BVP(1.1)
has at least one positive solution for any x ∈ P . Especially y0 > 0, BVP(1.1)
exists the unbounded positive solutions x ∈ C2([0,+∞), [0,+∞)).
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