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Abstract. In this article, we consider the completeness of cone metric space, and prove

some fixed point theorems in cone metric space.

1. Introduction

In [2] Huang and Zhang introduce cone metric spaces and prove some fixed
point theorems for contractive mappings that generalize some results of fixed
point in metric spaces.

We recall the definition of cone metric spaces and some properties of it.

Definition 1.1. ([2]) Let E be a real Banach space and P a subset of E.
Then, P is called a cone if and only if
(1) P is closed, nonempty and P 6= {0};
(2) a, b ∈ R, a, b ≥ 0;x, y ∈ P ⇒ ax+ by ∈ P ;
(3) x ∈ P and −x ∈ P ⇒ x = 0.

Given a cone P ⊂ E, we define a partial ordering ≤ with respect P by x ≤ y
if and only if y − x ∈ P . We write x < y to indicate that x ≤ y but x 6= y,
while x� y will stand for y − x ∈ intP , intP denotes the interior of P .
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Definition 1.2. ([2]) The cone P is called normal if there is a number K > 0
such that for all x, y ∈ E, 0 ≤ x ≤ y implies ‖x‖ ≤ K‖y‖. The least positive
number satisfying above is called the normal constant of P .

In the following we always suppose E is a Banach space, P is a cone in E
with intP 6= ∅ and ≤ is partial ordering with respect to P .

Definition 1.3. ([2]) Let X be a nonempty set. Suppose the mapping d :
X ×X → E satisfies
(1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, y) ≤ d(x, z) + d(y, z) for all x, y, z ∈ X.
Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Example 1.4. Let E = R2 and P = {(x, y) ∈ E : x ≥ 0, y ≥ 0} ⊂
R2, X = R2. And suppose that d : X × X → E is defined by d(x, y) =
d((x1, x2), (y1, y2)) = (|x1 − y1| + |x2 − y2|, αmax{|x1 − y1|, |x2 − y2|}) where
α ≥ 0 is a constant. Then (X, d) is a cone metric space. It is easy to see that
d is a cone metric, and hence (X, d) becomes a cone metric space over (E,P ).

Definition 1.5. ([2]) Let (X, d) be a cone metric space, let {xn} be a sequence
in X and x ∈ X. If for any c ∈ E with c � 0, there is N such that for all
n > N, d(xn, x) � c, then {xn} is said to be convergent and {xn} converges
to x.( i.e. lim

n→∞
xn = x or xn → x as n→∞).

Definition 1.6. ([2]) Let (X, d) be a cone metric space, let {xn} be a sequence
in X, if for any c ∈ E with c � 0, there is N such that for all n,m >
N, d(xn, xm)� c, then {xn} is called a Cauchy sequence in X.

Definition 1.7. ([2]) Let (X, d) be a cone metric space, if every Cauchy se-
quence is convergent in X, then X is called a complete cone metric space.

2. Completeness of cone metric space

Lemma 2.1. ([2]) Let (X, d) be a cone metric space, P be a normal cone with
normal constant K. Let {xn} be a sequence in X. Then
(1) {xn} converges to x if and only if d(xn, x)→ θ(n→∞).
(2) {xn} is a Cauchy sequence if and only if d(xn, xm)→ θ(n,m→∞) .

Lemma 2.2. Let (X, d) be a cone metric space, P be a normal cone with
normal constant K. If for Cauchy sequence {xn} in X, there is a subsequence
{xnk

} of {xn} converges to x. Then {xn} also converges to x.

Proof. For any c ∈ E with 0� c, there is N such that nk > N, d(xnk
, x)� c

2 .
We have d(xn, x) ≤ d(xn, xnk

) + d(xnk
, x). And {xn} is a Cauchy sequence,
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we have for all n, nk > N , that d(xn, xm) � c
2 . So we obtain d(xn, x) � c.

Therefore {xn} also converges to x. �

Theorem 2.3. Let (X, d) be a cone metric space, P be a normal cone with
normal constant K. Let B(xn, rn) = {x ∈ X : d(x, xn) ≤ rn} and B(xn, rn) ⊃
B(xn+1, rn+1)(∀n ∈ N) . Then X is complete if and only if as rn → 0, we

can obtain
∞⋂
n=1

B(xn, rn) 6= ∅ (it is a single point set).

Proof. Suppose X is complete. For all m > n(m,n ∈ N), B(xm, rm) ⊂
B(xn, rn), we can see d(xn, xm) < rn → 0. Choose c ∈ E with 0 � c, there
is N , for all m,n > N, d(xn, xm) � c, then {xn} is Cauchy sequence. And
X is complete, so we can see {xn} is convergent. So there exists x0 ∈ X and

that lim
n→∞

xn = x0(x0 ∈
∞⋂
n=1

B(xn, rn)). Conversely, if there exists n0 ∈ N

and x0 6∈ B(xn0 , rn0), then we can see d = d(x0, B(xn0 , rn0)) > 0. So
d(x0, xn) ≥ d(x0, B(xn, rn)) ≥ d(x0, B(xn0 , rn0)) = d > 0, it is contradic-

tory with lim
n→∞

xn = x0. So x0 ∈
∞⋂
n=1

B(xn, rn). At the same time,if there

is another x̄0 6= x0, we also have x̄0 ∈
∞⋂
n=1

B(xn, rn), then we can obtain

0 < d(x0, x̄0) ≤ rn(∀n ∈ N), it is contradictory with rn → 0(n→ 0). Then we

can obtain
∞⋂
n=1

B(xn, rn) is a single point set.

Conversely, suppose if rn → 0, then
∞⋂
n=1

B(xn, rn) 6= ∅. Arbitrary Cauchy

sequence {xn}, we can choose subsequence {xnk
} and d(xnk

, xnk+1
)� c

2k
, and

we can see that B(xnk
, c
2k−1 ) ⊂ B(xnk−1

, c
2k−2 ) and c

2k−1 → 0, so we can obtain

that
∞⋂
n=1

B(xnk
, c
2k−1 ) 6= ∅. We can choose x0 ∈

∞⋂
n=1

B(xnk
, c
2k−1 ), it is easy to

obtain lim
k→∞

xnk
= x0. From Lemma2.2 we can obtain that lim

n→∞
xn = x0. So

X is complete. �

Corollary 2.4. Let (X, d) be a cone metric space, P be a normal cone with
normal constant K. Let Fn = B(xn, rn) ∈ (X, d), arbitrary {Fn}(F1 ⊃ F2 ⊃
· · · ⊃ Fn ⊃ · · · ) ∈ (X, d). If Dn = sup

x1,x2∈Fn

d(x1, x2) → 0(n → ∞), then there

exists a x0 ∈ X s.t.
∞⋂
n=1

Fn = {x0}.
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3. Fixed point theorems

In 1982, Brian Fisher proved a fixed point theorem[1]. On the basis of it, we
prove our main results, some fixed point theorems in the cone metric space.

Theorem 3.1. Let (X, d), (Y, p) be a complete cone metric space, P be a
normal cone with normal constant K, the continuous mapping T : X → Y
and the mapping S : Y → X satisfies:

d(STx, STx′) ≤ C max{d(x, x′),
1

2
[d(x, STx) + d(x′, STx′)], p(Tx, Tx′)};

p(TSy, TSy′) ≤ C max{p(y, y′), 1

2
[p(y, TSy) + p(y′, TSy′)], d(Sy, Sy′)}

∀x, x′ ∈ X, y, y′ ∈ Y , 0 < C < 1. Then ST has a unique fixed point z ∈ X
and TS has a unique fixed point w ∈ Y . And Tz = w, Sw = z.

Proof. Choose x ∈ X. Set xn = (ST )nx, yn = T (ST )n−1x, (n = 1, 2, · · · ), we
can see sequence {xn} ⊂ X, {yn} ⊂ Y . We have

d(xn, xn+1)

= d(ST (ST )n−1x, ST (ST )nx)

≤ C max{d(xn−1, xn),
1

2
[d(xn−1, xn) + d(xn, xn+1)], p(yn, yn+1)}

(3.1)

and

p(yn, yn+1)

= p(TST (ST )n−2x, TST (ST )n−1x)

≤ C max{p(yn−1, yn),
1

2
[p(yn−1, yn) + p(yn, yn+1)], d(xn−1, xn)}.

(3.2)

We now have four cases. Firstly we consider:
(1) if d(xn, xn+1) ≤ d(xn−1, xn), p(yn, yn+1) ≤ p(yn−1, yn), by the inequality
(3.1),(3.2) we can obtain

d(xn, xn+1) ≤ C max{d(xn−1, xn), p(yn, yn+1)}, (3.3)

p(yn, yn+1) ≤ C max{p(yn−1, yn), d(xn−1, xn)}. (3.4)

Then we consider the other three cases,
(2) if d(xn, xn+1) > d(xn−1, xn), p(yn, yn+1) > p(yn−1, yn), by the inequality
(3.1),(3.2) we can obtain

d(xn, xn+1) ≤ C max{d(xn, xn+1), p(yn, yn+1)} = Cp(yn, yn+1)

≤ C max{d(xn−1, xn), p(yn, yn+1)},
p(yn, yn+1) ≤ C max{d(xn−1, xn), p(yn, yn+1)} = Cd(xn−1, xn)

≤ C max{d(xn−1, xn), p(yn−1, yn)},
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(3) if d(xn, xn+1) ≤ d(xn−1, xn), p(yn, yn+1) > p(yn−1, yn), by the inequality
(3.1),(3.2) we can obtain

d(xn, xn+1) ≤ C max{d(xn−1, xn), p(yn, yn+1)},
p(yn, yn+1) ≤ C max{d(xn−1, xn), p(yn, yn+1)} = Cd(xn−1, xn)

≤ C max{d(xn−1, xn), p(yn−1, yn)},

(4) if d(xn, xn+1) > d(xn−1, xn), p(yn, yn+1) ≤ p(yn−1, yn), by the inequality
(3.1),(3.2) we can obtain

d(xn, xn+1) ≤ C max{d(xn, xn+1), p(yn, yn+1)} = Cp(yn, yn+1)

≤ C max{d(xn−1, xn), p(yn, yn+1)},
p(yn, yn+1) ≤ C max{d(xn−1, xn), p(yn−1, yn)}.

We can obtain the same result on three cases above with the similar method,
it is the inequality (3.3),(3.4).

By the mathematical induction and the inequality (3.3),(3.4), we can obtain

d(xn, xn+1) ≤ Cn max{d(x, x1), p(y1, y2)};
p(yn, yn+1) ≤ Cn−1 max{d(x, x1), p(y1, y2)}.

By 0 < C < 1, we can see
d(xn, xm) ≤ d(xn, xn−1)+d(xn−1, xn−2)+· · ·+d(xm+1, xm) ≤ Cm

1−C d(x1, x0).

We get ‖d(xn, xm)‖ ≤ Cm

1−CK‖d(x1, x0)‖. This implies d(xn, xm)→∞(n,m→
∞). Hence {xn} ⊂ X, {yn} ⊂ Y is Cauchy sequence. By the completeness of
X,Y , let xn → z ∈ X, yn → w ∈ Y , and the mapping T is continues, we can
see

lim
n→∞

yn = lim
n→∞

Txn−1 = Tz = w

and

d(STz, xn) ≤ C max{d(z, xn−1),
1

2
[d(z, STz) + d(xn−1, xn)], p(Tz, Txn−1)}.

Let n→∞, we can see
d(STz, z) ≤ C max{d(z, z), 12 [d(z, STz) + d(z, z)], p(Tz, Tz)} = 1

2Cd(z, STz).
And 0 < C < 1, so we can obtain z = STz. That is STz = Sw = z, so z is
the fixed point of ST .

Now we assume ST has another fixed point z′, then

d(z, z′) = d(STz, STz′)

≤ C max{d(z, z′),
1

2
[d(z, STz) + d(z′, STz′)], p(Tz, Tz′)}

= C max{d(z, z′), p(Tz, Tz′)} = Cp(Tz, Tz′);
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but p(Tz, Tz′) = p(TSTz, TSTz′)

≤ C max{p(Tz, Tz′), 1

2
[p(Tz, TSTz) + p(Tz′, TSTz′)], d(STz, STz′)}

= Cd(z, z′),

so we can obtain d(z, z′) ≤ C2d(z, z′), and 0 < C < 1, we can see z = z′.
With the same method, we can obtain w is the unique fixed point of TS. �

Theorem 3.2. Let (X, d), (Y, p) be a complete cone metric space, P be a
normal cone with normal constant K, the continuous mapping T : X → Y
and the mapping S : Y → X satisfies:

d(STx, STx′) ≤ C max{d(x, x′), d(x, STx), d(x′, STx′),

1

2
[d(x, STx′)+d(x′, STx)], p(Tx, Tx′)};

p(TSy, TSy′) ≤ C max{p(y, y′), p(y, TSy), p(y′, TSy′),

1

2
[p(y, TSy′) + p(y′, TSy)], d(Sy, Sy′)}

∀x, x′ ∈ X, y, y′ ∈ Y , 0 < C < 1. Then ST has a unique fixed point z ∈ X
and TS has a unique fixed point w ∈ Y . And Tz = w, Sw = z.

Proof. Choose x ∈ X. Set xn = (ST )nx, yn = T (ST )n−1x, (n = 1, 2, · · · ), we
can see sequence {xn} ⊂ X, {yn} ⊂ Y . We have

d(xn, xn+1)

= d(ST (ST )n−1x, ST (ST )nx)

≤ C max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1),

1

2
[d(xn−1, xn+1) + d(xn, xn)], p(yn, yn+1)}

≤ C max{d(xn−1, xn),
1

2
[d(xn−1, xn) + d(xn, xn+1)], p(yn, yn+1)},

(3.5)

p(yn, yn+1)

= p(TST (ST )n−2x, TST (ST )n−1x)

≤ C max{p(yn−1, yn),
1

2
[p(yn−1, yn) + p(yn, yn+1)], d(xn−1, xn)}.

(3.6)

With the same prove method as the Theorem 3.1, we can obtain the inequality
as the same as (3.3),(3.4).

d(xn, xn+1) ≤ C max{d(xn−1, xn), p(yn, yn+1)}, (3.7)

p(yn, yn+1) ≤ C max{p(yn−1, yn), d(xn−1, xn)}. (3.8)
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By 0 < C < 1, we can see
d(xn, xm) ≤ d(xn, xn−1)+d(xn−1, xn−2)+· · ·+d(xm+1, xm) ≤ Cm

1−C d(x1, x0).

We get ‖d(xn, xm)‖ ≤ Cm

1−CK‖d(x1, x0)‖. This implies d(xn, xm) → 0(n,m →
∞). Hence {xn} ⊂ X, {yn} ⊂ Y is Cauchy sequence. By the completeness of
X,Y , let xn → z ∈ X, yn → w ∈ Y , and the mapping T is continues, we can
see

lim
n→∞

yn = lim
n→∞

Txn−1 = Tz = w

d(STz, xn)

≤C max{d(z, xn−1), d(z, STz), d(xn−1, xn),
1

2
[d(z, xn) + d(xn−1, STz)],

p(Tz, Txn−1)}.

Let n→∞. Then , we can see

d(STz, z)

≤ C max{d(z, z), d(z, STz), d(z, z),
1

2
[d(z, STz) + d(z, z)], p(Tz, Tz)}

= Cd(z, STz).

And 0 < C < 1, so we can obtain z = STz. That is STz = Sw = z, so z is
the fixed point of ST .

Now we assume ST has another fixed point z′, then

d(z, z′)

= d(STz, STz′)

≤ C max{d(z, z′), d(z, STz), d(z′, STz′),
1

2
[d(z, STz′)+d(z′, STz)], p(Tz, Tz′)}

= C max{d(z, z′), p(Tz, Tz′)} = Cp(Tz, Tz′);

but

p(Tz, Tz′) = p(TSTz, TSTz′)

≤ C max{p(Tz, Tz′), p(Tz, TSTz), p(Tz′, TSTz′),
1

2
[p(Tz, TSTz′) + p(Tz′, TSTz)], d(STz, STz′)}

= Cd(z, z′),

so we can obtain d(z, z′) ≤ C2d(z, z′), and 0 < C < 1, we can see z = z′. With
the same method, we can obtain w is the unique fixed point of TS. �
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