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Abstract. In this paper we study convergence of trajectories of discrete dispersive dynamical

systems generated by set-valued mappings to their attracting sets.

1. Introduction

Dynamical systems theory has been a rapidly growing area of research which
has various applications to physics, engineering, biology and economics. In this
theory one of the goals is to study the asymptotic behavior of the trajectories
of a dynamical system. A discrete-time dynamical system is described by a
space of states and a transition operator which can be set-valued. Usually
in the dynamical systems theory a transition operator is single-valued. In
the present paper we study a class of dynamical systems introduced in [5]
and studied in [6, 7, 9] with a compact metric space of states and a set-valued
transition operator. Such dynamical systems describe economical models [2, 6,
8]. Note that convergence of trajectories of dynamical systems with a complete
metric space of states which is not necessarily compact and with contractive
and nonexpansive set-valued transition operators were studied in [1, 3, 4].

Let (X, ρ) be a compact metric space and let a : X → 2X \ {∅} be a
set-valued mapping whose graph

graph(a) = {(x, y) ∈ X ×X : y ∈ a(x)}
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is a closed subset of X ×X. For each nonempty subset E ⊂ X set

a(E) = ∪{a(x) : x ∈ E} and a0(E) = E.

By induction we define an(E) for any natural number n and any nonempty
subset E ⊂ X as follows:

an(E) = a(an−1(E)).

In this paper we study convergence of trajectories of the dynamical system
generated by the set-valued mapping a. Following [5-7], [9] this system is
called a discrete dispersive dynamical system.

First we define a trajectory of this system.
A sequence {xt}∞t=0 ⊂ X is called a trajectory of a (or just a trajectory if

the mapping a is understood) if xt+1 ∈ a(xt) for all integers t ≥ 0.

Let T1, T2 be integers such that 0 ≤ T1 ≤ T2. A sequence {xt}T2
t=T1

⊂ X is

called a trajectory of a (or just a trajectory if the mapping a is understood)
if xt+1 ∈ a(xt) for all integers t = T1, . . . , T2 − 1.

Put

Ω(a) = {z ∈ X : for each ε > 0 there is a trajectory {xt}∞t=0

such that lim inf
t→∞

ρ(z, xt) ≤ ε}. (1.1)

Clearly, Ω(a) is closed subset of (X, ρ). In [9] the set Ω(a) was called a
global attractor of a. Note that in [5-7] Ω(a) was called a turnpike set of a.
This terminology was motivated by mathematical economics [2], [6], [8].

For each x ∈ X and each nonempty closed subset E ⊂ X put

ρ(x,E) = inf{ρ(x, y) : y ∈ E}.
It is clear that for each trajectory {xt}∞t=0 we have limt→∞ ρ(xt,Ω(a)) = 0.

It is not difficult to see that if for a nonempty closed set B ⊂ X
lim
t→∞

ρ(xt, B) = 0

for each trajectory {xt}∞t=0, then Ω(a) ⊂ B.

In [9] we studied convergence of trajectories to the global attractor Ω(a)
and established the following two results.

Proposition 1.1. Let ε > 0. Then there exists a natural number T (ε) such
that for each trajectory {xt}∞t=0

min{ρ(xt,Ω(a)) : t = 0, . . . , T (ε)} ≤ ε.
Proposition 1.2. Let ε > 0. Then there exist δ > 0 and a natural number
T (ε) such that for each sequence {xt}∞t=0 ⊂ X satisfying ρ(xt+1, a(xt)) ≤ δ for
each integer t ≥ 0 the following inequality holds:

min{ρ(xt,Ω(a)) : t = 0, . . . , T (ε)} ≤ ε.
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A point x ∈ X is called stable (with respect to a) if there exists a trajectory
{xt}∞t=0 such that

x0 = x and lim inf
t→∞

ρ(xt, x) = 0.

Denote by Π(a) the set of all stable points. Clearly, Π(a) ⊂ Ω(a).
Denote by S(X) the set of all nonempty closed subsets of (X, ρ) equipped

with the Hausdorff metric

H(A,B) = max{sup
x∈A

ρ(x,B), sup
y∈B

ρ(y,A)} (1.2)

which is defined for each pair of nonempty sets A,B ⊂ X. It is well-known
that (S(X), H) is a complete metric space.

We assume that the mapping a : X → S(X) is continuous.

In this paper we study the convergence of trajectories to the set Π(a). We
will establish the following results.

Theorem 1.3. For each x ∈ X there exists a trajectory {xt}∞t=0 such that

lim inf
t→∞

ρ(xt,Π(a)) = 0.

Theorem 1.3 is proved in Section 2.

Theorem 1.4. Assume that F is a nonempty subset of X and that for each
x ∈ X there exists a trajectory {xt}∞t=0 such that

x0 = x and lim inf
t→∞

ρ(xt, F ) = 0.

Then for each ε > 0 there exists a natural number q such that for each x ∈ X
there exists a trajectory {xt}qt=0 such that

x0 = x and min{ρ(xt, F ) : t = 1, . . . , q} ≤ ε.

Theorem 1.4 is proved in Section 3.

Theorems 1.3 and 1.4 imply the following result.

Theorem 1.5. For each ε > 0 there exists a natural number q such that for
each x ∈ X there exists a trajectory {xt}qt=0 such that

x0 = x and min{ρ(xt,Π(a)) : t = 1, . . . , q} ≤ ε.

Theorem 1.6. Assume that F is a nonempty subset of X and that for each
x ∈ X there exists a trajectory {xt}∞t=0 such that

x0 = x and lim inf
t→∞

ρ(xt, F ) = 0.
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Let ε > 0. Then there exist a natural number q and a positive number δ such
that for each sequence of mappings at : X → 2X \ {∅}, t = 0, . . . , q − 1 which
satisfy

H(at(x), a(x)) ≤ δ for all x ∈ X and all t = 0, . . . , q − 1

and each x ∈ X there exists a sequence {xt}qt=0 ⊂ X such that

x0 = x, xt+1 ∈ at(xt), t = 0, . . . , q − 1

and

min{ρ(xt, F ) : t = 1, . . . , q} ≤ ε.

Theorem 1.6 is proved in Section 4.

Theorems 1.3 and 1.6 imply the following result.

Theorem 1.7. Let ε > 0. Then there exist a natural number q and a positive
number δ such that for each sequence of mappings at : X → 2X \ {∅}, t =
0, . . . , q − 1 which satisfy

H(at(x), a(x)) ≤ δ for all x ∈ X and all t = 0, . . . , q − 1

and each x ∈ X there exists a sequence {xt}qt=0 ⊂ X such that

x0 = x, xt+1 ∈ at(xt), t = 0, . . . , q − 1

and

min{ρ(xt,Π(a)) : t = 1, . . . , q} ≤ ε.

Theorem 1.6 implies the following result.

Theorem 1.8. Assume that F is a nonempty subset of X and that for each
x ∈ X there exists a trajectory {xt}∞t=0 such that

x0 = x and lim inf
t→∞

ρ(xt, F ) = 0.

Let {δt}∞t=0 be a sequence of positive numbers such that

lim
t→∞

δt = 0

and let at : X → 2X \{∅}, t = 0, 1, . . . be a sequence of mappings which satisfy

H(at(x), a(x)) ≤ δt for all x ∈ X and all integers t ≥ 0.

Then each x ∈ X there exists a sequence {xt}∞t=0 ⊂ X such that

x0 = x, xt+1 ∈ at(xt), t = 0, 1, . . .

and

lim inf
t→∞

ρ(xt, F ) = 0.
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Theorems 1.3 and 1.8 imply the following result.

Theorem 1.9. Let {δt}∞t=0 be a sequence of positive numbers such that

lim
t→∞

δt = 0

and let at : X → 2X \{∅}, t = 0, 1, . . . be a sequence of mappings which satisfy

H(at(x), a(x)) ≤ δt for all x ∈ X and all integers t ≥ 0.

Then each x ∈ X there exists a sequence {xt}∞t=0 ⊂ X such that

x0 = x, xt+1 ∈ at(xt), t = 0, 1, . . .

and

lim inf
t→∞

ρ(xt,Π(a)) = 0.

2. Proof of Theorem 1.3

Denote by M the collection of all nonempty closed sets D ⊂ X such that
a(D) ⊂ D. Clearly, M 6= ∅ because X ∈M.

Let D1, D2 ∈M. We say that D1 ≤ D2 if D1 ⊂ D2.
The Zorn’s lemma implies the following result.

Lemma 2.1. For each D ∈M there is a minimal element D0 ofM such that
D0 ⊂ D.

For each x ∈ X denote by E(x) the closure of ∪∞i=0a
i(x).

The next lemma follows from the continuity of a.

Lemma 2.2. Let x ∈ X. Then E(x) ∈M.

Lemmas 2.1 and 2.2 imply the following result.

Lemma 2.3. Let D be a minimal element of M. Then for each x ∈ D,
D = E(x).

Corollary 2.4. Let D be a minimal element ofM, x, y ∈ D and ε > 0. Then
there exist an integer q ≥ 1 and a trajectory {xt}qt=0 such that x0 = x and
ρ(xq, y) ≤ ε.

Corollary 2.5. Let D be a minimal element ofM. Then D ⊂ Π(a).

If we have the following lemma, then the Theorem 1.3 is proved.

Lemma 2.6. Let x ∈ X and ε > 0. Then there exist an integer q ≥ 1 and a
trajectory {xt}qt=0 ⊂ X such that x0 = x and ρ(xq,Π(a)) ≤ ε.
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Proof. Fix

x1 ∈ a(x). (2.1)

By Lemmas 2.1 and 2.2 there is a minimal element D∗ ∈M such that

D∗ ⊂ E(x1). (2.2)

Fix

z ∈ D∗. (2.3)

By (2.1)-(2.3) there exist a natural number q and a trajectory {xt}qt=0 such
that

x0 = x and ρ(xq, z) ≤ ε. (2.4)

In view of (2.3), (2.4) and Lemma 2.2

ρ(xq,Π(a)) ≤ ε.
Lemma 2.6 is proved. �

Hence, Theorem 1.3 follows from Lemma 2.6.

3. Proof of Theorem 1.4

Let ε > 0 and x ∈ X. There exist an integer q ≥ 1 and a trajectory {xt}qt=0
such that

x0 = x and ρ(xq, F ) < ε/4. (3.1)

Put

δq = ε/8. (3.2)

By induction it is not difficult to show the existence of a sequence of positive
numbers {δi}qi=0 such that for each integer i ∈ [0, q − 1]

δi < 2−1δi+1 (3.3)

and

H(a(xi), a(z)) < δi+1 for each z ∈ X satisfying ρ(xi, z) ≤ δi. (3.4)

Let

y ∈ X and ρ(x, y) < δ0. (3.5)

Set

y0 = y. (3.6)

By (3.1), (3.4), (3.5), (3.6) and the inclusion x1 ∈ a(x0) there is

y1 ∈ a(y0) (3.7)

such that

ρ(y1, x1) < δ1. (3.8)
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Assume that an integer k satisfies 1 ≤ k ≤ q and we defined y0, . . . , yk ∈ X
such that

yi+1 ∈ a(yi) for all integers i satisfying 0 ≤ i < k (3.9)

and

ρ(xi, yi) ≤ δi, i = 0, . . . , k. (3.10)

(In view of (3.5), (3.7) and (3.8) our assumption holds for k = 1.)
If k = q, then our construction is completed.
Assume that k < q. By (3.4) and (3.10)

H(a(xk), a(yk)) < δk+1.

Combined with the inclusion xk+1 ∈ a(xk) this implies that there is yk+1 ∈
a(yk) such that ρ(xk+1, yk+1) < δk+1 and the assumption made for k holds
also for k+ 1. Therefore by induction we constructed a sequence {yi}qi=0 such
that

y0 = y,

yi+1 ∈ a(yi), i = 0, . . . , q − 1,

ρ(xq, yq) < δq. (3.11)

By (3.1), (3.2) and (3.11)

ρ(yq, F ) ≤ ρ(xq, yq) + ρ(xq, F ) < ε.

Thus we have shown that for each x ∈ X there exist an open neighborhood
Vx of x in X and a natural number q(x) such that for each y ∈ Vx there is a

trajectory {yi}q(x)i=0 such that

y0 = y and ρ(yq(x), F ) < ε. (3.12)

Clearly, X ⊂ ∪x∈XVx. Since X is compact there exists a finite sequence
x1, . . . , xp ∈ X such that

∪{Vxi : i = 1, . . . , p} = X. (3.13)

Put

q = max{q(xi) : i = 1, . . . , p}. (3.14)

Let x ∈ X. By (3.13) there is a natural number i ≤ p such that

x ∈ Vxi . (3.15)

By (3.15) and the choice of Vxi and q(xi) there exists a trajectory {xj}q(xi)
j=0

such that

x0 = x, ρ(xq(xi), F ) < ε.

This completes the proof of Theorem 1.4.
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4. Proof of Theorem 1.6

Let ε > 0. By Theorem 1.4 there exists a natural number q such that the
following property holds:

(P1) For each x ∈ X there exists a trajectory {xi}qi=0 such that

x0 = x and min{ρ(xt, F ) : t = 1, . . . , q} ≤ ε/8.
Put

δq = ε/8. (4.1)

Since X is compact and the mapping a is continuous there exists a sequence
of positive numbers {δi}qi=0 such that for each integer i ∈ [1, q]

δi−1 < 2−1δi (4.2)

and

H(a(y), a(z)) ≤ 2−1δi for each y, z ∈ X satisfying ρ(y, z) < δi−1. (4.3)

Put

δ = δ0/4. (4.4)

Let

ai : X → 2X \ {∅}, i = 0, . . . , q − 1, (4.5)

H(ai(x), a(x)) ≤ δ for all x ∈ X and all t = 0, . . . , q − 1 (4.6)

and x ∈ X. By (P1) there exists a sequence {yi}qi=0 ⊂ X such that

y0 = x, yi+1 ∈ a(yi), i = 0, . . . , q − 1 (4.7)

and

min{ρ(yi, F ) : i = 1, . . . , q} ≤ ε/8. (4.8)

Assume that an integer j ∈ [0, q − 1] and we defined x0, . . . , xj ∈ X such
that

x0 = x, (4.9)

xi+1 ∈ ai(xi) for all integers i satisfying 0 ≤ i ≤ j − 1, (4.10)

and

ρ(xi, yi) ≤ δi, i = 0, . . . , j. (4.11)

(Clearly, for j = 0 the assumption holds.) By (4.11),

ρ(xj , yj) ≤ δj .
Combined with (4.3) this implies

H(a(xj), a(yj)) < 2−1δj+1.

Together with (4.7) this implies that

ρ(yj+1, a(xj)) < 2−1δj+1. (4.12)
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By (4.2), (4.4) and (4.6)

H(aj(xj), a(xj)) < 4−1δj+1.

Combined with (4.12) this implies that

ρ(yj+1, aj(xj)) < (3/4)δj+1

and there is xj+1 ∈ aj(xj) such that ρ(xj+1, yj+1) < δj+1. Therefore the
assumption made for j holds also for j+ 1. Thus by induction we constructed
a sequence {xi}qi=0 ⊂ X such that

x0 = x,

xi+1 ∈ ai(xi), i = 0, . . . , q − 1, (4.13)

ρ(xi, yi) ≤ ε/8, i = 0, . . . , q. (4.14)

By (4.8) there is j ∈ {1, . . . , q} such that ρ(yj , F ) ≤ ε/8. Combined with
(4.14) this implies that ρ(xj , F ) ≤ ε/2. This completes the proof of Theorem
1.6.
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