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Abstract. A strong convergence theorem is proved for a uniformly continuous asymptoti-

cally accretive operator using the Ishikawa iterative processes with errors in the sense of Xu

[Y.Xu, Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive

operator equations, J. Math. Anal. Appl. 224(1998), 91-101] in a normed linear space.

1. Introduction

Let E be a real normed linear space and E∗ be its dual space. Let 〈. , .〉 denote
the normalized duality pairing between the elements of E and E∗. The duality
mapping J : E → E∗ is defined by

Jx := {f∗ ∈ E∗ : 〈x, f∗〉 = ‖x2‖, ‖f∗‖ = ‖x‖}.

A mapping A with domain D(A) and range R(A) in E is said to be accretive [1]
if the inequality

‖x− y‖ ≤ ‖x− y + r(Ax−Ay)‖ (1.1)

holds for any x, y ∈ D(A) and for all r > 0.

The mapping A is said to be strongly accretive if there is a positive constant
k such that (A− kI) is accretive where I denotes the identity operator on E.

0Received November 20, 2010. Revised August 23, 2011.
02000 Mathematics Subject Classification: 47H06, 47H10.
0Keywords: Modified Ishikawa iteration with errors, asymptotically accretive operator,

uniformly continuous, normed linear space.



324 Niyati, Sharma

A is said to be m-accretive if A is accretive and the operator (I + λA) is sur-
jective for all λ > 0. The accretive operators are of interest mainly because
many physically significant problems are modeled by mathematical systems
involving various types of accretive operators (see e.g. [5, 6, 7, 11] and the
references therein).

Let K be a subset of E. Then a mapping T : K → K is called strongly
pseudo-contractive [2] if there exists t > 1 such that the inequality

‖x− y‖ ≤ ‖(1 + r)(x− y)− rt(Tx− Ty)‖ (1.2)

holds for all x, y ∈ K and r > 0. If t = 1, then T is called pseudo-contractive.

Using the duality map and Kato’s lemma [6], the equivalent definitions of
the accretive and pseudocontractive maps are as follows:
The map A is said to be accretive if and only if for all x, y ∈ D(A), ∃ j(x−y) ∈
J(x− y) such that

〈Ax−Ay, j(x− y)〉 ≥ 0,

so that A is said to be strongly accretive if and only if ∃ k > 0 such that

〈Ax−Ay, j(x− y)〉 ≥ k‖x− y‖2

and A is strongly pseudocontractive iff

〈(I −A)x− (I −A)y, j(x− y)〉 ≥ k‖x− y‖2

where k = t−1
t and t > 1 is the constant as in (1.2).

A close study of (1.1) and (1.2) shows that a map T is pseudo-contractive
if and only if the operator A = (I − T ) is accretive on the domain of T [1].
Consequently, the fixed points of pseudocontractive maps yield the zeros of
corresponding accretive operators.

Deimling [4]) proved that if A : E → E is continuous and strongly accretive,
then A is surjective i.e. for a given f ∈ E, the equation

Ax = f (1.3)

has a unique solution. Martin [8] also proved that if A : E → E is continuous
and accretive, then A is m− accretive, so that the equation

x+Ax = f (1.4)

has a unique solution for any f ∈ E.

Let n ∈ N, then Tn denotes the nth iterate of a map T . An operator A with
domain D(A) and range R(A) in E is said to be asymptotically accretive [9]
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if there exists a real sequence {kn} ⊂ (1,∞) such that lim
n→∞

kn = 1 and for all

x, y ∈ D(A), r > 0, n ∈ N, the inequality

‖x− y‖ ≤ ‖(1 + r)(x− y)− rkn[(I −An)x− (I −An)y]‖

holds.
Moore [9] established the equivalence of different definitions of asymptoti-

cally accretive operator and proved the strong convergence of suitably defined
Mann and Ishikawa iteration processes to the solution of an operator equation
involving asymptotically accretive operators using the below Lemma:

Lemma 1.1. [9] Let E be a real normed space. Then the following are equiv-
alent:

(i) A is asymptotically accretive.
(ii) There exists a real sequence {tn}n≥0 ⊂ (0, 1) such that tn → 0 asn →
∞ and ∀x, y ∈ D(A), n ∈ N and some j(x − y) ∈ J(x − y), the
following inequality holds:

〈Anx−Any, j(x− y)〉 ≥ tn‖x− y‖2 (1.5)

(iii) There exists a real sequence {tn}n≥0 ⊂ (0, 1) such that tn → 0 asn →
∞ and ∀x, y ∈ D(A), r > 0, and n ∈ N the following inequality holds:

‖x− y‖ ≤ ‖x− y + r[(An − tnI)x− (An − tnI)y]‖ (1.6)

Theorem 1.2. [9] Let E be an arbitrary real Banach space and let A : E → E
be a uniformly L-Lipschitz asymptotically accretive operator such that the
operator equation Ax = f has a solution x∗ ∈ D(A). Let the sequences
{αn}, {βn}, {un}, {vn} satisfy the following conditions:

(i) 0 ≤ αn;βn � tn; ∀ n ≥ 0,
(ii) lim

n→∞
αn = 0 = lim

n→∞
βn,

(iii)
∑
n≥0

αntn =∞,

(iv) ‖un‖, ‖vn‖ = o(tn),

where {tn} is as defined in Lemma 1.1. Then the sequence {xn}n≥0 iteratively
generated from an arbitrary x0 ∈ D(A) and some u0, v0 ∈ E by

yn = (1− βn)xn + βn(f + xn −Anxn + un)

xn+1 = (1− αn)xn + αn(f + yn −Anyn + vn), n ≥ 0 (1.7)

converges strongly to x∗.

In this paper, we have proved the strong convergence of uniformly continu-
ous asymptotically accretive operator equation in a normed linear space using
the iteration methods in the sense of Xu [12]. Thus our paper improves the
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results in Theorem 2 of Moore [9], Corollary 2 of Chidume [3] and Theorem 1
of Osilike, Igbokwe [10] in the following manner:

(1) The steps during the proof of boundednes and convergence of the iter-
ative sequence proceed with the help of uniformly Lipschitz continuity
of the operator in [9] and [10], completely continuous and uniformly
Lipschitz in [3], whereas we have proved it using the weaker condition
i.e. uniform continuity.

(2) We have used the iteration in the sense of Xu [12] which is proved to be
more satisfactory in comparison to the iterations as used in [9] and [3]
due to Liu [7]; since the conditions on the error terms are incompatible
with the randomness of the occurrence of errors [12].

(3) Our result is proved in a normed linear space thus leaving the comple-
tion condition of Banach space as in [9] and extending the result of [3]
from p-uniformly convex Banach space to a normed linear space.

(4) No extra condition is imposed on the operator as in [10].

2. Preliminaries

In the sequel, we shall make use of the following result:

Lemma 2.1. [7] Let ρn, σn, δn be nonnegative real sequences satisfying the
inequality:-

ρn+1 ≤ (1− tn)ρn + ρn + δn
where tn ∈ [0, 1],

∑
tn = ∞, σn = O(tn) and

∑
δn < ∞. Then ρn →

0 as n→∞.

3. Main Results

Now we present our main result:

Theorem 3.1. Let E be a real normed linear space and let A : E → E be
uniformly continuous asymptotically accretive operator such that the operator
equation Ax = f has a solution x∗ ∈ D(A). Let S : E → E be defined by
Snx = f + x − Anx , f ∈ E and suppose {Snx}, {Sny} be bounded. Define
the sequence {xn} iteratively from an arbitrary x0, u0, v0 ∈ E by

xn+1 = anxn + bnS
nyn + cnun

yn = a
′
nxn + b

′
nS

nxn + c
′
nvn

where {un} and {vn} are bounded sequences in E and {an}, {bn}, {cn},
{a′

n}, {b
′
n}, {c

′
n} are real sequences in (0, 1) and {tn}n≥0 ⊂ (0, 1) such that

tn → 0 as n→∞, satisfying the conditions

(i) an + bn + cn = 1 = a
′
n + b

′
n + c

′
n, ∀ integersn ≥ 0,
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(ii) lim bn = lim b
′
n = lim c

′
n = 0,

(iii)
∑
bntn =∞,

(iv)
∑
cn <∞.

Then {xn} converges strongly to the unique solution x∗.

Proof. The uniqueness of the solution follows from definition of aymptotically
accretive operator as in Lemma 1.1(ii).
Let αn := bn + cn, so that

xn+1 = (1− αn)xn + αnS
nyn − cn(Snyn − un)

from which it follows that

xn =(1 + αn)xn+1 + αn(I − Sn − tn)xn+1 − (1− tn)αnxn + (2− tn)α2
n(xn − Snyn)

+ αn(Snxn+1 − Snyn) + cn[1 + (2− tn)αn](Snyn − un)

Since x∗ is a fixed point of Sn; we observe that

x∗ = (1 + αn)x∗ + αn(I − Sn − tn)x∗ − (1− tn)αnx
∗

so that,

xn − x∗ =(1 + αn)(xn+1 − x∗) + αn[(I − Sn − tn)xn+1 − (I − Sn − tn)x∗]

− (1− tn)αn(xn − x∗) + (2− tn)α2
n(xn − Snyn)

+ αn(Snxn+1 − Snyn) + cnen(Snyn − un)

where en = 1 + (2− tn)αn ≤M1, for some constant M1 > 0.
Hence

‖xn − x∗‖ ≥ (1 + αn)‖xn+1 − x∗ +
αn

1 + αn
[(I − Sn − tn)xn+1 − (I − Sn − tn)x∗]‖

− (1− tn)αn‖xn − x∗‖ − (2− tn)α2
n‖xn − Snyn‖

− αn‖Snxn+1 − Snyn‖ − cnen‖Snyn − un‖
≥ (1 + αn)‖xn+1 − x∗‖ − (1− tn)αn‖xn − x∗‖
− (2− tn)α2

n‖xn − Snyn‖ − αn‖Snxn+1 − Snyn‖ − cnen‖Snyn − un‖

So that,

‖xn+1 − x∗‖ ≤ [
1 + (1− tn)αn

1 + αn
]‖xn − x∗‖+ (2− tn)α2

n‖xn − Snyn‖

+ αn‖Snxn+1 − Snyn‖+ cnen‖Snyn − un‖
≤ (1− tnαn + tnα

2
n)‖xn − x∗‖+ (2− tn)α2

n‖xn − Snyn‖ (3.1)

+ αn‖Snxn+1 − Snyn‖+ cnen‖Snyn − un‖
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Let n0 be a positive integer such that 0 ≤ αn ≤ 5tn
8(1+2(2−tn)) for all n ≥ n0.

Define

D :=
8

k

{
(sup
x∈E
‖Snx− x∗‖+ ‖xn0 − x∗‖+ sup

n≥1
en‖Snyn − un‖)

}
.

A simple induction shows that for all n ≥ n0,
‖xn − x∗‖ ≤ D

and so {xn} is bounded.
Also,

‖xn − Snyn‖ ≤ ‖xn − x∗‖+ ‖Snyn − x∗‖ ≤ 2D.

Now set βn := b
′
n + c

′
n, so that

‖xn+1 − yn‖ ≤ ‖xn+1 − xn‖+ ‖yn − xn‖

= ‖αn(Snyn − xn)− cn(Snyn − un)‖+ ‖βn(Snxn − xn)− c′n(Snxn − vn)‖
Let δ := max{sup

n≥1
‖xn‖, sup

x∈E
‖Snx‖, sup

n≥1
‖un‖, sup

n≥1
‖vn‖}

Thus, ‖xn+1 − yn‖ → 0 as n → ∞, which implies by uniform continuity
of Sn that ‖Snxn+1 − Snyn‖ → 0 as n→∞.
Thus by (3.1),

‖xn+1−x∗‖ ≤ (1−tnαn)‖xn−x∗‖+2(2−tn)α2
nD+αn‖Snxn+1−Snyn‖+cnD

Let
ρn := ‖xn − x∗‖, kn := tnαn, σn := αn‖Snxn+1 − Snyn‖+ 2(2− tn)α2

nD,
δn := cnD
where
kn ∈ [0, 1],

∑
kn = +∞, σn = O(kn),

∑
δn <∞.

Thus,
ρn+1 ≤ (1− kn)ρn + σn + δn, n ≥ 0.

Hence by Lemma 2.1, ρn → 0 as n→∞,
i.e.

‖xn − x∗‖ → 0 as n→∞.
�

Corollary 3.2. Let E, S, andA be as in Theorem 3.1. Define the sequence
{xn}∞n=0 iteratively from x0, u0 ∈ E, by

xn+1 = anxn + bnS
nxn + cnun, n ≥ 0,

where {un} is an arbitrary sequence in E and {an}, {bn}, {cn} are real se-
quences in (0, 1) satisfying the conditions:

(i) an + bn + cn = 1,
(ii) lim bn = 0,



Iterative solution of asymptotically accretive operator equations 329

(iii)
∑
bn = +∞,

∑
cn <∞.

then {xn}∞n=0 converges strongly to x∗.

Corollary 3.3. Let E be a real normed linear space and K is nonempty closed,
convex subset of E. Let T : K → K is a uniformly continuous asymptotically
pseudocontractive mapping with a fixed point x∗ ∈ K. Suppose {un}, {vn},
{an}, {bn}, {cn}, {a

′
n}, {b

′
n}, {c

′
n} and {tn} are as in Theorem 3.1. If {Tnx}

and {Tny} be bounded, then {xn} converges strongly to x∗.

Proof. Define Anx := f + x− Tnx, ∀ x ∈ D(T ). Then the result follows from
Theorem 3.1. �
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