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Abstract. In this paper, we introduce some new iteration methods based on the hybrid

method in mathematical programming and the descent-like method for finding a fixed point

of a nonexpansive mapping and a common fixed point of a nonexpansive semigroup in Hilbert

spaces. The main results in this paper modify and improve some well-known results in the

literature.

1. Introduction

Let H be a real Hilbert space with the scalar product and the norm denoted
by the symbols 〈., .〉 and ‖.‖, respectively, and let C be a nonempty closed and
convex subset of H. Denote by PCx the metric projection of an element
x ∈ H onto C. It is well-known that PC is a nonexpansive mapping on H
for any closed convex subset C in H. Recall that a mapping T is said to be
nonexpansive on C, if T : C → C and ‖Tx−Ty‖ ≤ ‖x−y‖ for all x, y ∈ C. We
use F (T ) to denote the set of fixed points of T , i.e., F (T ) = {x ∈ C : x = Tx}.
We know that F (T ) is nonempty, if C is bounded, for more details see [2].

Let {T (t) : t > 0} be a nonexpansive semigroup on C, that is,
(1) for each t > 0, T (t) is a nonexpansive mapping on C;
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(2) T (0)x = x for all x ∈ C;
(3) T (s+ t) = T (s) ◦ T (t) for all s, t > 0; and
(4) for each x ∈ C, the mapping T (.)x from (0,∞) into C is continuous.

Assume that F = ∩t>0F (T (t)) 6= ∅. We know that F is a closed convex
subset [8] and that F 6= ∅, if C is bounded [6].

For finding a fixed point of a nonexpansive mapping T on C, Alber [1]
proposed the following descent-like method:

xn+1 = PC(xn − µn(I − T )xn), n ≥ 0, x0 ∈ C, (1.1)

where I denotes the identity mapping in H, and proved that if the sequence
of positive real numbers {µn} is chosen such that µn → 0 as n→∞ and {xn}
is bounded, then:

(i) there exists a weak accumulation point x̃ ∈ C of {xn};
(ii) all weak accumulation points of {xn} belong to F (T );
(iii) if F (T ) is a singleton, i.e., F (T ) = {x̃}, then {xn} converges weakly to x̃.

Motivated by Solodov and Svaiter’s algorithm [11] , Nakajo and Takahashi
[8] introduced the following strongly convergence iteration procedures:

x0 ∈ C any element,

yn = αnxn + (1− αn)Txn,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − x0, z − xn〉 ≥ 0},

xn+1 = PCn∩Qn(x0), n ≥ 0,

(1.2)

where {αn} ⊂ [0, a] for some a ∈ [0, 1), for finding a fixed point of a nonex-
pansive mapping T on C, and

x0 ∈ C any element,

yn = αnxn + (1− αn)Tnxn,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − x0, z − xn〉 ≥ 0},

xn+1 = PCn∩Qn(x0), n ≥ 0,

(1.3)

where where Tn is defined by

Tny =
1

λn

∫ λn

0
T (s)yds,

for each y ∈ C, αn ∈ [0,a] for some a ∈ [0,1) and {λn} is a positive real
number divergent sequence, for finding a common fixed point of a nonexpansive
semigroup {T (t) : t > 0}.
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Further, in 2008, Takahashi et al. [12] proposed a simple variant of (1.3)
that has the following form:

x0 ∈ H,C1 = C, x1 = PC1x0,

yn = αnxn + (1− αn)Tnxn,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, n ≥ 1.

(1.4)

They showed (Theorem 4.4 in [12]) that if 0 ≤ αn ≤ a < 1, 0 < λn <∞ for all
n ≥ 1 and λn →∞, then {xn} converges strongly to u0 = PFx0. At the time,
Saejung [9] considered the following analogue without Bochner integral:

x0 ∈ H,C1 = C, x1 = PC1x0,

yn = αnxn + (1− αn)T (tn)xn,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, n ≥ 1,

(1.5)

where 0 ≤ αn ≤ a < 1, lim infn tn = 0, lim supn tn > 0, and limn(tn+1−tn) = 0.
Then {xn} converges strongly to u0 = PFx0.

If C ≡ H, then Cn and Qn in (1.2)-(1.5) are two halfspaces. So, the
projection xn+1 onto Cn ∩ Qn or Cn+1 in these methods can be found by an
explicit formula [11]. Clearly, if C is a proper subset of H, then Cn and Qn in
these algorithms are not two halfspaces. Then, the following problem is posed:
how to construct the closed convex subsets Cn and Qn and if we can express
xn+1 of the above algoritms in a similar form as in [11]? This problem is solved
very recently in [3-5]. In the works, Cn and Qn in (1.2)-(1.3) are replaced by
two halfspaces and yn is the right hand side of (1.1) with a modification. In
this paper, using the idea, we present a new variant for (1.4)-(1.5) where Cn+1

becomes a halfspace Hn+1 defined below. More precisely, we consider the
following algorithms:

x0 ∈ H = H0, yn = xn − µn(I − TPC)xn,

Hn+1 = {z ∈ Hn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PHn+1x0, n ≥ 0,

(1.6)

for finding an element in F (T );

x0 ∈ H = H0, yn = xn − µn(I − TnPC)xn),

Hn+1 = {z ∈ Hn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PHn+1x0, n ≥ 0;

(1.7)
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and
x0 ∈ H = H0, yn = xn − µn(I − T (tn)PC)xn,

Hn+1 = {z ∈ Hn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PHn+1x0, n ≥ 0,

(1.8)

for finding an element in F .
We shall prove that iteration processes (1.6) and (1.7), (1.8) converge strongly

to a fixed point of T and a common fixed point of {T (t) : t > 0} in sections 2
and 3, respectively.

The symbols ⇀ and → denote weak and strong convergences, respectively.

2. Strong convergence to a fixed point of nonexpansive
mappings

We formulate the following facts needed in the proof of our results.

Lemma 2.1 [7]. Let C be a nonempty closed convex subset of a real Hilbert
space H. For any x ∈ H, there exists a unique z ∈ C such that ‖z − x‖ ≤
‖y − x‖ for all y ∈ C, and z = PCx if and only if 〈z − x, y − z〉 ≥ 0 for all
y ∈ C.

Theorem 2.2. Let C be a nonempty closed convex subset in a real Hilbert
space H and let T be a nonexpansive mapping on C such that F (T ) 6= ∅.
Assume that {µn} is a sequence in (a, 1) for some a ∈ (0, 1]. Then, the
sequences {xn} and {yn}, defined by (1.6), converge strongly to the same point
u0 = PF (T )x0.

Proof. First, note that ‖yn − z‖ ≤ ‖xn − z‖ is equivalent to

〈yn − xn, xn − z〉 ≤ −
1

2
‖yn − xn‖2.

Thus, Hn is a halfspace. Next, we show that F (T ) ⊂ Hn for all n ≥ 0. It is
clear that F (T ) = F (TPC) := {p ∈ H : TPCp = p} for any mapping T from
C into C. So, we have for each p ∈ F (T ) that

‖yn − p‖ = ‖(1− µn)xn + µnTPCxn − p‖
= ‖(1− µn)(xn − p) + µn(TPCxn − TPCp)‖
≤ (1− µn)‖xn − p‖+ µn‖xn − p‖
= ‖xn − p‖.

Therefore, p ∈ Hn for all n ≥ 0.

Further, since F (T ) is a nonempty closed convex subset of H, by Lemma
2.1, there exists a unique element u0 ∈ F (T ) such that u0 = PF (T )x0. From
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xn+1 = PHn+1x0, we obtain that

‖xn+1 − x0‖ ≤ ‖z − x0‖

for every z ∈ Hn+1. As u0 ∈ F (T ) ⊂ Hn+1, we get

‖xn+1 − x0‖ ≤ ‖u0 − x0‖ ∀n ≥ 0. (2.1)

Now, we show that

lim
n→∞

‖xn+m − xn‖ = 0, (2.2)

for each fixed integer m > 0. Indeed, from the definition of Hn+1, it implies
that Hn+1 ⊆ Hn and hence we have that

‖xn − x0‖ ≤ ‖xn+1 − x0‖ ∀n ≥ 0.

Therefore, there exists limn ‖xn − x0‖ = c. Next, by Lemma 2.1, xn+m ∈ Hn

and xn = PHnx0, we get that

〈xn − x0, xn+m − xn〉 ≥ 0.

Thus,

‖xn+m − xn‖2 = ‖xn+m − x0‖2 − ‖xn − x0‖2 − 2〈xn − x0, xn+m − xn〉
≤ ‖xn+m − x0‖2 − ‖xn − x0‖2

from that and limn ‖xn − x0‖ = c, (2.2) is implied. So, {xn} is a Cauchy
sequence. We assume that xn → p ∈ H. On the other hand, from (2.2) and
the following inequalities

‖xn − TPCxn‖ =
1

µn
‖yn − xn‖

≤ 1

a
(‖yn − xn+m‖+ ‖xn+m − xn‖)

≤ 2

a
‖xn+m − xn‖,

we get

lim
n→∞

‖xn − TPCxn‖ = 0.

So, p = TPCp. It means that p ∈ F (T ). Now, from (2.1) and Lemma 2.1,
it implies that p = u0. The strong convergence of the sequence {yn} to u0 is
followed from

lim
n→∞

‖yn − xn‖ = lim
n→∞

µn‖xn − TPCxn‖ = 0

and xn → u0. This completes the proof. �
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3. Strong convergence to a common fixed point of nonexpansive
semigroups

Lemma 3.1 [10]. Let C be a nonempty bounded closed convex subset in a
real Hilbert space H and let {T (t) : t > 0} be a nonexpansive semigroup on C.
Then, for any h > 0

lim sup
t→∞

sup
y∈C

∥∥∥∥T (h)

(
1

t

∫ t

0
T (s)yds

)
−1

t

∫ t

0
T (s)yds

∥∥∥∥= 0.

Theorem 3.2. Let C be a nonempty closed convex subset in a real Hilbert
space H and let {T (t) : t > 0} be a nonexpansive semigroup on C such that
F = ∩t>0F (T (t)) 6= ∅. Assume that {µn} is a sequence in (a, 1] for some
a ∈ (0, 1] and {λn} is a positive real number divergent sequence. Then, the
sequences {xn} and {yn} defined by (1.7), converge strongly to the same point
u0 = PFx0.

Proof. For each p ∈ F ⊆ C, we have from (1.7) and p = PCp that

‖yn − p‖ =

∥∥∥∥(1− µn)(xn − p) + µn

(
1

λn

∫ λn

0
T (s)PCxnds− p

)∥∥∥∥
≤ (1− µn)‖xn − p‖+ µn

∥∥∥∥ 1

λn

∫ λn

0
(T (s)PCxn − T (s)PCp)ds

∥∥∥∥
≤ (1− µn)‖xn − p‖+ µn

1

λn

∫ λn

0
‖xn − p‖ds

= ‖xn − p‖.

Therefore, p ∈ Hn. It means that F ⊂ Hn for all n ≥ 0. As in the proof
of Theorem 2.2, we get that {xn} is well defined, it converges strongly to an
element p ∈ H, and

‖xn+1 − x0‖ ≤ ‖u0 − x0‖, lim
n→∞

∥∥∥∥xn − 1

λn

∫ λn

0
T (s)PCxnds

∥∥∥∥= 0, (3.1)

where u0 = PFx0. Since

1

λn

∫ λn

0
T (s)PCxnds ∈ C

and PC is a nonexpansive mapping, we have that∥∥∥∥PCxn − 1

λn

∫ λn

0
T (s)PCxnds

∥∥∥∥ =

∥∥∥∥PCxn − PC 1

λn

∫ λn

0
T (s)PCxnds

∥∥∥∥
≤
∥∥∥∥xn − 1

λn

∫ λn

0
T (s)PCxnds

∥∥∥∥.
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So, we obtain from (3.1) that

lim
n→∞

∥∥∥∥PCxn − 1

λn

∫ λn

0
T (s)PCxnds

∥∥∥∥= 0. (3.2)

This together with (3.1) and xn → p implies that the sequence {PCxn} also
converges strongly to p. Since C is closed, we get p ∈ C.

On the other hand, we have for each h > 0 that

‖T (h)PCxn − PCxn‖ ≤
∥∥∥∥T (h)PCxn − T (h)

(
1

λn

∫ λn

0
T (s)PCxnds

)∥∥∥∥
+

∥∥∥∥T (h)

(
1

λn

∫ λn

0
T (s)PCxnds

)
− 1

λn

∫ λn

0
T (s)PCxnds

∥∥∥∥
+

∥∥∥∥ 1

λn

∫ λn

0
T (s)PCxnds− PCxn

∥∥∥∥
≤ 2

∥∥∥∥ 1

λn

∫ λn

0
T (s)PCxnds− PCxn

∥∥∥∥
+

∥∥∥∥T (h)

(
1

λn

∫ λn

0
T (s)PCxnds

)
− 1

λn

∫ λn

0
T (s)PCxnds

∥∥∥∥.

(3.3)

Let C0 = {z ∈ C : ‖z − u0‖ ≤ 2‖x0 − u0‖}. Since u0 = PFx0 ∈ C, we have
from (3.1) and

‖PCxn − u0‖ = ‖PCxn − PCu0‖
≤ ‖xn − u0‖
≤ ‖xn − x0‖+ ‖x0 − u0‖
≤ 2‖x0 − u0‖.

So, C0 is a nonempty bounded closed convex subset. It is easy to verify that
{T (t) : t > 0} also is a nonexpansive semigroup on C0. By Lemma 3.1, (3.3)
and PCxn → p, we get p = T (h)p for each h > 0. So, p ∈ F . Again, from (3.1)
and p ∈ F , it implies that p = u0 and yn → u0 as n→∞. This completes the
proof. �

Theorem 3.3. Let C be a nonempty closed convex subset in a real Hilbert
space H and let {T (t) : t > 0} be a nonexpansive semigroup on C such that
F = ∩t>0F (T (t)) 6= ∅. Assume that {µn} is a sequence in (a, 1] for some a ∈
(0, 1] and {tn} is a sequence of positive real numbers satisfying the condition
lim infn tn = 0, lim supn tn > 0, and limn(tn+1 − tn) = 0. Then, the sequences
{xn} and {yn} defined by (1.8), converge strongly to the same point u0 = PFx0.

Proof. As in the proof of Theorems 2.2 and 3.2, we get

‖xn+1 − x0‖ ≤ ‖u0 − x0‖, lim
n→∞

‖xn − T (tn)PCxn‖ = 0, (3.4)
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lim
n→∞

‖PCxn − T (tn)PCxn‖ = 0, (3.5)

and the sequence {xn} and {PCxn} also converge strongly to p ∈ C.
Without loss of generality, as in [7], let

lim
j→∞

tnj = lim
j→∞

‖PCxnj − T (tnj )PCxnj‖
tnj

= 0. (3.6)

Now, we prove that p = T (t)p for a fixed t > 0. It is easy to see that

‖PCxnj − T (t)p‖ ≤
[t−tnj ]−1∑

l=0

‖T (ltnj )PCxnj − T ((l + 1)tnj )PCxkj‖

+

∥∥∥∥T([ t

tnj

])
PCznj − T

([
t

tnj

])
p

∥∥∥∥
+

∥∥∥∥T([ t

tkj

])
p− T (t)p

∥∥∥∥
≤ t

tnj

‖PCxnj − T (tnj )PCxnj‖+ ‖PCxnj − p‖

+

∥∥∥∥T(t− [ t

tnj

]
tnj

)
p− p

∥∥∥∥.
Therefore,

‖PCxnj − T (t)p‖ ≤ t

tnj

‖PCxnj − T (tnj )PCxnj‖

+ ‖PCxnj − p‖+ sup{‖T (s)p− p‖ : 0 ≤ s ≤ tnj}.
This fact, together with (3.6) and property (4) for the semigroup, implies that

lim
j→∞

‖PCxnj − T (t)p‖ = 0.

Therefore, p ∈ F . So, from (3.4), we have that the sequence {xn} converges
strongly to u0 as n→∞. The strong convergence of the sequence {yn} to u0
is followed from (1.8), (3.4), µn ∈ (a, 1] and xn → u0 as n→∞. The theorem
is proved. �
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