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Abstract. In the present paper we consider the existences of periodic and subharmonic
solutions with saddle point character for the following second order non-autonomous Hamil-
tonian system

ü(t) +5F (t, u(t)) = 0 a. e. t ∈ R.

Adopting some other reasonable assumptions for 5F , we obtain some new results for exis-

tence of solutions with saddle point character by using of the saddle point reduction methods.

Recent results from the literature are generalized and significantly improved.
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1. Introduction and Main Results

Consider the second order systems

ü(t) +5F (t, u(t)) = 0 a. e. t ∈ R (1.1)

where F : R×RN → R is T−periodic (T > 0) in its first variable and satisfies
the following assumption:

(A) F (t, x) is measurable in t for each x ∈ RN and continuously differ-
entiable in x for a. e. t ∈ [0, T ], and there exist a ∈ L1(R+;R+), b ∈
L1(0, T ;R+), such that |F (t, x)| ≤ a(|x|)b(t), | 5 F (t, x)| ≤ a(|x|)b(t) for all
x ∈ RN and a. e. t ∈ R.

A solution of problem (1.1) is called to be subharmonic if it is kT−periodic
solution for some positive integer k.

It is well known that u is a periodic solution of problem (1.1) if and only if
u is a critical point in H1

T of functional ϕ, where

H1
T = {u : [0, T ]→ RN |u is absolutely continuous,

u(0) = u(T ) and u̇ ∈ L2(0, T ;RN )}
is a Hilbert space with the norm defined by

‖u‖ = [

∫ T

0
|u(t)|2dt+

∫ T

0
|u̇(t)|2dt]

1
2

for u ∈ H1
T and

ϕ(u) =
1

2

∫ T

0
|u̇(t)|2dt−

∫ T

0
F (t, u(t))dt

is continuously differentiable and weakly lower semi-continuous on H1
T (see

[7]). Moreover one has

< ϕ′(u), v >=

∫ T

0
[(u̇(t), v̇(t))− (5F (t, u(t)), v(t))]dt

for all u, v ∈ H1
T . By Proposition1.1 in [7], we know there exists a constant

c0 > 0 such that

‖u‖∞ = max
0≤t≤T

|u(t)| ≤ c0||u|| (1.2)

for all u ∈ H1
T . For u ∈ H1

T , let u = (T )−1
∫ T
0 u(t)dt and ũ(t) = u(t)− u. Let

H̃1
T = {u ∈ H1

T |u = 0}, then H1
T = RN

⊕
H̃1
T and ũ(t) ∈ H̃1

T , obviously. Then
one has Sobolev’s inequality

‖ũ‖2∞ ≤
T

12

∫ T

0
|u̇(t)|2dt
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and Wertinger’s inequality∫ T

0
|ũ(t)|2dt ≤ T 2

4π2

∫ T

0
|u̇(t)|2dt.

If H1
T = X

⊕
Y , for each x ∈ X and each y ∈ Y , let ψ(x, y) = ϕ(x+y). The

solution u = x+y of problem (1.1) is said to be of correlated property if there
exists a continuous function θ such that y = θ(x) and either ψ(x, θ(x)) =
miny∈Y ψ(x, y) or ψ(x, θ(x)) = supy∈Y ψ(x, y). The solution u = x + y of
problem (1.1) is said to possess saddle point character if it is correlated and
is a saddle point of ψ(x, y).

The existence of periodic solutions for problem (1.1) under some suitable
conditions have been established and it has been proved that problem (1.1) has
infinitely distinct subharmonic solutions under some suitable conditions(see,
e.g., [7], [8], [5], [4], [6], [9], and references therein). Recently, Zhao and Wu
[13], [14], Wu [12] consider the existence of periodic solutions with saddle point
character for problem (1.1) under some linear condition. They obtained the
following theorem:

Theorem A: Suppose that F : [0, T ] → RN satisfies assumption(A). If the
following conditions hold:

(i) there exists a function µ ∈ L1(0, T ;R) with
∫ T
0 µ(t)dt > 0 such that OF (t, ·)

is µ(t)−monotone, that is

(OF (t, x)− OF (t, y), x− y) ≥ µ(t)|x− y|2

for all x, y ∈ RN and a. e. t ∈ [0, T ];

(ii) there exist f, g ∈ L1(0, T ;R+) with
∫ T
0 f(t)dt ≤ 12/T such that

| 5 F (t, x)| ≤ f(t)|x|+ g(t)

for all x ∈ RN and a. e. t ∈ [0, T ], then problem (1.1) has at least a solution
with saddle point character in H1

T . If in addition,
(iii) there exists δ > 0 and an integer k > 0 such that

1

2
k2ω2|x|2 ≤ F (t, x) ≤ 1

2
(k + 1)2ω2|x|2

for all |x| ≤ δ and a. e. t ∈ [0, T ], where ω = 2π/T, then problem (1.1) has
three distinct solutions with saddle point character in H1

T .

On the other hand, Tang and Wu [10] consider that OF (t, x) is sublinear
and proved that under some type of coercive property on F (t, x), problem
(1.1) has infinitely subharmonic solutions.

We note that Theorem A only consider the linear situation and constrain

the coefficient f(t) of the linearity such that
∫ T
0 f(t)dt ≤ 12/T , this extremely
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constrict the applicability for discussing the existence of subharmonic solutions
of problem (1.1). Inspired and motivated by the works mentioned above, and
by virtue of methods so called saddle point reduction method proposed in [3],
[1], [11], we shall extend the conditions posed on OF (t, x) to that so called
(µ−α)−monotone in large region and that OF (t, x) is sublinear in x to obtain
new criterions for guaranteeing the existence and multiplicity of periodic and
subharmonic solutions with saddle point character of problem (1.1) in this
paper, our methods are different from the methods in the others. Our main
results are the following theorems.

Theorem 1.1. Suppose that F satisfies assumption (A) and the following
conditions:
(i) there exists a function µ ∈ L1(0, T ;R) with

∫ T
0 µ(t)dt > 0, M > 0 and

α ∈ [0, 1) such that OF (t, ·) is (µ− α)−monotone, that is

(OF (t, x)− OF (t, y), x− y) ≥ µ(t)|x− y|1+α

for all x, y ∈ RN with either |x| ≥M or |y| ≥M and that

(OF (t, x)− OF (t, y), x− y) ≥ µ(t)|x− y|2

for all x, y ∈ RN with both |x| < M and |y| < M and a. e. t ∈ [0, T ];
(ii) there exist f, g ∈ L1(0, T ;R+) and M > 0 such that

| 5 F (t, x)| ≤ f(t)|x|α + g(t) (1.3)

for all x ∈ RN with |x| ≥ M and a. e. t ∈ [0, T ], then problem (1.1) has at
least a solution with saddle point character in H1

T .
In addition, if the following condition holds,
(iii) there exist M > δ > 0 and an integer k > 0 such that

1

2
k2ω2|x|2 ≤ F (t, x) ≤ 1

2
(k + 1)2ω2|x|2

for all |x| ≤ δ and a. e. t ∈ [0, T ], where ω = 2π/T, then problem (1.1) has at
least three periodic distinct solutions with correlated property in H1

T in which
there exists at least one which is nontrivial one with saddle point character.

Theorem 1.2. Suppose that F satisfies assumption (A) and the following
conditions:
(i) there exists a function µ ∈ L1(0, T ;R) with

∫ T
0 µ(t)dt > 0 and α ∈ [0, 1)

such that OF (t, ·) is (µ− α)−monotone, that is

(OF (t, x)− OF (t, y), x− y) ≥ µ(t)|x− y|1+α

for all x, y ∈ RN and a. e. t ∈ [0, T ];
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(ii) there exist f, g ∈ L1(0, T ;R+) and M > 0 such that

| 5 F (t, x)| ≤ f(t)|x|α + g(t)

for all x ∈ RN with |x| ≥M and a. e. t ∈ [0, T ];
(iii)

F (t, x)→ +∞

as |x| → +∞ uniformly for a. e. t ∈ [0, T ].
Then problem (1.1) has kT−periodic solutions uk with saddle point charac-

ter in H1
kT for every positive integer k such that ‖uk‖∞ → +∞ as k → +∞.

Theorem 1.3. Suppose that F satisfies assumption (A) and conditions (i),
(ii) in Theorem 1.2 and the following condition holds:
(iii) assume that there exists a function γ ∈ L1(0, T ) such that F (t, x) ≥ γ(t)
for all x ∈ RN and a. e. t ∈ [0, T ], and that there exists a subset E of [0, T ]
with meas(E) > 0 such that

F (t, x)→ +∞

as |x| → +∞ uniformly for a. e. t ∈ E.
Then problem (1.1) has kT−periodic solutions uk with saddle point charac-

ter in H1
kT for every positive integer k such that ‖uk‖∞ → +∞ as k → +∞.

Remark 1.4. Note that the coercive conditions used in [10] is that |x|−2αF (t, x)
→ +∞ as |x| → +∞ uniformly for a. e. t ∈ [0, T ] or a. e. t ∈ E. Hence the
results in Theorem 1.2 and Theorem 1.3 are novel and are significant improve-
ment, compare to results from the literature mentioned above and the other
references.

2. Proofs Of Theorems

Now we give the proofs of our main results. We only give the proofs of
Theorem 1.1 and Theorem 1.3, Theorem 1.2 is only a special case of Theorem
1.3.

Proof of Theorem 1.1. For each fixed u ∈ H̃1
T and any v1, v2 ∈ RN , one

has

〈ϕ′(u(t) + v1), v1 − v2〉 = −
∫ T

0
(5F (t, u(t) + v1), v1 − v2)dt,

〈ϕ′(u(t) + v2), v1 − v2〉 = −
∫ T

0
(5F (t, u(t) + v2), v1 − v2)dt,
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so by condition (i) one has:∫ T

0
(OF (t, u(t) + v1)− OF (t, u(t) + v2), v1 − v2)dt ≥ |v1 − v2|1+β

∫ T

0
µ(t)dt

where β denote either α or 1 as there exists one of norms of v1, v2 is large or
not. Consequently,

〈−ϕ′(u(t) + v1)− (−ϕ′(u(t) + v2)), v1 − v2〉 ≥ |v1 − v2|1+β
∫ T

0
µ(t)dt,

which implies

〈ϕ′(u(t) + v1)− ϕ′(u(t) + v2), v1 − v2〉
≤ −|v1 − v2|1+β

∫ T
0 µ(t)dt

= −‖v1 − v2‖ h(‖v1 − v2‖)
(2.1)

where h(s) =
∫ T
0 µ(t)dt

T
1+β
2

sβ is an strictly increasing function from R+ to R+ such

that h(s)→ +∞ as s→ +∞.
For each u ∈ H̃1

T define the functional Ψu : RN → R by

Ψu(v) = ϕ(u+ v).

Since ϕ ∈ C1(H1
T , R), then Ψu ∈ C1(RN , R), by (2.1) Ψu has at most one

critical point. If Ψ ′u(0) = 0, then Ψu has the only critical point v = 0. If
Ψ ′u(0) 6= 0, we claim that −Ψu is coercive. Since

Ψu(v) = Ψu(0) +

∫ 1

0
〈Ψ ′u(sv), v〉ds

≤ Ψu(0) + ‖Ψ ′u(0)‖ ‖v‖ −
∫ 1

0
‖v‖ h(‖sv‖)ds.

By the property of h, we may choose R large enough such that

h(‖sv‖) ≥ 4 ‖Ψ ′u(0)‖ uniformly for |v| ≥ R, s ∈ [
1

2
, 1].

Therefore

Ψu(v) ≤ Ψu(0)− ‖Ψ ′u(0)‖ ‖v‖
which implies that Ψu(v) → −∞ as ‖v‖ → ∞. Hence −Ψu is coercive. Next
we shall show that Ψu(v) is concave. For given v1, v2 ∈ RN , define ξ(s) =
Ψu(v1 + s(v2 − v1)), for 0 < α < β < 1, by simple computation we have

ξ′(β)− ξ′(α) < 0

which means that ξ is concave, and so is Ψu. Combining the above arguments,
we see that Ψu has a unique maximizer θ(u) ∈ RN such that Ψu(θ(u)) =
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supv∈RN ϕ(u+ v), that is, for all u ∈ H̃1
T , θ(u) is the unique critical point for

Ψu in RN such that Ψu(θ(u)) = supv∈RN ϕ(u+ v). Therefore one has

〈ϕ′(u+ θ(u)), v〉 = 0, ∀v ∈ RN . (2.2)

We shall establish that θ : H̃1
T → RN is continuous. For this we assume on

the contrary, that there exist ε0 > 0 and un → u as n→ +∞ such that

‖θ(un)− θ(u)‖ ≥ ε0.

Let P be the projection from H1
T to RN . By (2.2) we see that ‖Pϕ′(un +

θ(u))‖ ≤ h(ε0/2) if n large enough. Therefore by (2.1) one has

−h(ε0)‖θ(un)− θ(u)‖
≥ −h(‖θ(un)− θ(u)‖)‖θ(un)− θ(u)‖
≥ 〈ϕ′(un + θ(un))− ϕ′(un + θ(u)), θ(un)− θ(u)〉
= 〈−ϕ′(un + θ(u)), θ(un)− θ(u)〉
= 〈−Pϕ′(un + θ(u)), θ(un)− θ(u)〉
≥ −‖Pϕ′(θ(un) + θ(u))‖‖θ(un)− θ(u)‖
≥ −h(ε0/2)‖θ(un)− θ(u)‖

which implies that h(ε0) ≤ h(ε0/2), a contradiction proving the assertion.

For each u ∈ H̃1
T , define functional J as follows:

J(u) = ϕ(u+ θ(u)) = sup
v∈RN

ϕ(u+ v).

Using the continuity of θ(·), J(u) is well defined and we shall show that J(u) =

ϕ(u+ θ(u)) is of C1(H̃1
T , R) and

〈J ′(u), w〉 = 〈ϕ′(u+ θ(u)), w〉, ∀u,w ∈ H̃1
T

this and (2.2) will imply that an element u ∈ H̃1
T is a critical point of J if and

only if u+ θ(u) is a critical point of ϕ.
Indeed, for s > 0,

J(u+ sw)− J(u)

s
=

ϕ(u+ sw + θ(u+ sw))− ϕ(u+ θ(u))

s

≥ ϕ(u+ sw + θ(u))− ϕ(u+ θ(u))

s

=

∫ 1

0
〈ϕ′(u+ θ(u) + tsw), w〉dt

In a similar way, we have

J(u+ sw)− J(u)

s
≤

∫ 1

0
〈ϕ′(u+ θ(u+ sw) + tsw), w〉dt
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Combining above two inequalities proving the assertions.

Moreover, as ‖u‖ → ∞ in H1
T if and only if (|u|2 +

∫ T
0 |u̇|

2dt)
1
2 → ∞, and

by Wertinger’s inequality it follows that ‖ũ‖ → ∞ implies that
∫ T
0 |u̇|

2dt→∞
which yet implies that (|u|2 +

∫ T
0 |u̇|

2dt)
1
2 → ∞, hence for each u ∈ H̃1

T with
‖u‖ large, by condition (ii) we have

|
∫ T

0
F (t, u(t))dt| = |

∫ T

0
[F (t, u(t))− F (t, 0)]dt+

∫ T

0
F (t, 0)dt|

≤ |
∫ T

0

∫ 1

0
(5F (t, su(t)), u(t))dsdt|+ c4

≤
∫ T

0

∫ 1

0
| 5 F (t, su(t))| |u(t)|dsdt+ c4

≤
∫ T

0

∫ 1

0
[f(t)|u(t)|1+αsα + g(t)|u(t)|]dsdt+ c4

≤ 1

1 + α
‖u(t)‖1+α∞

∫ T

0
f(t)dt+ ‖u(t)‖∞

∫ T

0
g(t)dt+ c4.

Hence by the definition of J(u) and Wertinger’s inequality and (1.2) one has

J(u) ≥ ϕ(u) =
1

2

∫ T

0
|u̇(t)|2dt−

∫ T

0
F (t, u(t))dt

≥ 1

2

∫ T

0
|u̇|2dt− c2‖u‖1+α − c3‖u‖ − c4

≥ c1‖u‖2 − c2‖u‖1+α − c3‖u‖ − c4 (2.3)

where ci(i = 1, 2, 3, 4) are some positive constants. Then (2.3) implies that

J(u)→ +∞ as ‖u‖ → +∞ on H̃1
T . Consequently, there exists a point u0 ∈ H̃1

T
such that J(u0) = min

H̃1
T
J(u), and hence u = u0 + θ(u0) is a solution with

saddle point character of problem (1.1) in H1
T .

In addition, if condition (iii) holds, since ϕ is weakly lower semicontinuous

on H1
T , so is J on H̃1

T . By the coerciveness and weakly lower semicontinuity of
J we know that J satisfies P.S. condition and is bounded below. Let X2 be a
finite dimensional subspace of X = H̃1

T given by

X2 = {
k∑
j=1

(ajcosjωt) + bjsinjωt|aj , bj ∈ RN , j = 1, 2, · · · , k}

and let X1 = X⊥2 the orthogonal complement of X2 in H̃1
T . We claim that

θ(0) = 0. Indeed, (iii) follows that F (t, 0) = 0 = 5F (t, 0) for a.e.t ∈ [0, T ].



On existence of periodic and subharmonic solutions with saddle point character 349

Hence by (i) one has

0 = 〈ϕ′(θ(0)), θ(0)〉 =

∫ T

0
(−5 F (t, θ(0)), θ(0))dt

=

∫ T

0
(−5 F (t, θ(0))− (−5 F (t, 0)), θ(0))dt

≤ −|θ(0)|1+β[

∫ T

0
µ(t)dt] ≤ 0

therefore θ(0) = 0. By the continuity of θ there exists a positive number
δ1 < δ/(2c0) such that |θ(u)| < δ/2 as ‖u‖ ≤ δ1. Then by (iii) we obtain

J(u) = ϕ(u+ θ(u)) ≤ 1

2

∫ T

0
|u̇(t)|2dt− 1

2
k2ω2

∫ T

0
|u+ θ(u)|2dt ≤ 0 (2.4)

for all u ∈ X2 with ‖u‖ ≤ δ1 and

J(u) ≥ ϕ(u) ≥ 1

2

∫ T

0
|u̇(t)|2dt− 1

2
(k + 1)2ω2

∫ T

0
|u|2dt ≥ 0

for all u ∈ X1 with ‖u‖ ≤ δ1.
Hence inf{J(u) : u ∈ H̃1

T } ≤ 0. If inf{J(u) : u ∈ H̃1
T } = 0, (2.4) implies

that all u ∈ X2 with ‖u‖ ≤ δ1 are minima of J and therefore ϕ has infinite

critical points with saddle point character. If inf{J(u) : u ∈ H̃1
T } < 0, then by

Theorem 4 in [2] it follows that J has at least two non zero critical points, hence
problem (1.1) has at least two non trivial solutions with correlated property in
which there exists at least one with saddle point character. In addition, since
OF (t, 0) = 0 for a. e. t ∈ [0, T ], hence 0 is also a solution of problem (1.1)
and 0 = 0 + θ(0) by previous confirmation. Hence problem (1.1) has at least
three distinct solutions with correlated property in H1

T in which there exists
at least one which is nontrivial one with saddle point character. We complete
the proof.

Proof of Theorem 1.3. Without loss of generality, we may assume that
functions b in assumption(A), f, g in (1.3) are T− periodic and assumptions
(A), (1.3) hold for all t ∈ R by the T− periodicity of F (t, x) in the first
variable.

Replace T by kT in the definitions of H1
T , H̃

1
T , ϕ, and ϕ′ in Theorem 1.1,

then we obtain the corresponding spaces and functionalsH1
kT , H̃

1
kT , ϕk, and ϕ′k,

respectively. Then one has H1
kT = RN

⊕
H̃1
kT , obviously. Hence Theorem 1.1

implies that there exists u0 ∈ H̃1
kT such that uk = u0 + θ(u0) is a kT−periodic

solution with saddle point character in H1
kT . Now we prove that ‖uk‖∞ → +∞
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as k → +∞. Set

ek(t) = k(cosk−1ωt)x0

for all t ∈ R and some x0 ∈ RN with |x0| = 1, where ω = 2π/T . Then we
have

ek(t) ∈ H̃1
kT

and

ėk(t) = −ω(sink−1ωt)x0

which implies that

‖ėk(t)‖22 =
1

2
kTω2.

By the definition of uk, we have

ϕk(uk) = ϕk(u0 + θ(u0)) = J(u0) = min
u∈H̃1

kT

J(u)

≤ J(ek) = ϕk(ek + θ(ek)) = sup
v∈RN

ϕk(ek + v) = sup
RN+ek

ϕk (2.5)

Set δ = measE/2, it follows from Lemma 1 in [10] and condition (iii) that
there exists a subset Eδ of E with meas(E \ Eδ) < δ such that

F (t, x)→ +∞ as |x| → +∞

uniformly for all t ∈ Eδ, which implies that

measEδ = measE −measEδ > δ > 0

and for every β > 0, there exists M ≥ 1 such that

F (t, x) ≥ β (2.6)

for all |x| ≥M and all t ∈ Eδ. For fixed x ∈ RN , set

Ak = {t ∈ [0, kT ] | |x+ ek(t)| ≤M}.

Then Tang-Wu [10] has proved that

measAk ≤
kδ

2
(2.7)

for all large k. Let

Ek =
k−1⋃
j=0

(jT + Eδ).

Then it follows from (2.7) that

meas(Ek \Ak) ≥
1

2
kδ
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for large k. Hence by (iii), (2.5), (2.6) and above inequality we have

k−1ϕk(x+ ek) =
1

4
Tω2 − k−1

∫ kT

0
F (t, x+ ek(t))dt

≤ 1

4
Tω2 − k−1

∫
[0,kT ]\(Ek\Ak)

F (t, x+ ek)dt− k−1
∫
(Ek\Ak)

F (t, x+ ek)dt

≤ 1

4
Tω2 − k−1

∫
[0,kT ]\(Ek\Ak)

γ(t)dt− k−1βmeas(Ek \Ak)

≤ 1

4
Tω2 +

∫ T

0
|γ(t)|dt− T

2
δβ

for all x ∈ RN and all large k. Then by the arbitrariness of β, following the
same way in [10] we complete our proof.
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