
Nonlinear Functional Analysis and Applications
Vol. 16, No. 3 (2011), pp. 353-364

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm
Copyright c© 2011 Kyungnam University Press

A NOTE ON (C, 1)(E, q) PRODUCT SUMMABILITY

Hare Krishna Nigam

Department of Mathematics, Faculty of Engineering and Technology
Mody Institute of Technology and Science (Deemed University)

Laxmangarh, Sikar (Rajasthan), India
E-mail: harekrishnan@yahoo.com

Abstract. In this paper, two new theorems on (C, 1)(E, q) product summability of Fourier

series and its conjugate series have been established.

1. Introduction

Several researchers like Singh [7], Khare [3], Mittal and Kumar [5], Singh
and Singh [8] , Pandey [6] and Jadia [2] have studied (N, pn), (N, p, q), almost
(N, p, q) and matrix summability methods of Fourier Series and its conjugate
series using different conditions. But nothing seems to have been done so far
to study (C, 1)(E, q) product summability of Fourier series and its conjugate
series. Therefore, in this paper, two theorems on (C, 1)(E, q) summability
of Fourier series and its conjugate series under a general condition have been
proved.

Let
∑∞

n=0 un be a given infinite series with sequence of its nth partial sum
{sn}.

The(C, 1) transform is defined as the nth partial sum of (C, 1) summabil-
ity and is given by

tn =
s0 + s1 + s2 + ......sn

n+ 1
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=
1

n+ 1

n∑
k=0

sk → s as n→∞ (1.1)

then the infinite series
∑∞

n=0 un is summable to the definite number s by (C,
1) method.

If

(E, q) = Eqn =
1

(1 + q)n

n∑
k=0

(
n
k

)
qn−k sk → s as n→∞ (1.2)

then the infinite series
∑∞

n=0un with partial sum sn is said to be summable
by (E, q) method to a definite number s (Hardy[1]).

The (C,1) transform of the (E,q) transform defines (C,1) (E,q) transform and
it can be denoted C1

nE
q
n.

Thus if

C1
nE

q
n =

1

n+ 1

n∑
k=0

Eqk → s as n→∞ (1.3)

where Eqn denotes the (E,q) transform of sn and C1
n denotes the (C,1) trans-

form of sn. Then the series
∑∞

n=0un is said to be summable by (E, q) (C, 1)
means or summable (E, q) (C, 1) to a definite number s. Therefore, we can
write C1

nE
q
n → s as n→∞.

The method (C,1)(E,q) is regular and this case is supposed throughout this
paper.

Let f(x) be a 2π-periodic function and integrable over [−π, π] in the sense
of Lebesgue. The Fourier series of f(x) is given by

f (x) v
a0
2

+

∞∑
n=1

(an cosnx+ bn sinnx) ≡
∞∑
n=1

An (x) (1.4)

The conjugate series of Fourier series (1.4) is given by

∞∑
n=1

(an cosnx− bn sinnx) ≡
∞∑
n=1

Bn (x) (1.5)

We shall call (1.5) as conjugate Fourier series throughout this paper.
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We use the following notations:

φ (t) = f (x+ t) + f (x− t)− 2f (x)

ψ (t) = f (x+ t) + f (x− t)

Kn (t) =
1

2π (n+ 1)

n∑
k=0

[
1

(1 + q)k

k∑
ν=0

(
k
ν

)
qk−ν

sin
(
ν + 1

2

)
t

sin t
2

]
τ =

[
1
t

]
where τ denotes the greatest integer not greater than 1

t .

2. Main Theorems

We prove the following theorems:

Theorem 2.1. Let {pn} be a non-negative, monotonic, non-increasing se-
quence of real constants such that

Pn =
n∑
ν=0

pν →∞, as n→∞.

If

Φ (t) =

∫ t

0
|φ (u) | du = o

[
t

α
(
1
t

)
.Pτ

]
, as t→ +0, (2.1)

where α (t) is a positive, monotonic and non-increasing function of t and

log (n+ 1) = O [{α (n+ 1)} .Pn+1] , as n→∞, (2.2)

then the Fourier series (1.4) is summable (C,1)(E,q) to f(x) .

Theorem 2.2. Let {pn} be a non-negative, monotonic, non-increasing se-
quence of real constants such that

Pn =

n∑
ν=0

pν →∞, as n→∞.

If

Ψ (t) =

∫ t

0
|ψ (u) | du = o

[
t

α
(
1
t

)
.Pτ

]
as t→ +0, (2.3)

where α (t) is a positive, monotonic and non-increasing function of t,

(1 + q)τ
n∑
k=τ

(1 + q)−k = O (n+ 1) (2.4)

and condition (2.2) holds then the conjugate series (1.5) is summable (C,1)(E,q)
to

f (x) = − 1

2π

∫ 2π

0
ψ (t) cot

(
t

2

)
dt
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at every point where this integral exists.

3. Lemmas

For the proof of our theorems, following lemmas are required:

Lemma 3.1. For 0 ≤ t ≤ 1
n+1

|Kn (t)| = O (n+ 1) .

Proof. For 0 ≤ t ≤ 1
n+1 , sinnt ≤ n sin t

|Kn (t)| ≤ 1

2π (n+ 1)

∣∣∣∣∣
n∑
k=0

[
1

(1 + q)k

k∑
ν=0

(
k
ν

)
qk−ν

(2ν + 1) sin t
2

sin t
2

]∣∣∣∣∣
≤ 1

2π (n+ 1)

∣∣∣∣∣
n∑
k=0

[
1

(1 + q)k
(2k + 1)

k∑
ν=0

(
k
ν

)
qk−ν

]∣∣∣∣∣
=

1

2π (n+ 1)

n∑
k=0

(2k + 1)

= O (n+ 1) .

�

Lemma 3.2. For 1
n+1 ≤ t ≤ π,

|Kn (t)| = O

(
1

t

)
.

Proof. For 1
n ≤ t ≤ π, by applying Jordan’s Lemma sin

(
t
2

)
≥ t

π , sinnt ≤ 1

|Kn (t)| ≤ 1

2π (n+ 1)

∣∣∣∣∣
n∑
k=0

[
1

(1 + q)k

k∑
ν=0

{(
k
ν

)
qk−ν

1(
t
π

)}]∣∣∣∣∣
=

1

2 t (n+ 1)

n∑
k=0

[
1

(1 + q)k
(1 + q)k

]

=
1

2 t (n+ 1)

n∑
k=0

1

= O

(
1

t

)
.

�
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Lemma 3.3. For 0 ≤ t ≤ 1
n+1 ,

K̄n (t) = O

(
1

t

)
.

Proof. For 0 ≤ t ≤ 1
n+1 , sin

(
t
2

)
≥ t

π and |cosnt| ≤ 1.

∣∣ K̄n (t)
∣∣ ≤ 1

2π (n+ 1)

∣∣∣∣∣
n∑
k=0

[
1

(1 + q)k

k∑
ν=0

{(
k
ν

)
qk−ν

cos
(
ν + 1

2

)
t

sin
(
t
2

) }]∣∣∣∣∣
=

1

2π (n+ 1)

n∑
k=0

1

(1 + q)k

k∑
ν=0

(
k
ν

)
qk−ν

∣∣cos
(
ν + 1

2

)
t
∣∣∣∣sin ( t2)∣∣

=
1

2 t (n+ 1)

n∑
k=0

1

(1 + q)k

k∑
ν=0

(
k
ν

)
qk−ν

=
1

2 t (n+ 1)

n∑
k=0

1

(1 + q)k
(1 + q)k

=
1

2 t (n+ 1)

n∑
k=0

1

= O

(
1

t

)
.

�

Lemma 3.4. For 0 ≤ a ≤ b ≤ ∞, 0 ≤ t ≤ π and any n, we have

K̄n (t) = O

[
τ2

(n+ 1)

]
+O

[
τ

(n+ 1)
(1 + q)τ

n∑
k=τ

(1 + q)−k
]
.

Proof. For 0 ≤ 1
n+1 ≤ t ≤ π, sin

(
t
2

)
≥ t

π ,

∣∣K̄n (t)
∣∣ ≤ 1

2π (n+ 1)

∣∣∣∣∣
n∑
k=0

[
1

(1 + q)k

k∑
ν=0

(
k
ν

)
qk−ν

cos
(
ν + 1

2

)
t

sin
(
t
2

) ]∣∣∣∣∣
=

1

2π (n+ 1)

∣∣∣∣∣
n∑
k=0

[
1

(1 + q)k
Re

{
k∑
ν=0

(
k
ν

)
qk−νei(ν+

1
2)t

} ]∣∣∣∣∣
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≤ 1

2t (n+ 1)

∣∣∣∣∣
n∑
k=0

[
1

(1 + q)k
Re

{
k∑
ν=0

(
k
ν

)
qk−νeiνt

} ]∣∣∣∣∣ ∣∣∣ei t2 ∣∣∣
≤ 1

2t (n+ 1)

∣∣∣∣∣
n∑
k=0

[
1

(1 + q)k
Re

{
k∑
ν=0

(
k
ν

)
qk−νeiνt

} ]∣∣∣∣∣
≤ 1

2t (n+ 1)

∣∣∣∣∣
τ−1∑
k=0

[
1

(1 + q)k
Re

{
k∑
ν=0

(
k
ν

)
qk−νeiνt

} ]∣∣∣∣∣
+

1

2t (n+ 1)

∣∣∣∣∣
n∑
k=τ

[
1

(1 + q)k
Re

{
k∑
ν=0

(
k
ν

)
qk−νeiνt

} ]∣∣∣∣∣ . (3.1)

Now considering first term of (3.1)

1

2t (n+ 1)

∣∣∣∣∣
τ−1∑
k=0

[
1

(1 + q)k
Re

{
k∑
ν=0

(
k
ν

)
qk−νeiνt

} ]∣∣∣∣∣
≤ 1

2t (n+ 1)

∣∣∣∣∣
τ−1∑
k=0

1

(1 + q)k

k∑
ν=0

(
k
ν

)
qk−ν

∣∣∣∣∣ ∣∣eiνt∣∣
≤ 1

2t (n+ 1)

τ−1∑
k=0

[
1

(1 + q)k

k∑
ν=0

(
k
ν

)
qk−ν

]

=
1

2t (n+ 1)

τ−1∑
k=0

1

=
τ

2t (n+ 1)

= O

{
τ2

(n+ 1)

}
. (3.2)

Considering second term of (3.1) and using Abel’s lemma

1

2t (n+ 1)

∣∣∣∣∣
n∑
k=τ

[
1

(1 + q)k
Re

{
k∑
ν=0

(
k
ν

)
qk−νeiνt

} ]∣∣∣∣∣
≤ 1

2t (n+ 1)

n∑
k=τ

1

(1 + q)k
max

0 ≤ m ≤ k

∣∣∣∣∣
m∑
ν=0

(
k
ν

)
qk−νeiνt

∣∣∣∣∣
≤ 1

2t (n+ 1)
(1 + q)τ

n∑
k=τ

1

(1 + q)k
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= O

[
τ

(n+ 1)
(1 + q)τ

n∑
k=τ

(1 + q)−k
]
. (3.3)

Combining (3.1), (3.2) and (3.3), we get

K̄n (t) = O

[
τ2

(n+ 1)

]
+O

[
τ

(n+ 1)
(1 + q)τ

n∑
k=τ

(1 + q)−k
]
.

�

4. Proof of Theorem 2.1.

Following Titchmarsh [9] and using Riemann-Lebesgue theorem, sn(f ;x) of
the series (1.4) is given by

sn (f ;x)− f (x) =
1

2π

∫ π

0
φ (t)

sin
(
n+ 1

2

)
t

sin t
2

dt.

Therefore using (1.4), the (E, q) transform Eqn of sn (f ;x) is given by

Eqn − f (x) =
1

2π (1 + q)k

∫ π

0

φ (t)

sin
(
t
2

) { n∑
k=0

(
n
k

)
qn−k sin

(
k +

1

2

)
t

}
dt.

Now denoting (C, 1)(E, q) transform of sn (f ;x) as C1
nE

q
n, we write

C1
nE

q
n − f (x) =

1

2π (n+ 1)

n∑
k=0

[
1

(1 + q)k

∫ π

0

φ (t)

sin
(
t
2

)
×

{
k∑
ν=0

(
k
ν

)
qk−ν sin

(
ν +

1

2

)
t

}
dt

]

=

∫ π

0
φ (t) Kn (t) dt.

In order to prove the theorem, we have to show that, under our assumptions∫ π

0
φ (t) Kn (t) dt = o(1) as n→∞.

We have, for 0 < δ < π,∫ π

0
φ (t) Kn (t) dt =

[∫ 1
n+1

0
+

∫ δ

1
n+1

+

∫ π

δ

]
φ (t) Kn (t) dt

= I1.1 + I1.2 + I1.3 (say). (4.1)
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We consider,

|I1.1| ≤
∫ 1

n+1

0
|φ (t)| |Kn (t)| dt

= O (n+ 1)

[∫ 1
n+1

0
|φ (t)| dt

]
(using Lemma 1)

= O (n+ 1)

[
o

{
1

(n+ 1) α (n+ 1) .Pτ

}]
by (2.1)

= O

[
1

α (n+ 1)Pn+1

]
= O

{
1

log (n+ 1)

}
using (2.2)

= O(1), as n→∞. (4.2)

Now we consider,

|I1.2| ≤
∫ δ

1
n+1

|φ (t)| |Kn (t)| dt.

Using Lemma 2, we get,

|I1.2| = O

[∫ δ

1
n+1

|φ (t)|
(

1

t

)
dt

]

= O

[{
1

t
Φ (t)

}δ
1

n+1

+

∫ δ

1
n+1

1

t2
Φ (t) dt

]

= O

[
O

{
1

α (t)Pτ

}δ
1

n+1

+

∫ δ

1
n+1

O

{
1

t α (t)Pτ

}
dt

]
by (2.1)

= O

[
O

{
1

α (n+ 1)Pn+1

}
+

∫ n+1

1
δ

O

{
1

u α (u)Pu

}
du

]

= O

{
1

α (n+ 1)Pn+1

}
+O

{
1

(n+ 1)α (n+ 1)Pn+1

}∫ n+1

1
δ

1.du

= O

{
1

log (n+ 1)

}
+O

{
1

log (n+ 1)

}
by (2.2)

= O(1) +O(1), as n→∞
= O(1), as n→∞. (4.3)
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Now by Riemann-Lebesgue theorem and by regularity condition of the method
of summability, we have

|I1.3| ≤
∫ π

δ
|φ (t)| |Kn (t)| dt

= o(1), as n→∞. (4.4)

Combining (4.1) to (4.4), we get

C1
nE

q
n − f(x) = o(1), as n→∞.

This completes the proof of Theorem 2.1.

5. Proof of Theorem 2.2.

Let s̄n (f ;x) denotes the partial sum of series (1.5). Then following Lal [4]
and Riemaann- Lebesgue theorem s̄n (f ;x) of (1.5) is given by

sn (f ;x)− f̄ (x) =
1

2π

∫ π

0
ψ (t)

cos
(
n+ 1

2

)
t

sin
(
t
2

) dt.

Therefore using (1.2), the (E, q) transform Eqn of s̄n (f ;x) is given by

Eqn − f̄ (x) =
1

2π (1 + q)n

∫ π

0

ψ (t)

sin
(
t
2

) [ n∑
k=0

(
n
k

)
qn−k cos

(
k +

1

2

)
t

]
dt.

Now denoting (C, 1) (E, q) transform of s̄n by C1
nE

q
n, we write

C1
nE

q
n − f̄ (x) =

1

2π (n+ 1)

n∑
k=0

[{
1

(1 + q)k

}∫ π

0

ψ (t)

sin
(
t
2

)
×

{
k∑
ν=0

(
k
ν

)
qk−ν cos

(
ν +

1

2

)
t

}
dt

]

=

∫ π

0
ψ (t) K̄n (t) dt.

In order to prove the theorem, we have to show that, under our assumptions∫ π

0
ψ (t) K̄n (t) dt = o(1) as n→∞.

We have, for 0 < δ < π∫ π

0
ψ (t) K̄n (t) dt =

[∫ 1
n+1

0
+

∫ δ

1
n+1

+

∫ π

δ

]
ψ (t) K̄n (t) dt

= I2.1 + I2.2 + I2.3 (say). (5.1)
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Now consider,

|I2.1| ≤
∫ 1

n+1

0
|ψ (t)|

∣∣K̄n (t)
∣∣ dt

= O

[∫ 1
n+1

0

1

t
|ψ (t)| dt

]
(using Lemma 3)

= O(n+ 1)

[∫ 1
n+1

0
|ψ (t)| dt

]

= O(n+ 1)

[
O

{
1

(n+ 1) α (n+ 1)Pn+1

}]
by (2.3)

= O

{
1

α (n+ 1)Pn+1

}
= O

{
1

log (n+ 1)

}
using (2.2)

= O(1), as n→∞. (5.2)

Now we consider,

|I2.2| =
∫ δ

1
n+1

|ψ (t)|
∣∣K̄n (t)

∣∣ dt.
Using Lemma 4, we get

I2.2 = O

[∫ δ

1
n+1

(
τ2

(n+ 1)

)
|ψ (t) | dt

]

+O

[∫ δ

1
n+1

{
τ (1 + q)τ

(n+ 1)

n∑
k=τ

(1 + q)−k
}
|ψ (t) | dt

]
= I2.2.1 + I2.2.2 (say). (5.3)

Now we consider, by (2.2) and (2.3),

I2.2.1 = O

(
1

n+ 1

)[∫ δ

1
n+1

1

t2
|ψ (t) | dt

]

= O

(
1

n+ 1

)[{
1

t2
Ψ (t)

}δ
1

n+1

+

∫ δ

1
n+1

2

t3
Ψ (t) dt

]

= O

(
1

n+ 1

){ 1

t2
O

(
t

α
(
1
t

)
Pτ

)}δ
1

n+1

+

∫ δ

1
n+1

2

t3
O

(
t

α
(
1
t

)
Pτ

)
dt


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= O

(
1

n+ 1

)O

(

1

t α
(
1
t

)
Pτ

)δ
1

n+1




+O

(
1

n+ 1

)[
O

{∫ δ

1
n+1

1

t2 α
(
1
t

)
Pτ
dt

}]

= O

(
1

n+ 1

)[
O

{
(n+ 1)

α (n+ 1)Pn+1

}]
+O

(
1

n+ 1

)[
O

{∫ n+1

1
δ

1

α (u)Pu
du

}]

= O

{
1

α (n+ 1))Pn+1

}
+O

(
1

n+ 1

)
O

{
1

α (n+ 1))Pn+1

}∫ n+1

1
δ

1.du

= O

{
1

log (n+ 1)

}
+O

{
1

log (n+ 1)

}
= O(1) +O(1), as n→∞
= O(1), as n→∞. (5.4)

Now considering

I2.2.2 = O

(
1

n+ 1

)[∫ δ

1
n+1

(
1

t

)
(1 + q)τ

n∑
k=τ

1

(1 + q)k
|ψ (t) | dt

]
.

Using condition (2.2)-(2.4), we get

I2.2.2 = O(1)

[∫ δ

1
n+1

1

t
|ψ (t) | dt

]

= O(1)

[{
1

t
Ψ (t)

}δ
1

n+1

+

∫ δ

1
n+1

{
1

t2
Ψ (t)

}
dt

]

= O(1)

{1

t
O

(
t

α
(
1
t

)
Pτ

)}δ
1

n+1

+

∫ δ

1
n+1

1

t2
O

(
t

α
(
1
t

)
Pτ

)
dt


= O(1)

O

(

1

α
(
1
t

)
Pτ

)δ
1

n+1


+O(1)

[
O

{∫ δ

1
n+1

1

t α
(
1
t

)
Pτ

}
dt

]

= O

{
1

α (n+ 1))Pn+1

}
+O(1)

[∫ n+1

1
δ

O

{
1

u α (u)Pu

}
du

]

= O

{
1

α (n+ 1))Pn+1

}
+O

{
1

(n+ 1)α (n+ 1))Pn+1

}∫ n+1

1
δ

1 du
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= O

{
1

log (n+ 1)

}
+O

{
1

log (n+ 1)

}
= O(1) +O(1), as n→∞
= O(1), as n→∞. (5.5)

Now by Riemann-Lebesgue theorem and by regularity condition of the method
of summability, we have

|I2.3| ≤
∫ π

δ
|ψ (t)|

∣∣Kn (t)
∣∣ dt

= O(1), as n→∞. (5.6)

Combining (5.1) to (5.6), we get

C1
nE

q
n − f (x) = o(1), as n→∞.

This completes the proof of Theorem 2.2.
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