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Abstract. In this paper, we introduce modified Ishikawa iteration for finding a common

element of the set of fixed points of quai-φ-nonexpansive mappings and the set of solutions

of an equilibrium problem. Our results are new and can be viewed as direct generalizations

and extensions of the corresponding results obtained in [11, 15]. And we give the problems

studied in [8, 9, 10, 12] some new conditions under which their results are still true. We also

provide some new estimation techniques in the proofs of the results.

1. Introduction

Let E be a real Banach space and C a nonempty closed convex subset of
E. Let f : C × C → R be a functional, where R is the set of real numbers.
The equilibrium problem is to find p ∈ C, such that

f(p, y) ≥ 0, ∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by EP (f). Equilibrium problems
provide us with a systematic framework to study a wide class of problems
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arising in finance economics, optimization and operation research etc., which
motivate the extensive concern. In recent years, equilibrium problems have
been deeply and thoroughly researched. See, for example, [2, 4, 13].

Let E be a real Banach space, C a nonempty closed convex subset of E and
S : C → C a mapping. F (S) denotes the fixed point of S. Recall that S is
nonexpansive if

‖ Sx− Sy ‖≤‖ x− y ‖ ∀x, y ∈ C.

Sis said to be quasi-nonexpansive if F (S) is nonempty and

‖ Sx− y ‖≤‖ x− y ‖ ∀x ∈ C, y ∈ F (S).

S is said to be closed if for any sequence {xn} ⊂ C such that lim
n→∞

xn = x0

and lim
n→∞

Sxn = y0, then Sx0 = y0.

Two classical iteration processes are often used to approximate a fixed point
of a nonexpansive mapping. The first one is introduced by Mann [7] and is
defined as follows:

xn+1 = αnxn + (1− αn)Sxn, n ∈ N ∪ {0}. (1.2)

where the initial guess x0 is taken in C arbitrarily and the sequence {αn}∞n=1

is in the interval [0,1].The second iteration process is referred to as Ishikawa’s
iteration process [5] which is defined recursively by{

yn = βnxn + (1− βn)Sxn,
xn+1 = αnxn + (1− αn)Syn,

(1.3)

where the initial guess x0 is taken in C arbitrarily, {αn}∞n=1 and {βn}∞n=1 are
sequences in the interval [0,1].

Generally, not much has been known regarding the convergence of the itera-
tion processes (1.2)-(1.3) unless the underlying space E has elegant properties.

Attempts to modify the Mann’s iteration method (1.2) so that strong con-
vergence theorems for equilibrium problems and fixed point problems have
recently been made. [12] proposed the following modification of the Mann’s
iteration (1.2) for equilibrium problems and a single relatively nonexpansive
mapping S in a Banach space

x0 = x ∈ C,
yn = J−1(αnJxn + (1− αn)JSxn),
un ∈ C, s.t., f(un, y) + 1

rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C

Cn = {z ∈ C : φ(z, un) ≤ φ(z, xn)},
Qn = {z ∈ C : 〈xn − z, Jx− Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx, n = 0, 1, . . .

(1.4)
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Then, [11] further improved the above theorem by considering equilibrium
problems and a pair of quasi-φ-nonexpansive mappings. They consider the
following iteration process:

∀x0 ∈ C,
C1 = C,
x1 = ΠC1x0,
yn = J−1(αnJxn + βnJTxn + γnJSxn),
un ∈ C, s.t., f(un, y) + 1

rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C

Cn+1 = {z ∈ C : φ(z, un) ≤ φ(z, xn)}
xn+1 = ΠCn+1x0, n = 1, 2, . . .

(1.5)

Finally, [11] considered the problem of finding a common element in the
common fixed point set of a family of quasi -φ-nonexpansive mappings and in
the solution set of the equilibrium problem (1.1). That is, they considered the
following iteration method:

∀x0 ∈ C,
C1 = C,
x1 = ΠC1x0,

yn = J−1(αn,0Jxn +
N∑
i=1

αn,iJSixn),

un ∈ C, s.t., f(un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C

Cn+1 = {z ∈ C : φ(z, un) ≤ φ(z, xn)}
xn+1 = ΠCn+1x0, n = 1, 2, . . .

(1.6)

Recently, [15] adapted the iteration (1.3) in Banach space. More precisely,
they introduced the following iteration process for equilibrium problem and a
relatively nonexpansive mapping:

∀x0 ∈ C,
zn = J−1(βnJxn + (1− βn)JSxn),
yn = J−1(αnJxn + (1− αn)JSzn),
un ∈ C, s.t., f(un, y) + 1

rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C

Cn = {v ∈ C : φ(v, un) ≤ αnφ(v, xn) + (1− αn)φ(v, zn)},
Qn = {v ∈ C : 〈xn − v, Jx− Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0, n = 0, 1, . . .

(1.7)

Motivated by the work of [11], the purpose of this paper is to employ the
idea to modified process (1.7) to prove strong convergence theorems for equi-
librium problems and quasi-φ-nonexpansive mappings under some appropriate
conditions in Banach spaces. Our results are new and can be viewed as di-
rect generalizations and extensions of the corresponding results obtained in
[11, 15]. And we give the problems studied in [8, 9, 10, 12]et al. some new
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conditions under which their results are still true.We also provide some new
estimation techniques in the proofs of the results.

2. Preliminaries

Let E be a real Banach space with norm ‖ · ‖ and let E∗ be the dual of E.
Denote by 〈·, ·〉 the duality product. We denote by J the normalized duality
mapping from E to 2E

∗
defined by

Jx = {f∗ ∈ E∗ : 〈x, f∗〉 =‖ x ‖2=‖ f∗ ‖2},

for x ∈ E. A Banach space E is said to have the Kadec-Klee property if a
sequence {xn} of E satisfying that xn ⇀ x and ‖ xn ‖→‖ x ‖, then xn → x.
We know the following:

(1) if E is smooth, then J is single-valued;
(2) if E is strictly convex, then J is one-to-one, that is, if Jx ∩ Jy is

nonempty, then x = y;
(3) if E is reflexive, then J is onto;
(4) if E is smooth and reflexive, then J is norm-to-weak continuous, that

is, Jxn ⇀ Jx whenever xn → x;
(5) if E is uniformly convex, then E has the Kadec-Klee property;
(6) the norm of E∗ is Fréchet differentiable if and only if E is a strictly

convex and reflexive Banach space which has the Kadec-Klee property; see
[14] for more details.

Let E be a smooth Banach space. The function φ : E × E → R is defined
by

φ(y, x) =‖ y ‖2 −2〈y, Jx〉+ ‖ x ‖2

for x, y ∈ E. It is obvious from the definition of the function φ that

(‖ y ‖ − ‖ x ‖)2 ≤ φ(y, x) ≤ (‖ y ‖ + ‖ x ‖)2 (2.1)

for all x, y ∈ E
A Banach space E is said to be strictly convex if ‖x+y‖

2 < 1 for all x, y ∈ E
with ‖ x ‖=‖ y ‖= 1 and x 6= y. It is also said to be uniformly convex
if lim

n→∞
‖ xn − yn ‖= 0 for any two sequences {xn},{yn} in E such that

‖ xn ‖=‖ yn ‖= 1 and lim
n→∞

‖xn+yn‖
2 = 1. Let U = {x ∈ E :‖ x ‖= 1} be the

unit sphere of E. Then the Banach space E is said to be smooth provided

lim
t→0

‖x+ty‖−‖x‖
t exists for each x, y ∈ U . It is also said to be uniformly smooth

if the limit is attained uniformly for x, y ∈ U .
Following [1], the generalized projection ΠC from E onto C is a mapping

that assigns to an arbitrary point x ∈ E the minimum point of the functional
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φ(x, y); that is, ΠCx = x, where x is the solution to the minimization problem

φ(x, x) = min
y∈C

φ(y, x)

If E is a Hilbert space, then φ(y, x) =‖ x−y ‖2 and ΠC is the metric projection
of E onto C.

We know the following lemmas for generalized projections.

Lemma 2.1. ([1]) Let C be a nonempty closed convex subset of a smooth,
strictly convex and reflexive Banach space E. Then

φ(x,ΠCy) + φ(ΠCy, y) ≤ φ(x, y), ∀x ∈ C, y ∈ E.

Lemma 2.2. ([1]) Let C be a nonempty closed convex subset of a smooth,
strictly convex, and reflexive Banach space E, let x ∈ E and let z ∈ C. Then

z = ΠCx⇐⇒ 〈y − z, Jx− Jz〉 ≤ 0,∀y ∈ C.

[6] also proved the following result. This plays an important role in the
proof of the main theorem.

Lemma 2.3. ([6]) Let E be a uniformly convex and smooth Banach space and
let {xn}, {yn} be two sequences of E. If φ(xn, yn) → 0 and either {xn} or
{yn} is bounded, then ‖ xn − yn ‖→ 0.

Let C be a nonempty closed convex subset of a smooth, strictly convex
and reflexive Banach space E, let S be a mapping from C into itself. We
denoted by F (S) the set of fixed points of S. A point p ∈ C is said to
be an asymptotic fixed point of S if there exists {xn} in C which converges
weakly to p and lim

n→∞
‖ xn − Sxn ‖= 0. We denote the set of all asymptotic

fixed points of S by F̂ (S). Following [19], a mapping S of C into itself is
said to be relatively nonexpansive if F (S) is nonempty; φ(u, Sx) ≤ φ(u, x),

∀u ∈ F (S), x ∈ C; F̂ (S) = F (S). The asymptotic behavior of a relatively
nonexpansive mapping was studied in [8, 9]. S is said to be φ−nonexpansive if
φ(Sx, Sy) ≤ φ(x, y), ∀x, y ∈ C. S is said to be quasi-φ-nonexpansive if F (S)
is nonempty; φ(u, Sx) ≤ φ(u, x), ∀u ∈ F (S), x ∈ C.

Remark 2.1. The class of quasi-φ-nonexpansive mappings is more general
than the class of relatively nonexpansive mappings which requires F̂ (S) =
F (S).

Remark 2.2. Let ΠC be the generalized projection from a smooth, strictly
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convex and reflexive Banach space E onto a nonempty closed convex subset
C of E. Then ΠC is a closed and quasi-φ-nonexpansive mapping from E onto
C with F (ΠC) = C. See [5] for more details.

The following lemma is due to [11].

Lemma 2.4. ([11]) Let C be a nonempty closed convex subset of a smooth, uni-
formly convex Banach space E, and let S be a closed and quasi-φ-nonexpansive
mapping from C into itself. Then F (S) is closed and convex.

For solving the equilibrium problem, let us assume that a bifunction f
satisfies the following conditions:

(A1) f(x, x) = 0,∀x ∈ C;
(A2) f is monotone, i.e. f(x, y) + f(y, x) ≤ 0,∀x, y ∈ C;
(A3) ∀x, y, z ∈ C,

lim sup
t→0

f(tz + (1− t)x, y) ≤ f(x, y);

(A4) ∀x ∈ C, f(x, ·) is convex and lower semicontinuous.

We have the following result:

Lemma 2.5. ([3]) Let C be a closed convex subset of a smooth, strictly convex,
and reflexive Banach space E, let f : C×C → R be a functional and satisfying
(A1)-(A4), let r > 0 and x ∈ E. Then, there exists z ∈ C such that

f(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0,∀y ∈ C.

The following lemma is from [11]:

Lemma 2.6. ([11]) Let C be a closed convex subset of a uniformly convex
and smooth Banach space E, and let f : C × C → R be a functional , satisfy-
ing (A1)-(A4). For r > 0 and x ∈ E, define a mapping Tr : E → C as follows:

Tr(x) = {z ∈ C : f(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0,∀y ∈ C}

for all x ∈ E. Then, the following hold:
(1) Tr is single-valued;
(2) Tr is a firmly nonexpansive-type mapping, i.e., for all x, y ∈ E, 〈Trx−

Try, JTrx− JTry〉 ≤ 〈Trx− Try, Jx− Jy〉;
(3) F (Tr) = EP (f);
(4) EP (f) is closed and convex and Tr is a quasi-φ-nonexpansive mapping.

Lemma 2.7. ([12]) Let C be a closed convex subset of a smooth, strictly
convex, and reflexive Banach space E, let f : C × C → R be a functional ,
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satisfying (A1)-(A4), and let r > 0. Then, for x ∈ E and q ∈ F (Tr) ,

φ(q, Trx) + φ(Trx, x) ≤ φ(q, x)

3. Main results

Theorem 3.1. Let E be a uniformly smooth and uniformly convex Banach
space, and let C be a nonempty closed convex subset of E. Let f : C ×
C → R be a functional, satisfying (A1)-(A4) and let S, T be two closed quasi-
φ-nonexpansive mappings from C into itself such that F = F (S) ∩ F (T ) ∩
EP (f) 6= ∅. Let {xn} be a sequence generated by

∀x0 ∈ C,
zn = J−1(ξnJxn + ηnJTxn + δnJSxn),
yn = J−1(αnJxn + βnJTzn + γnJSzn),
un ∈ C, s.t., f(un, y) + 1

rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C

Cn = {v ∈ C : φ(v, un) ≤ αnφ(v, xn) + (1− αn)φ(v, zn)}
Qn = {v ∈ C : 〈xn − v, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0, n = 0, 1, . . .

(3.1)

Where J is the duality mapping on E, {rn} ⊂ [a,∞) for some a > 0, {αn},
{βn}, {γn}, {ξn}, {ηn} and {δn} are sequences in [0, 1] satisfying the following
restrictions:

(i) αn + βn + γn = 1;
(ii) ξn + ηn + δn = 1;
(iii) lim

n→∞
ξn = 1, lim inf

n→∞
βn > 0, lim inf

n→∞
γn > 0.

If S, T is uniformly continuous, Then, {xn} converges strongly to ΠFx0, where
ΠF is the generalized projection of E onto F .

Proof. We divide the proof of this theorem to 4 steps as below.

STEP 1. We show that Cn ∩Qn is closed and convex for every n ∈ N ∪ {0}.
From the definition of Cn and Qn, it is obvious that Cn is closed and Qn is
closed and convex for every n ∈ N ∪ {0}. We prove that Cn is convex. For
v1, v2 ∈ Cn and t ∈ (0, 1), put v = tv1 + (1− t)v2. It is sufficient to show that
v ∈ Cn. Next, we show

φ(v, un) ≤ αnφ(v, xn) + (1− αn)φ(v, zn). (3.2)

is equivalent to

2αn〈v, Jxn〉+ 2(1− αn)〈v, Jzn〉 − 2〈v, Jun〉
≤ αn ‖ xn ‖2 +(1− αn) ‖ zn ‖2 − ‖ un ‖2 .

(3.3)

Indeed, from the definition of φ(y, x) , one can get the above inequality.
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Then, by (3.3) we have Cn is convex. So, Cn ∩Qn is closed and convex for
every n ∈ N ∪ {0}. Hence, ΠCn∩Qn is well defined.

STEP 2. We show that F ⊂ Cn ∩Qn.
Let u ∈ F . Putting un = Trnyn for all n ∈ N∪{0}, By Lemma 2.6(4), we have
that Trn is quasi-φ-nonexpansive. Since S, T are also quasi-φ-nonexpansive,
by the definition of quasi-φ-nonexpansive and the convexity of ‖ · ‖2 we have

φ(u, un) = φ(u, Trnyn)

≤ φ(u, yn)

= φ(u, J−1(αnJxn + βnJTzn + γnJSzn))

=‖ u ‖2 −2〈u, αnJxn + βnJTzn + γnJSzn〉
+ ‖ αnJxn + βnJTzn + γnJSzn ‖2

≤‖ u ‖2 −2αn〈u, Jxn〉 − 2βn〈u, JTzn〉 − 2γn〈u, JSzn〉
+ αn ‖ xn ‖2 +βn ‖ Tzn ‖2 +γn ‖ Szn ‖2

≤ αnφ(u, xn) + βnφ(u, Tzn) + γnφ(u, Szn)

≤ αnφ(u, xn) + (1− αn)φ(u, zn).

(3.4)

Hence, we have u ∈ Cn. This implies that

F ⊂ Cn,∀n ∈ N ∪ {0}.
Next we show by induction that F ⊂ Cn ∩Qn, ∀n ∈ N ∪ {0}. From Q0 = C,
we have

F ⊂ C0 ∩Q0

Suppose that F ⊂ Ck ∩ Qk for some k ∈ N ∪ {0}. Then there exists xk+1 ∈
Ck ∩Qk such that

xk+1 = ΠCk∩Qk
x0

By Lemma 2.2, we have, for all z ∈ Ck ∩Qk,

〈xk+1 − z, Jx0 − Jxk+1〉 ≥ 0

Since F ⊂ Ck ∩Qk, we have

〈xk+1 − z, Jx0 − Jxk+1〉 ≥ 0, ∀z ∈ F
and hence z ∈ Qk+1. So, we have

F ⊂ Ck+1 ∩Qk+1

Therefore we have F ⊂ Cn ∩ Qn,∀n ∈ N ∪ {0}. This means that {xn} is
well-defined. From the definition of Qn and Lemma 2.2, we have xn = ΠQnx0.
Using xn = ΠQnx0, from Lemma 2.1 we have

φ(xn, x0) = φ(ΠQnx0, x0) ≤ φ(u, x0)− φ(u,ΠQnx0) ≤ φ(u, x0)
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for all u ∈ F ⊂ Qn.Then, φ(xn, x0) is bounded. Therefore, {xn},{Txn}, {Sxn}
are bounded. Since xn+1 = ΠCn∩Qnx0 and xn = ΠQnx0, from the definition
of ΠQn we have

φ(xn, x0) ≤ φ(xn+1, x0). (3.5)

Thus {φ(xn, x0)} is nondecreasing. So, the limit of {φ(xn, x0)} exists. From
xn = ΠQnx0 and Lemma 2.1, we also have

φ(xn+1, xn) = φ(xn+1,ΠQnx0)
≤ φ(xn+1, x0)− φ(ΠQnx0, x0)
= φ(xn+1, x0)− φ(xn, x0)

(3.6)

∀n ∈ N ∪ {0}. By (3.5) and (3.6)

lim
n→∞

φ(xn+1, xn) = 0. (3.7)

It follows from Lemma 2.3 that xn − xm → 0 as n → ∞. Hence {xn} is a
Cauchy sequence. Since E is a Banach space and C is closed and convex, one
can assume that xn → p as n→∞.

STEP 3. We show that p ∈ F .
Firstly, we show p ∈ F (S) ∩ F (T ). From xn+1 = ΠCn∩Qnx0 ∈ Cn, we have

φ(xn+1, un) = φ(xn+1, Trnyn) ≤ φ(xn+1, yn)

≤ αnφ(xn+1, xn) + (1− αn)φ(xn+1, zn), ∀n ∈ N ∪ {0}.

Then by the convexity of ‖ · ‖2. We obtain

φ(xn+1, zn) = φ(xn+1, J
−1(ξnJxn + ηnJTxn + δnJSxn))

=‖ xn+1 ‖2 −2〈xn+1, ξnJxn + ηnJTxn + δnJSxn〉
+ ‖ ξnJxn + ηnJTxn + δnJSxn ‖2

≤‖ xn+1 ‖2 −2ξn〈xn+1, Jxn〉 − 2ηn〈xn+1, JTxn〉
− 2δn〈xn+1, JSxn〉+ ξn ‖ xn ‖2 +ηn ‖ Txn ‖2 +δn ‖ Sxn ‖2

= ξnφ(xn+1, xn) + ηnφ(xn+1, Txn) + δnφ(xn+1, Sxn).

Since lim
n→∞

ξn = 1 and (3.7), we have

lim
n→∞

φ(xn+1, zn) = 0. (3.8)

So, we have
lim
n→∞

φ(xn+1, yn) = lim
n→∞

φ(xn+1, un) = 0. (3.9)

From (3.7)-(3.9), by Lemma 2.3, we obtain

lim
n→∞

‖ xn+1 − xn ‖ = lim
n→∞

‖ xn+1 − zn ‖= lim
n→∞

‖ xn+1 − yn ‖

= lim
n→∞

‖ xn+1 − un ‖= 0
(3.10)
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Since J is uniformly norm-to-norm continuous on bounded sets we have

lim
n→∞

‖ Jxn+1 − Jxn ‖= lim
n→∞

‖ Jxn+1 − Jyn ‖= 0.

And since

‖ xn − zn ‖≤‖ xn+1 − xn ‖ + ‖ xn+1 − zn ‖,

‖ xn − yn ‖≤‖ xn+1 − xn ‖ + ‖ xn+1 − yn ‖,

‖ xn − un ‖≤‖ xn+1 − xn ‖ + ‖ xn+1 − un ‖ .

It follows from (3.10) that

lim
n→∞

‖ xn − zn ‖= lim
n→∞

‖ xn − yn ‖= lim
n→∞

‖ xn − un ‖= 0. (3.11)

Hence by xn → p, we obtain, un → p. Noticing that

‖ Jxn+1 − Jyn ‖ =‖ Jxn+1 − (αnJxn + βnJTzn + γnJSzn) ‖
≥ βn ‖ Jxn+1 − JTzn ‖ +γn ‖ Jxn+1 − JSzn ‖
− αn ‖ Jxn − Jxn+1 ‖,

We have that

‖ Jxn+1 − JSzn ‖≤
1

γn
(‖ Jxn+1 − Jyn ‖ +αn ‖ Jxn − Jxn+1 ‖).

Since lim inf
n→∞

γn ≥ 0, it follows that

lim
n→∞

‖ Jxn+1 − JSzn ‖= 0.

Since J−1 is also uniformly norm-to-norm continuous on bounded sets, we
obtain

lim
n→∞

‖ xn+1 − Szn ‖= 0. (3.12)

It follows that

‖ xn − Sxn ‖≤‖ xn − xn+1 ‖ + ‖ xn+1 − Szn ‖ + ‖ Szn − Sxn ‖ .

Since S is uniformly continuous. It follows from (3.10)-(3.12) that lim
n→∞

‖
Sxn − xn ‖= 0. Then, in a similarly way, from (3.10)-(3.12) one can obtain
lim
n→∞

‖ Txn−xn ‖= 0. From the closeness of S and T , one has p ∈ F (T )∩F (S).

Next, we show p ∈ EP (f). Let u ∈ EP (f), from (3.4), we have

φ(u, un) ≤ αnφ(u, xn) + βnφ(u, Tzn) + γnφ(u, Szn)

≤ αnφ(u, xn) + (1− αn)φ(u, zn).
(3.13)
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And since

φ(u, zn) = φ(u, J−1(ξnJxn + ηnJTxn + δnJSxn))

=‖ u ‖2 −2〈u, ξnJxn + ηnJTxn + δnJSxn)〉
+ ‖ ξnJxn + ηnJTxn + δnJSxn) ‖2

≤‖ u ‖2 −2ξn〈u, Jxn〉 − 2ηn〈u, JTxn〉 − 2δn〈u, JSxn〉
+ ξn ‖ xn ‖2 +ηn ‖ Txn ‖2 +δn ‖ Sxn ‖2

≤ ξnφ(u, xn) + ηnφ(u, Txn) + δnφ(u, Sxn)

≤ φ(u, xn)

(3.14)

So, from (3.13) and (3.14), we have

φ(u, un) ≤ φ(u, xn).

Since

φ(u, xn)− φ(u, un)

=‖ xn ‖2 − ‖ un ‖2 −2〈u, Jxn − Jun〉
≤|‖ xn ‖2 − ‖ un ‖2| −2〈u, Jxn − Jun〉
≤|‖ xn ‖ − ‖ un ‖| (‖ xn ‖ + ‖ un ‖) + 2 ‖ u ‖‖ Jxn − Jun ‖
≤‖ xn − un ‖ (‖ xn ‖ + ‖ un ‖) + 2 ‖ u ‖‖ Jxn − Jun ‖

From (3.11) we have

lim
n→∞

(φ(u, xn)− φ(u, un)) = 0. (3.15)

From un = Trnyn, (3.4), Lemma 2.7 , we have

φ(un, yn) = φ(Trnyn, yn)

≤ φ(u, yn)− φ(u, Trnyn)

≤ αnφ(u, xn) + (1− αn)φ(u, zn)− φ(u, Trnyn)

≤ αnφ(u, xn) + (1− αn)φ(u, xn)− φ(u, Trnyn)

= φ(u, xn)− φ(u, un)

So, we have

lim
n→∞

φ(un, yn) = 0

Since E is uniformly convex and smooth, we have from Lemma 2.3 that

lim
n→∞

‖ un − yn ‖= 0. (3.16)

Since J is uniformly norm-to-norm continuous on bounded sets we have

lim
n→∞

‖ Jun − Jyn ‖= 0.
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From the assumption rn ≥ a, one sees

lim
n→∞

‖ Jun − Jyn ‖
rn

= 0. (3.17)

From un = Trnyn, we obtain

f(un, y) +
1

rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C.

from (A2), we have

‖ y − un ‖
‖ Jun − Jyn ‖

rn
≥ 1

rn
〈y − un, Jun − Jyn〉

≥ −f(un, y) ≥ f(y, un), ∀y ∈ C.

Letting n→∞, we have from (3.11), un → p and (A4) that

f(y, p) ≤ 0, ∀y ∈ C.

For t with 0 < t ≤ 1 and y ∈ C, let yt = ty+ (1− t)p. Since y ∈ C and p ∈ C,
we have yt ∈ C and hence from (A3), f(yt, p) ≤ 0. So, from (A1) we have

0 = f(yt, yt)

≤ tf(yt, y) + (1− t)f(yt, p)

≤ tf(yt, y).

Dividing by t, we have

f(yt, y) ≥ 0,∀y ∈ C.

Letting t→ 0, from (A3) we have

f(p, y) ≥ 0,∀y ∈ C.

So, p ∈ EP (f). This shows that p ∈ F .

STEP 4. We show that p = ΠFx0. From xn = ΠQnx0, one sees

〈xn − z, Jx0 − Jxn〉 ≥ 0, ∀z ∈ Qn.

Since F ⊂ Qn for each n ≥ 1, we have

〈xn − z, Jx0 − Jxn〉 ≥ 0,∀z ∈ F.

By taking the limit, one has

〈p− z, Jx0 − Jp〉 ≥ 0,∀z ∈ Qn.

In view of Lemma 2.2, we obtain p = ΠFx0. This completes the proof. �
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As some corollaries of Theorem3.1, we have the following results immedi-
ately.

Corollary 3.1. ([11]) Let E be a uniformly smooth and uniformly convex
Banach space, and let C be a nonempty closed convex subset of E. Let f :
C × C → R be a functional , satisfying (A1)-(A4) and let S, T be two closed
quasi-φ-nonexpansive mappings from C into itself such that F = F (S)∩F (T )∩
EP (f) 6= ∅. Let {xn} be a sequence generated by

∀x0 ∈ C,
yn = J−1(αnJxn + βnJTxn + γnJSxn),
un ∈ C, s.t., f(un, y) + 1

rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C

Cn = {v ∈ C : φ(v, un) ≤ αnφ(v, xn) + (1− αn)φ(v, xn)}
Qn = {v ∈ C : 〈xn − v, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0, n = 0, 1, . . .

Where J is the duality mapping on E, {rn} ⊂ [a,∞) for some a > 0, {αn},
{βn}, {γn} are sequences in [0, 1] satisfying the following restrictions:

(i) αn + βn + γn = 1;
(ii) lim inf

n→∞
βn > 0, lim inf

n→∞
γn > 0.

Then, {xn} converges strongly to ΠFx0, where ΠF is the generalized projection
of E onto F .

Proof. In Theorem 3.1, let ξn = 1, then zn = xn and yn = J−1(αnJxn +
βnJTxn + γnJSxn). The set Cn reduced to the set Cn in [11] and since our
proof is different from [11], so the condition lim inf

n→∞
αnβn > 0, lim inf

n→∞
αnγn > 0

can be replaced by our condition (ii). Our Qn can be replaced by C, without
affecting the main result. �

Corollary 3.2. Let E be a uniformly smooth and uniformly convex Banach
space, and let C be a nonempty closed convex subset of E. Let f : C×C → R be
a functional , satisfying (A1)-(A4) and let S be a closed quasi-φ-nonexpansive
mapping from C into itself such that F = F (S) ∩ EP (f) 6= ∅. Let {xn} be a
sequence generated by

∀x0 ∈ C,
yn = J−1(αnJxn + (1− αn)JSxn,
un ∈ C, s.t., f(un, y) + 1

rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C

Cn = {v ∈ C : φ(v, un) ≤ φ(v, xn)}
Qn = {v ∈ C : 〈xn − v, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0, n = 0, 1, . . .

Where J is the duality mapping on E, {rn} ⊂ [a,∞) for some a > 0, {αn} are
sequences in [0, 1] satisfying the restriction: lim sup

n→∞
αn < 1. If S is uniformly
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continuous,Then {xn} converges strongly to ΠFx0, where ΠF is the generalized
projection of E onto F .

Proof. In Corollary 3.1, let T = I, the identity mapping, then combining with
Theorem 3.1, we have the desired result. �

Corollary 3.3. Let E be a uniformly smooth and uniformly convex Banach
space, and let C be a nonempty closed convex subset of E. Let f : C×C → R be
a functional , satisfying (A1)-(A4) and let S be a closed quasi-φ-nonexpansive
mappings from C into itself such that F = F (S) ∩ EP (f) 6= ∅. Let {xn} be a
sequence generated by

∀x0 ∈ C,
zn = J−1(ξnJxn + (1− ξn)JSxn),
yn = J−1(αnJxn + (1− αn)JSzn),
un ∈ C, s.t., f(un, y) + 1

rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C

Cn = {v ∈ C : φ(v, un) ≤ αnφ(v, xn) + (1− αn)φ(v, zn)},
Qn = {v ∈ C : 〈xn − v, Jx− Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0, n = 0, 1, . . .

Where J is the duality mapping on E, {rn} ⊂ [a,∞) for some a > 0, {αn}
are sequences in [0, 1] satisfying the following restrictions:

(i) lim
n→∞

ξn = 1;

(ii) lim sup
n→∞

αn < 1.

If S is uniformly continuous.Then, {xn} converges strongly to ΠFx0, where
ΠF is the generalized projection of E onto F .

Proof. In Theorem3.1, let T = S, then by Theorem 3.1, we have the desired
result. �

Remark 3.1. Noticing that, Corollary 3.2, 3.3 generalize and extend the
Theorem 3.1 of [11] and Theorem 3.2 of [12] respectively. We go from relatively
nonexpansive mappings to more general quasi-φ-nonexpansive mapping; that
is we relax the strong restriction: F̂ (S) = F (S).

Remark 3.2. In Theorem 3.1, if we set f(x, y) = 0, ∀x, y ∈ C, and rn = 1,
∀n ≥ 1, then our Theorem offers some new conditions for the corresponding
problems discussed in [8], [9] and [10].

Remark 3.3. In Theorem 3.1, if E is a Hilbert space, then φ(x, y) =‖ x −
y ‖2. All of the above results are still true which are also generalizations and
extensions of corresponding results.

Theorem 3.2. Let E be a uniformly convex and uniformly smooth Banach
space, let C be a nonempty closed convex subset of E. Let f : C × C →
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R be a functional satisfying (A1)-(A4) and Let Si : C → C be a closed
and quasi-φ-nonexpansive mapping for each i ∈ {1, 2, . . . , N} such that F =
∩Ni=1F (Si) ∩ EP (f) 6= ∅. Let {xn} be a sequence generated by

∀x0 ∈ C,

zn = J−1(βn,0Jxn +
N∑
i=1

βn,iJSixn),

yn = J−1(αn,0Jxn +
N∑
i=1

αn,iJSizn),

un ∈ C, s.t., f(un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn = {v ∈ C : φ(v, un) ≤ αn,0φ(v, xn) + (1− αn,0)φ(v, zn)},
Qn = {v ∈ C : 〈xn − v, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0, n = 0, 1, . . . ,

(3.18)

where {rn} ⊂ [a,∞), a is a positive real number and J is the duality mapping
on E. {αn,0}, {αn,1}, . . . , {αn,N} are real sequences in [0,1], satisfying the
following restrictions:

(i)
N∑
i=0

αn,i = 1,
N∑
i=0

βn,i = 1;

(ii) lim inf
n→∞

αn,i > 0, ∀i ∈ {1, 2, . . . , N}, lim
n→∞

βn,0 = 1.

If Si is uniformly continuous∀i ∈ {1, 2, . . . , N}, then {xn} converges strongly
to ΠFx0, where ΠF is the generalized projection of E onto F .

Proof. As in the proof of Theorem 3.1, we divide the proof of this theorem to
4 steps as following.

STEP 1. Cn ∩Qn is closed and convex for every n ∈ N∪ {0}. Similarly with
the step1 of Theorem3.1, we obtain the desired result.

STEP 2. We show that F ⊂ Cn ∩Qn.
Similarly with the step 2 of Theorem 3.1, we only need to show thatF ⊂ Cn.

Let u ∈ F . From un = Trnyn for all n ∈ N ∪ {0}, By Lemma 2.6(4), we have
that Trn is quasi-φ-nonexpansive. Since Si is also quasi-φ-nonexpansive, by
the definition of quasi-φ-nonexpansive and the convexity of ‖ · ‖2 we have

φ(u, un) =φ(u, Trnyn)

≤φ(u, yn)

=φ(u, J−1(αn,0Jxn +

N∑
i=1

αn,iJSizn))

= ‖ u ‖2 −2〈u, αn,0Jxn +

N∑
i=1

αn,iJSizn〉
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+ ‖ αn,0Jxn +
N∑
i=1

αn,iJSizn ‖2

≤ ‖ u ‖2 −2αn,0〈u, Jxn〉 − 2
N∑
i=1

αn,i〈u, JSizn〉

+ αn,0 ‖ xn ‖2 +

N∑
i=1

αn,i ‖ Sizn ‖2

≤αn,0φ(u, xn) +

N∑
i=1

αn,iφ(u, Sizn)

≤αn,0φ(u, xn) + (1− αn,0)φ(u, zn).

(3.19)

Hence, we have u ∈ Cn. This implies that

F ⊂ Cn, ∀n ∈ N ∪ {0}.

Therefore we have F ⊂ Cn ∩ Qn,∀n ∈ N ∪ {0}. This means that {xn} is
well-defined. Similarly with the step 2 of Theorem 3.1 {xn} and {Sixn} are
bounded and the limit of {φ(xn, x0)} exists. From xn = ΠQnx0 and Lemma
2.1, we also have

φ(xn+1, xn) =φ(xn+1,ΠQnx0)

≤φ(xn+1, x0)− φ(ΠQnx0, x0)

=φ(xn+1, x0)− φ(xn, x0)

(3.20)

∀n ∈ N ∪ {0}. This means that

lim
n→∞

φ(xn+1, xn) = 0. (3.21)

It follows from Lemma 2.3 that xn − xm → 0 as n → ∞. Hence {xn} is a
Cauchy sequence. Since E is a Banach space and C is closed and convex, one
can assume that xn → p as n→∞.

STEP 3. We show that p ∈ F .
Firstly, p ∈ ∩Ni=1F (Si). From xn+1 = ΠCn∩Qnx0 ∈ Cn and Trn is quasi-φ-

nonexpansive, we have

φ(xn+1, un) = φ(xn+1, Trnyn) ≤ φ(xn+1, yn)

≤ αn,0φ(xn+1, xn) + (1− αn,0)φ(xn+1, zn), ∀n ∈ N ∪ {0}.
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Then by the convexity of ‖ · ‖2. We obtain

φ(xn+1, zn) = φ(xn+1, J
−1(βn,0Jxn +

N∑
i=1

βn,iJSixn))

=‖ xn+1 ‖2 −2〈xn+1, βn,0Jxn +
N∑
i=1

βn,iJSixn〉

+ ‖ βn,0Jxn +
N∑
i=1

βn,iJSixn ‖2

≤‖ xn+1 ‖2 −2βn,0〈xn+1, Jxn〉 − 2
N∑
i=1

βn,i〈xn+1, JSixn〉

+ βn,0 ‖ xn ‖2 +

N∑
i=1

βn,i ‖ Sixn ‖2

= βn,0φ(xn+1, xn) +

N∑
i=1

βn,iφ(xn+1, Sixn).

Since lim
n→∞

βn,0 = 1 and (3.21), we have

lim
n→∞

φ(xn+1, zn) = 0. (3.22)

So, we have

lim
n→∞

φ(xn+1, yn) = lim
n→∞

φ(xn+1, un) = 0. (3.23)

From (3.21)-(3.23), by Lemma 2.3, we obtain

lim
n→∞

‖ xn+1 − xn ‖ = lim
n→∞

‖ xn+1 − zn ‖= lim
n→∞

‖ xn+1 − yn ‖

= lim
n→∞

‖ xn+1 − un ‖= 0.
(3.24)

Since J is uniformly norm-to-norm continuous on bounded sets we have

lim
n→∞

‖ Jxn+1 − Jxn ‖= lim
n→∞

‖ Jxn+1 − Jyn ‖= 0.

And since

‖ xn − zn ‖≤‖ xn+1 − xn ‖ + ‖ xn+1 − zn ‖,

‖ xn − yn ‖≤‖ xn+1 − xn ‖ + ‖ xn+1 − yn ‖,

‖ xn − un ‖≤‖ xn+1 − xn ‖ + ‖ xn+1 − un ‖ .
It follows from (3.24) that

lim
n→∞

‖ xn − zn ‖= lim
n→∞

‖ xn − yn ‖= lim
n→∞

‖ xn − un ‖= 0. (3.25)
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Hence by xn → p, we obtain, un → p. Noticing that

‖ Jxn+1 − Jyn ‖ =‖ Jxn+1 − (αn,0Jxn +
N∑
i=1

αn,iJSizn) ‖

=‖ αn,0(Jxn+1 − Jxn) +
N∑
i=1

αn,i(Jxn+1 − JSizn) ‖

≥
N∑
i=1

αn,i ‖ Jxn+1 − JSizn ‖ −αn,0 ‖ Jxn − Jxn+1 ‖ .

We have that

‖ Jxn+1 − JSizn ‖≤
1

αn,i
(‖ Jxn − Jyn ‖ +αn,0 ‖ Jxn − Jxn+1 ‖).

Since lim inf
n→∞

αn,i > 0, it follows that

lim
n→∞

‖ Jxn+1 − JSizn ‖= 0, ∀i ∈ {1, 2, . . . , N}.

Since J−1 is also uniformly norm-to-norm continuous on bounded sets, we
obtain

lim
n→∞

‖ xn+1 − Sizn ‖= 0, ∀i ∈ {1, 2, . . . , N}. (3.26)

It follows that

‖ xn − Sixn ‖ ≤‖ xn − xn+1 ‖ + ‖ xn+1 − Sizn ‖
+ ‖ Sizn − Sixn ‖, ∀i ∈ {1, 2, . . . , N}.

Since Si is uniformly continuous. It follows from (3.24)-(3.26) that lim
n→∞

‖
Sixn − xn ‖= 0. From the closeness of Si, one has p ∈ ∩Ni=1F (Si).

Next, we show p ∈ EP (f). Putting un = Trnyn, let u ∈ EP (f), from (3.19),
we have

φ(u, un) ≤ αn,0φ(u, xn) +
N∑
i=1

αn,i)φ(u, Sizn)

≤ αn,0φ(u, xn) + (1− αn,0)φ(u, zn).

(3.27)
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And since

φ(u, zn) =φ(u, J−1(βn,0Jxn +
N∑
i=1

βn,iJSixn))

= ‖ u ‖2 −2〈u, βn,0Jxn +
N∑
i=1

βn,iJSixn〉

+ ‖ βn,0Jxn +

N∑
i=1

βn,iJSixn ‖2

≤ ‖ u ‖2 −2βn,0〈u, Jxn〉 − 2

N∑
i=1

βn,i〈u, JSixn〉

+ βn,0 ‖ xn ‖2 +
N∑
i=1

βn,i ‖ Sixn ‖2

=βn,0φ(u, xn) +
N∑
i=1

βn,iφ(u, Sixn)

≤φ(u, xn)

(3.28)

So, from (3.27) and (3.28), we have

φ(u, un) ≤ φ(u, xn).

Since

φ(u, xn)− φ(u, un)

=‖ xn ‖2 − ‖ un ‖2 −2〈u, Jxn − Jun〉
≤|‖ xn ‖2 − ‖ un ‖2| −2〈u, Jxn − Jun〉
≤|‖ xn ‖ − ‖ un ‖| (‖ xn ‖ + ‖ un ‖) + 2 ‖ u ‖‖ Jxn − Jun ‖
≤‖ xn − un ‖ (‖ xn ‖ + ‖ un ‖) + 2 ‖ u ‖‖ Jxn − Jun ‖ .

From (3.25) we have

lim
n→∞

(φ(u, xn)− φ(u, un)) = 0. (3.29)

From un = Trnyn, Lemma 2.7 , we have

φ(un, yn) = φ(Trnyn, yn)

≤ φ(u, yn)− φ(u, Trnyn)

≤ αnφ(u, xn) + (1− αn)φ(u, zn)− φ(u, Trnyn)

≤ αnφ(u, xn) + (1− αn)φ(u, xn)− φ(u, Trnyn)

= φ(u, xn)− φ(u, un).
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So,we have
lim
n→∞

φ(un, yn) = 0.

Since E is uniformly convex and smooth, we have from Lemma 2.3 that

lim
n→∞

‖ un − yn ‖= 0. (3.30)

Then, similarly with the proof of the step 3 of theorem 3.1, we have p ∈ EP (f).
This shows that p ∈ F .

STEP 4. We show that p = ΠFx0. From xn = ΠQnx0, one sees

〈xn − z, Jx0 − Jxn〉 ≥ 0, ∀z ∈ Qn.

Since F ⊂ Qn for each n ≥ 1, we have

〈xn − z, Jx0 − Jxn〉 ≥ 0, ∀z ∈ F.
By taking the limit, one has

〈p− z, Jx0 − Jp〉 ≥ 0, ∀z ∈ Qn.

In view of Lemma 2.2, we obtain p = ΠFx0. This completes the proof. �

For a special case that N = 2, we can obtain the following results on a pair
of quasi-φ-nonexpansive mappings immediately from Theorem 3.2.

Corollary 3.4. Let E be a uniformly smooth and uniformly convex Banach
space, and let C be a nonempty closed convex subset of E. Let f : C × C →
R be a functional, satisfying (A1)-(A4) and let S, T be two closed quasi-φ-
nonexpansive mappings from C into itself such that F = F (S) ∩ F (T ) ∩
EP (f) 6= ∅. Let {xn} be a sequence generated by

∀x0 ∈ C,
zn = J−1(ξnJxn + ηnJTxn + δnJSxn),
yn = J−1(αnJxn + βnJTzn + γnJSzn),
un ∈ C, s.t., f(un, y) + 1

rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn = {v ∈ C : φ(v, un) ≤ αnφ(v, xn) + (1− αn)φ(v, zn)},
Qn = {v ∈ C : 〈xn − v, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0, n = 0, 1, . . . .

Where J is the duality mapping on E, {rn} ⊂ [a,∞) for some a > 0, {αn},
{βn}, {γn}, {ξn}, {ηn} and {δn} are sequences in [0, 1] satisfying the following
restrictions:

(i) αn + βn + γn = 1;
(ii) ξn + ηn + δn = 1;
(iii) lim

n→∞
ξn = 1, lim inf

n→∞
βn > 0, lim inf

n→∞
γn > 0.

If S, T is uniformly continuous, Then, {xn} converges strongly to ΠFx0, where
ΠF is the generalized projection of E onto F .
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Remark 3.4. If we set βn,0 = 1 in Theorem 3.2 and don’t consider the
framework of spaces, then our result generalizes and extends Theorem 2.1 of
[11]. We give new conditions which are different from [11] to get the desired
result.
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