
Nonlinear Functional Analysis and Applications
Vol. 16, No. 3 (2011), pp. 387-399

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm
Copyright c© 2011 Kyungnam University Press

COMMON FIXED POINT THEOREMS IN GENERALIZED
ORDERED CONE METRIC SPACES

Shenghua Wang1 and Moon Sook Park2

1School of Mathematics and Physics
North China Electric Power University, Baoding 071003, China

e-mail: sheng-huawang@hotmail.com

1Department of Mathematics and the RINS
Gyeongsang National University, Jinju 660-701, Korea

e-mail: sheng-huawang@hotmail.com

2Department of Mathematics Education
Gyeongsang National University, Jinju 660-701, Korea

Abstract. In this paper, we introduce the concept of generalized cone metric space and

give some propositions on the concept. Then we prove several common fixed point theorems

for a pair of mappings in generalized ordered cone metric spaces.

1. Introduction

Let E be a Banach space and P a subset of E. P is called a cone if and
only if

(a) P is closed, nonempty and P 6= {0};
(b) a, b ∈ R with a, b,≥ 0, x, y ∈ P =⇒ ax+ by ∈ P ;

(c) P ∩ (−P ) = {0}.
For any cone P , a partial order � with respect to P is defined by x � y if

and only if y− x ∈ P . While x� y will stand for y− x ∈ int P , where int P
denotes the interior of P . A cone P is called normal if there exists a number
K > 0 such that

0 � x � y =⇒ ‖x‖ ≤ K‖y‖
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for all x, y ∈ E. The least positive number K satisfying the above condition
is called the normal constant of P .

In 2007, Huang and Zhang [5] introduced a concept called cone metric space:

Definition 1.1 ([5]). Let X be a nonempty set. Suppose that the mapping
d : X ×X → E satisfies:

(a1) 0 � d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(a2) d(x, y) = d(y, x) for all x, y ∈ X;
(a3) d(x, y) � d(x, z) + d(y, z) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

It is easy to see that a cone metric is a general metric space if E = R and
P = R+. Hence, the concept of a cone metric space is more general than
the one of a metric space. Since the concept of cone metric was introduced
by Huang and Zhang [5], many fixed point theorems have been proved for
mappings on normal or non-normal cone metric spaces (see, for example, [2-7]
and references contained therein). Recently, some existence theorems of fixed
points in ordered cone metric space were investigated by many authors (see,
for example, [8-10]). In [3], Altun and Durmaz gave the following theorem:

Theorem 1.2 ([3]). Let (X,v) be a partially ordered set and let d be a cone
metric on X (defined over a normal cone P with the normal constant K) such
that (X, d) is a complete cone metric space. Let f : X → X be a continuous
and nondecreasing mapping with respect to v. Suppose that the following
conditions hold:

(a) there exists k ∈ (0, 1) such that d(fx, fy) � kd(x, y) for all x, y ∈ X
with y v x;

(b) there exists x0 ∈ X such that x0 v fx0.

Then f has a fixed point x∗ ∈ X.

Let (X,v) be a partially ordered set and f, g : X → X be two self-maps.
The pair (f, g) is said to be weakly increasing w.r.t. v if fx v gfx and
gx v fgx for all x ∈ X. f is called g-nondecreasing if for all x, y ∈ X with
gx v gy, then fx v fy. f and g are called weakly compatible if for all x ∈ X
with fx = gx, then fgx = gfx. A sequence {xn} in X is called nondecreasing
if x1 v x2 v · · · v xn v · · · . In [4], Altun, Damnjanović and Djorić proved
the following theorem:

Theorem 1.3 ([4]). Let (X,v) be a partially ordered set and let d be a cone
metric on X (defined over a cone P with int P 6= ∅) such that (X, d) is a
complete cone metric space. Let f, g : X → X be self-mappings such that
(f, g) is a weakly increasing pair with respect to v. Suppose that the following
conditions hold:
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(a) there exist α, β, γ ≥ 0 such that α+ 2β + 2γ < 1 and

d(fx, gy) � αd(x, y) + β[d(x, fx) + d(y, gy)] + γ[d(x, gy) + d(y, fx)]

for all comparable x, y ∈ X;

(b) f or g is continuous or

(b′) if a nondecreasing sequence {xn} converges to x ∈ X, then xn v x for
all n.

Then f and g have a common fixed point x∗ ∈ X.

Very recently, Kadelburg, Pavlović and Radenović [6] extended Theorem
1.3 and obtained the following result:

Theorem 1.4 ([6]). Let (X,v, d) be an ordered complete cone metric space.
Let (f, g) be weakly increasing pair of self-mappings on X with respect to v.
Suppose that the following conditions hold:

(a) there exist p, q, r, s, t ≥ 0 satisfying p + q + r + s + t < 1 and q = r or
s = t, such that

d(fx, gy) � pd(x, y) + qd(x, fx) + rd(y, gy) + sd(x, gy) + td(y, fx)

for all comparable x, y ∈ X;

(b) f or g is continuous or

(b′) if a nondecreasing sequence {xn} converges to x ∈ X, then xn v x for
all n ≥ 1.

Then f and g have a common fixed point x∗ ∈ X.

In 2006, Mustafa and Sims [10] introduced a new concept called G-metric
space which is a generalization of ordinary metric space.

Definition 1.5 ([10]). Let X be a nonempty set and G : X3 → [0,∞) be a
function. Then G is called a G-metric if for all x, y, z, a ∈ X, the following
hold:

(g1) 0 � G(x, y, z) = 0 if and only if x = y = z;

(g2) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (: symmetry in all three
variables);

(g3) G(x, y, z) � G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X (: rectangle
inequality).

The pair (X,G) is called a generalized metric space.

Some existence theorems of fixed points in G-metric space were obtained
(see, for example, [11-14]).
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In this paper, we introduce a concept called generalized cone metric space
that is a generalization of G-metric space of Mustafa and Sims [10], and prove
some fixed point theorems in ordered generalized cone metric space.

2. Preliminaries

Now, in this section, we give some definitions and lemmas for the main
results in this paper.

Definition 2.1. Let X be a nonempty set and P be a cone on a real Banach
space E. Suppose that the mapping D : X×X×X → P satisfies the following
conditions:

(d1) 0 � D(x, y, z) = 0 if and only if x = y = z;

(d2) D(x, y, z) = D(x, z, y) = D(y, z, x) = · · · (: symmetry in all three
variables);

(d3) D(x, y, z) � D(x, a, a) + D(a, y, z) for all x, y, z, a ∈ X (: rectangle
inequality).

Then D is called a generalized cone metric and the pair (X,D) is called a
generalized cone metric space.

Example 2.2. Let E = R2, P = {(x, y) ∈ E : x, y ≥ 0}, X = [0, 1] and
D(x, y, z) = (max{|x − y|, |y − z|, |x − z|}, 0). Then (X,D) is a generalized
metric space.

Example 2.3. Let E = R2, P = {(x, y) ∈ E : x, y ≥ 0}, X = [0, 1] and define
the function D : X ×X ×X → E by

D(x, y, z) = (0,max{x, y, z}), ∀x, y, z ∈ X,
where

max{x, y, z} =

{
0, if x = y = z,
max{x, y, z} else.

It is easy to check that D satisfies (d1)-(d3) and hence (X,D) is a generalized
cone metric space.

Example 2.4. Let (X, d) be an ordinary cone metric space. Then (X,D)is a
generalized cone metric space, where

D(x, y, z) = d(x, y) + d(x, z) + d(y, z), ∀x, y, z ∈ X.

Example 2.4 shows that an ordinary cone metric space can define a gen-
eralized cone metric space. Conversely, an ordinary cone metric also can be
obtained by a generalized cone metric. In fact, if (X,D) is a generalized cone
metric space, then an ordinary cone metric (X, d) can be defined by

d(x, y) = D(x, y, y) +D(y, x, x), ∀x, y ∈ X.
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It is easy to check that d satisfies the definition of an ordinary cone metric.

Proposition 2.5. Let (X,D) be a generalized cone metric. For all x, y, z, a ∈
X, the following hold:

(p1) D(x, y, y) � 2D(y, x, x);

(p2) D(x, y, z) � D(x, a, a) +D(y, a, a) +D(z, a, a);

(p3) D(x, y, z) � 2[D(x, y, y) +D(x, z, z)];

Proof. It follows from (d2) and (d3) that

D(x, y, y) = D(y, x, y) � D(y, x, x) +D(x, x, y) = 2D(x, x, y).

Hence (p1) holds. For (p2), by (d2) and (d3), we have

D(x, y, z) � D(x, a, a) +D(y, a, z)

� D(x, a, a) +D(y, a, a) +D(a, a, z)

= D(x, a, a) +D(y, a, a) +D(z, a, a).

For (p3), By (d3) and (p1), we get

D(x, y, z) � D(x, y, y) +D(z, y, y)

� D(x, y, y) +D(z, x, x) +D(x, y, y)

� 2[D(x, y, y) +D(x, z, z)].

�

Definition 2.6. Let (X,D) be a generalized cone metric space. Let {xn} be
a sequence in X and x ∈ X. If for every c ∈ E with 0 � c, there exists a
positive integer N such that, for all m,n > N , D(x, xn, xm) � c, then {xn}
is said to be convergent to x. Write xn → x or limn→∞ xn = x.

Lemma 2.7. Let (X,D) be a generalized cone metric space and P be a normal
cone with normal constant K. Let {xn} be a sequence in X and x ∈ X. Then
{xn} converges to x if and only if D(x, xn, xn) → 0 or D(x, x, xn) → 0 as
n→∞.

Proof. Suppose that {xn} converges to x. For any real number ε > 0, choose
c ∈ E with 0 � c and K‖c‖ < ε. Since xn → x as n → ∞, there exists a
positive integer N such that, for all n > N , D(x, xn, xn) � c, which implies
that D(x, xn, xn) → 0 as n → ∞. It follows from (p1) that D(x, x, xn) �
2D(x, xn, xn). Hence D(x, x, xn)→ 0 as n→∞.

Conversely, suppose that D(x, xn, xn) → 0 as n → ∞. For all c ∈ E with
0 � c, there exists r > 0 such that, for any y with ‖y‖ < r, one has y � 1

2c.
Since D(x, xn, xn)→ 0 as n→∞, there exists a positive integer N such that

‖D(x, xn, xn)‖ < r
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for all n > N , which implies

D(x, xn, xn)� 1

2
c

for all n > N . It follows from (p3) that

D(x, xn, xm) � 2[D(x, xn, xn) +D(x, xm, xm)].

Hence, for all n,m > N , one has D(x, xn, xm) � c. This shows that {xn}
converges to x. Noting that, by (p1), we have

D(x, xn, xn) � 2D(x, x, xn)

and hence we can conclude that {xn} converges to x from D(x, x, xn)→ 0 as
n→∞. �

Lemma 2.8. Let (X,D) be a generalized cone metric space, P is a normal
cone with normal constant K. Let {xn} be a sequence in X. If {xn} is
convergent, then the limit point of {xn} is unique.

Proof. Assume that there exist x ∈ E and y ∈ E such that xn → x and
xn → y. We prove that x = y. From Lemma 2.7, for any c ∈ E with 0 � c,
there is a positive integer N such that, for all n ≥ N , D(x, xn, xn) � c and
D(xn, y, y)� c. It follows (d3) of Definition 2.1 that

D(x, y, y) ≤ D(x, xn, xn) +D(xn, y, y)� 2c.

Since c is arbitrary, one has D(x, y, y) = 0. This shows that x = y. �

Definition 2.9. Let (X,D) be a generalized cone metric space and {xn} be a
sequence in X. For any c ∈ E with 0� c, if there exists a positive integer N
such that, for all m,n, l > N , D(xm, xn, xl)� c, then {xn} is called a Cauchy
sequence in X.

Definition 2.10. Let (X,D) be a generalized cone metric space. If every
Cauchy sequence in X is convergent, then (X,D) is called a complete gener-
alized cone metric space.

Lemma 2.11. Let (X,D) be a generalized cone metric space and P be a cone
with non-empty interior. Let {xn} be a sequence in X. Then {xn} is a Cauchy
sequence if and only if D(xm, xn, xl)→ 0 as m,n, l→∞.

Proof. The necessity is obvious by the Definition 2.9. Now, we prove the
sufficiency. Suppose that 0 � c is arbitrary. Since c ∈ int P , there exists a
neighborhood of 0,

Nδ(0) = {y ∈ E : ‖y‖ < δ}, δ > 0,

such that c + Nδ(0) ⊆ int P . Since D(xm, xn, xl) → 0 as m,n, l → ∞, there
exists a natural number N such that

‖ −D(xm, xn, xl)‖ < δ.
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Then −D(xm, xn, xl) ∈ Nδ(0) for all m,n, l > N . Hence c −D(xm, xn, xl) ∈
c+Nδ(0) ⊆ int P . Thus we have

D(xm, xn, xl)� c, ∀ m,n, l > N.

This shows that {xn} is a Cauchy sequence. �

3. Main results

In this section, we denote the set of all positive integers by N and N0 =
N ∪ {0}. The following are the main results of this paper.

Theorem 3.1. Let (X,v, D) be an ordered complete generalized and normal
cone metric space with a cone P with non-empty interior. Let (S, T ) be a
weakly increasing pair of self-mappings on X with respect to v. Suppose that
there exist a, b, c, d, e ≥ 0 with a+ b+ c+ d+ e < 1

4 such that

D(Sx, Ty, Ty) � aD(x, y, y) + bD(x, Sx, Sx) + cD(y, Ty, Ty)
+dD(x, Ty, Ty) + eD(y, Sx, Sx)

(3.1)

for all comparable x, y ∈ X. If S or T is continuous, then S and T have a
common fixed point in X.

Proof. Let x0 ∈ X be an arbitrary point. Define a sequence {xn} by x2n+1 =
Sx2n and x2n+2 = Tx2n+1 for all n ∈ N0. Using that the pair of mappings
(S, T ) is weakly increasing, it can be easily shown that the sequence {xn} is
nondecreasing with respect to v, i.e., x0 v x1 v · · · v xn v xn+1 v · · · . In
particular, x2n and x2n+1 are comparable and so, if we apply (d3) and (3.1),
then we obtain

D(x2n+1, x2n+2, x2n+2)
= D(Sx2n, Tx2n+1, Tx2n+1)
� aD(x2n, x2n+1, x2n+1) + bD(x2n, Sx2n, Sx2n)

+cD(x2n+1, Tx2n+1, Tx2n+1)
+dD(x2n, Tx2n+1, Tx2n+1) + eD(x2n+1, Sx2n, Sx2n)

= aD(x2n, x2n+1, x2n+1) + bD(x2n, x2n+1, x2n+1)
+cD(x2n+1, x2n+2, x2n+2)
+dD(x2n, x2n+2, x2n+2) + eD(x2n+1, x2n+1, x2n+1)

� aD(x2n, x2n+1, x2n+1) + bD(x2n, x2n+1, x2n+1)
+cD(x2n+1, x2n+2, x2n+2)
+d[D(x2n, x2n+1, x2n+1) +D(x2n+1, x2n+2, x2n+2)].

This shows

(1− c− d)D(x2n+1, x2n+2, x2n+2) � (a+ b+ d)D(x2n, x2n+1, x2n+1),
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that is,,

D(x2n+1, x2n+2, x2n+2) �
a+ b+ d

1− (c+ d)
D(x2n, x2n+1, x2n+1). (3.2)

Similarly, by (d3) and Proposition (p1), we have

D(x2n+2, x2n+3, x2n+3)
� 2D(x2n+3, x2n+2, x2n+2)
= 2D(Sx2n+2, Tx2n+1, Tx2n+1)
� 2aD(x2n+2, x2n+1, x2n+1) + 2bD(x2n+2, Sx2n+2, Sx2n+2)

+2cD(x2n+1, Tx2n+1, Tx2n+1)
+2dD(x2n+2, Tx2n+1, Tx2n+1) + 2eD(x2n+1, Sx2n+2, Sx2n+2)

≤ 4aD(x2n+1, x2n+2, x2n+2) + 2bD(x2n+2, x2n+3, x2n+3)b
+2cD(x2n+1, x2n+2, x2n+2) + 2eD(x2n+1, x2n+3, x2n+3)

� 4aD(x2n+1, x2n+2, x2n+2) + 2bD(x2n+2, x2n+3, x2n+3)
+2cD(x2n+1, x2n+2, x2n+2)
+2e[D(x2n+1, x2n+2, x2n+2) +D(x2n+2, x2n+3, x2n+3)].

This shows

D(x2n+2, x2n+3, x2n+3) �
4a+ 2c+ 2e

1− 2(b+ e)
D(x2n+1, x2n+2, x2n+2). (3.3)

Thus it follows from (3.2) and (3.3) that

D(x2n+2, x2n+3, x2n+3) �
4a+ 2c+ 2e

1− 2(b+ e)
· a+ b+ d

1− (c+ d)
D(x2n, x2n+1, x2n+1).

(3.4)
Now, by (3.2), (3.4) and induction, we get

D(x2n+1, x2n+2, x2n+2)

� a+b+d
1−(c+d)D(x2n, x2n+1, x2n+1)

� a+b+d
1−(c+d) ·

4a+2c+2e
1−2(b+e) ·

a+b+d
1−(c+d)D(x2n−2, x2n−1, x2n−1)

� · · · � a+b+d
1−(c+d)

(
4a+2c+2e
1−2(b+e) ·

a+b+d
1−(c+d)

)n
D(x0, x1, x1)

and

D(x2n+2, x2n+3, x2n+3) � 4a+2c+2e
1−2(b+e)D(x2n+1, x2n+2, x2n+2)

� · · · �
(
4a+2c+2e
1−2(b+e) ·

a+b+d
1−(c+d)

)n+1
D(x0, x1, x1).

Let A = 4a+2c+2e
1−2(b+e) and B = a+b+d

1−(c+d) . Since a+ b+ c+ d+ e < 1
4 , one has

4a+ 2b+ 2c+ 4e < 1, a+ b+ c+ 2d < 1.
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Hence AB < 1. Now, for n < m, by (d3), we have

D(x2n+1, x2m+1, x2m+1)
� D(x2n+1, x2n+2, x2n+2) +D(x2n+2, x2m+1, x2m+1)
� D(x2n+1, x2n+2, x2n+2) +D(x2n+2, x2n+3, x2n+3)

+D(x2n+3, x2m+1, x2m+1)
� D(x2n+1, x2n+2, x2n+2) +D(x2n+2, x2n+3, x2n+3)

+D(x2n+3, x2m+1, x2m+1) + · · ·+D(x2m, x2m+1, x2m+1)

�
(
A
∑m−1

i=n (AB)i +
∑m

i=n+1(AB)i
)
D(x0, x1, x1)

�
(
A(AB)n

1−AB + (aB)n+1

1−AB

)
G(x0, x1, x1)

= (1 +B)A(AB)n

1−AB D(x0, x1, x1).

Similarly, we get

D(x2n, x2m+1, x2m+1) � (1 +A)
(AB)n

1−AB
D(x0, x1, x1),

D(x2n, x2m, x2m) � (1 +A)
(AB)n

1−AB
D(x0, x1, x1)

and

D(x2n+1, x2m, x2m) � (1 +B)
A(AB)n

1−AB
D(x0, x1, x1).

Hence, for n < m, one has

D(xn, xm, xm) � max
{

(1 +B)A(AB)n

1−AB , (1 +A) (AB)n

1−AB

}
D(x0, x1, x1)

= λnD(x0, x1, x1),

where λn → 0 as n→∞, which implies

D(xn, xm, xm)→ 0 (m,n→∞). (3.5)

It follows from (d3) that, for any n,m, l ∈ N,

D(xn, xm, xl) � D(xn, xm, xm) +D(xl, xm, xm). (3.6)

Thus, by (3.5) and (3.6), we get

lim
m,n,l→∞

D(xn, xm, xl) = 0,

which implies that {xn} is a Cauchy sequence in X. Since (X,D) is complete,
there exists x∗ ∈ X such that xn → x∗ as n→∞.

Suppose that S is a continuous mapping. then we have that Sx2n → Sx∗

as n → ∞. Since Sx2n = x2n+1 → x∗ as n → ∞, we have Sx∗ = x∗. Now,
since x∗ v x∗, by (3.1), we have

D(Sx∗, Tx∗, Tx∗) � aD(x∗, x∗, x∗) + bD(x∗, Sx∗, Sx∗) + cD(x∗, Tx∗, Tx∗)
+dD(x∗, Tx∗, Tx∗) + eD(x∗, Sx∗, Sx∗).

(3.7)
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Since Sx∗ = x∗, (3.7) implies that

D(x∗, Tx∗, Tx∗) � (c+ d)D(x∗, Tx∗, Tx∗).

Since c + d < 1, it follows that Tx∗ = x∗. Hence x∗ is a common fixed point
of S and T .

The proof is similar when T is a continuous mapping. This completes the
proof. �

Corollary 3.2. Let (X,v, D) be an ordered complete generalized and normal
cone metric space with a cone P with non-empty interior. Let S : X → X
be a self-mapping such that x v Sx for all x ∈ X. Suppose that there exist
a, b, c, d, e ≥ 0 with a+ b+ c+ d+ e < 1

4 such that

D(Smx, Sny, Sny) � aD(x, y, y) + bD(x, Smx, Smx) + cD(y, Sny, Sny)
+dD(x, Snx, Snx) + dD(y, Smy, Smy)

for some m,n ∈ N with m ≤ n and all comparable x, y ∈ X. If S is continuous,
then S has a fixed point in X.

Proof. The desired result follows from Theorem 3.1 by putting Sm = S and
Sn = T . �

Corollary 3.3. Let (X,v, D) be an ordered complete generalized and normal
cone metric space with a cone P with non-empty interior. Let S : X → X
be a self-mapping such that x v Sx for all x ∈ X. Suppose that there exist
a, b, c, d, e ≥ 0 with a+ b+ c+ d+ e < 1

4 such that

D(Sx, Sy, Sy) � aD(x, y, y) + bD(x, Sx, Sx) + cD(y, Sy, Sy)
+dD(x, Sx, Sx) + dD(y, Sy, Sy)

for all comparable x, y ∈ X. If S is continuous, then S has a fixed point in X.

Proof. The desired result follows from Corollary 3.3 by putting m = n = 1. �

Theorem 3.4. Let (X,v, D) be an ordered complete generalized and normal
cone metric space with a cone P with non-empty interior. Let (S, T ) be two
self-mappings on X such that there exists a point x0 ∈ X with Tx0 v Sx0.
Suppose that S and T satisfy

D(Sx, Sy, Sy) � kD(Tx, Ty, Ty) (3.8)

for all x, y ∈ X satisfying Tx v Ty, where k ∈ (0, 1). Assume that the
following conditions hold:

(a) T (X) is closed in X;

(b) S is T -nondecreasing and S(X) ⊂ T (X);

(c) if {Txn} is a nondecreasing sequence and converges to a point Tz, then
Txn v Tz and Tz v TTz.
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Then S and T have a coincidence point. Further, if S and T are weakly
compatible, then they have a common fixed point in X.

Proof. Let x0 ∈ X be an given point. Since S(X) ⊂ T (X), we can construct
a sequence {xn} satisfying Sxn = Txn+1 with the initial point x0. Since
Tx0 v Sx0 = Tx1 and S is T -nondecreasing, we have

Sx0 v Sx1 v · · · v Sxn v Sxn+1 v · · ·
and

Tx1 v Tx2 v · · · v Txn+1 v Txn+2 v · · · .
Now, by (3.8), we obtain

D(Sxn, Sxn+1, Sxn+1) � kD(Txn, Txn+1, Txn+1)
= kD(Sxn−1, Sxn, Sxn)

and so it follows that

D(Sxn, Sxn+1, Sxn+1) � knD(Sx0, Sx1, Sx1),

for all n ≥ 1. For m,n ∈ N with m > n, by (d3), one has

D(Sxn, Sxm, Sxm) � D(Sxn, Sxn+1, Sxn+1) +D(Sxn+1, Sxm, Sxm)
� D(Sxn, Sxn+1, Sxn+1) +D(Sxn+1, Sxn+2, Sxn+2)

+D(Sxn+2, Sxm, Sxm)
� D(Sxn, Sxn+1, Sxn+1) +D(Sxn+1, Sxn+2, Sxn+2)

+ · · ·+D(Sxm−1, Sxm, Sxm)
� (kn + kn+1 + · · ·+ km−1)D(Sx0, Sx1, Sx1)

� kn

1−kD(Sx0, Sx1, Sx1)→ 0 as m→∞.

It follows from (d3) that, for all n,m, l ∈ N,

D(Sxn, Sxm, Sxl) � D(Sxn, Sxm, Sxm) +D(Sxm, Sxm, Sxl)→ 0,

as n,m, l → ∞. This shows that {Sxn} is a Cauchy sequence in X and so is
{Txn}. Since (X,D) is complete and TX is closed, there exists x∗ ∈ X such
that Txn → Tx∗ as n→∞ and, also, Sxn → Tx∗ as n→∞.

Next, we prove that Sx∗ = Tx∗. By (c), we have Txn v Tx∗ and further
from (3.8) we get

D(Sxn, Sx
∗, Sx∗) � kD(Txn, Tx

∗, Tx∗)→ 0 (n→∞).

This shows that Sxn → Sx∗ as n→∞. Hence Sx∗ = Tx∗, that is, the point
x∗ is a coincidence point of two mappings S and T .

Now, suppose that S and T are weakly compatible. Then

STx∗ = TSx∗ = SSx∗ = TTx∗.

By the assumption (c), Tx∗ v TTx∗ and it from (3.8) follows get

D(Sx∗, STx∗, STx∗) � kD(Tx∗, TTx∗, TTx∗) = kD(Sx∗, STx∗, STx∗).



398 Shenghua Wang and Moon Sook Park

This shows that D(Sx∗, STx∗, STx∗) = 0 and hence Sx∗ = STx∗ = SSx∗,
which implies that Sx∗ is a fixed point of S. Since Tx∗ = Sx∗ and SSx∗ =
TTx∗, we have Tx∗ = TTx∗, which implies that Tx∗ is a fixed point of T .
Therefore, Sx∗ = Tx∗ is a common fixed point of S and T . This completes
the proof. �

Example 3.5. Let X = [0, 1] and the order relation v be defined by

x v y ⇐⇒ {(x = y) or (x, y ∈ [0, 1] with x ≤ y)}.
Let E = (−∞,∞), P = [0,∞) and define the mappings S, T : X → X by

S(x) =
1

2
x, T (x) = x, ∀x ∈ X.

Let D : X × X × X → E be a function as defined in Example 2.3. Take
k ∈ (12 , 1). It is easy to check that all the conditions on S and T are satisfied.
Further, x∗ = 0 is a common fixed point of S and T .

Corollary 3.6. Let (X,v, D) be an ordered complete generalized and normal
cone metric space with a cone P with non-empty interior. Let S be a self-
mappings on X such that there exists a point x0 ∈ X with x0 v Sx0. Suppose
that the mapping S satisfies the following:

D(Sx, Sy, Sy) � kD(x, y, y)

for all x, y ∈ X satisfying x v y, where k ∈ (0, 1). Assume that the following
conditions hold:

(a) S is nondecreasing;

(b) if {xn} ⊂ X is a nondecreasing sequence and converges to a point z ∈ X,
then xn v z.

Then S has a fixed point in X.

Proof. The desired result is obtained directly from Theorem 3.4 by setting
T = I, where I is the identity mapping on X. �
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