STRONG CONVERGENCE THEOREMS FOR GENERALIZED EQUILIBRIUM PROBLEMS AND STRICT PSEUDO-CONTRACTIONS

Peichao Duan
College of Science, Civil Aviation University of China, Tianjin 300300, P.R. China
e-mail: pcduancauc@126.com

Abstract

Let $\left\{S_{i}\right\}_{i=1}^{N}$ be N strict pseudo-contractions defined on a closed convex subset C of a real Hilbert space H. Consider the problem of finding a common element of the fixed point set of these mappings and the solution set of generalized equilibrium problems by parallel and cyclic algorithms. In this paper, we propose new iterative schemes for solving this problem and prove these schemes converge strongly by monotone hybrid methods.

1. Introduction

Let H be a real Hilbert Space with the inner product $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$, respectively. Let C be a nonempty closed convex subset of H.

Recall that a mapping $S: C \rightarrow C$ is said to be a κ-strict pseudo-contraction if there exists a constant $\kappa \in[0,1)$ such that

$$
\|S x-S y\|^{2} \leq\|x-y\|^{2}+\kappa\|(I-S) x-(I-S) y\|^{2}, \forall x, y \in C .
$$

Clearly, the class of strict pseudo-contractions strictly includes the class of nonexpansive mappings which are mapping S on C such that

$$
\|S x-S y\| \leq\|x-y\|, \forall x, y \in C .
$$

That is, S is nonexpansive if and only if S is a 0 -strict pseudo-contraction.
In this paper, we use $F(S)$ to denote the fixed point set of S (i.e., $F(S)=$ $\{x \in C: S x=x\}$).

[^0]A nonlinear mapping $A: C \rightarrow H$ is said to be α-inverse-strongly monotone if there exists a constant $\alpha>0$ such that

$$
\langle A x-A y, x-y\rangle \geq \alpha\|A x-A y\|^{2}, \forall x, y \in C .
$$

Recall that the classical variational inequality problem, denoted by $\operatorname{VI}(C, A)$, is to find $u \in C$ such that

$$
\begin{equation*}
\langle A u, v-u\rangle \geq 0, \forall v \in C . \tag{1.1}
\end{equation*}
$$

Given $x \in H$ and $y \in C$, then $y=P_{C} x$ if and only if there holds the relation:

$$
\langle x-y, y-z\rangle \geq 0 \text { for all } z \in C
$$

where P_{C} denotes the metric projection from H onto C. From the above we see that $u \in C$ is a solution to problem (1.1) if and only if u satisfies the following equation:

$$
\begin{equation*}
u=P_{C}(u-\rho A u) \tag{1.2}
\end{equation*}
$$

where $\rho>0$ is a constant. This implies that problem (1.1) and (1.2) are equivalent. This alternative formula is very important from the numerical analysis point of view.

Let $A: C \rightarrow H$ be an α-inverse strongly monotone mapping, F a bifunction from $C \times C$ to \mathbb{R}, where \mathbb{R} is the set of real numbers. We consider the following generalized equilibrium problem.

Find $x \in C$ such that $F(x, y)+\langle A x, y-x\rangle \geq 0, \forall y \in C$.
In this paper, the set of such an $x \in C$ is denoted by $E P(F, A)$.
Next, we give two special cases of problem (1.3).
(i) if $A \equiv 0$, then problem (1.3) is reduced to the following equilibrium problem:

$$
\begin{equation*}
\text { Find } x \in C \text { such that } F(x, y) \geq 0, \forall y \in C \tag{1.4}
\end{equation*}
$$

In this paper, the set of such an $x \in C$ is denoted by $E P(F)$.
(ii) if $F \equiv 0$, then problem (1.3) is reduced to the variational inequality problem (1.1).

Problem (1.3) is very general in the sense that it includes, as special cases, optimization problems, variational inequalities, mini-max problems, Nash equilibrium problem in noncooperative games and others; see, for instance, [2, 4, $5,6]$.

For solving the equilibrium problem, let us assume that the bi-function F satisfies the following conditions:
(A1) $F(x, x)=0$ for all $x \in C$;
(A2) F is monotone, i.e. $F(x, y)+F(y, x) \leq 0$ for any $x, y \in C$;
(A3) for each $x, y, z \in C$, $\lim \sup _{t \rightarrow 0} F(t z+(1-t) x, y) \leq F(x, y)$;
(A4) $F(x, \cdot)$ is convex and lower semicontionuous for each $x \in C$.

Recently, Takahashi and Takahashi [9] considered the problem (1.3) by an iterative method. To be more precise, they proved the following theorem.

Theorem 1.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bi-function from $C \times C$ to \mathbb{R} satisfying (A1)-(A4). Let $A: C \rightarrow H$ be an α-inverse-strongly monotone mapping of C into H and let S be a nonexpansive mapping of C into itself such that $F(S) \cap E P(F, A) \neq \emptyset$. Let $u \in C$ and $x_{1} \in C$ and let $\left\{z_{n}\right\} \subset C$ and $\left\{x_{n}\right\} \subset C$ be sequences generated by

$$
\left\{\begin{array}{l}
F\left(z_{n}, y\right)+\left\langle A x_{n}, y-z_{n}\right\rangle+\frac{1}{\lambda_{n}}\left\langle y-z_{n}, z_{n}-x_{n}\right\rangle \geq 0, \forall y \in C \\
x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) S\left[\alpha_{n} u+\left(1-\alpha_{n}\right) z_{n}\right], \forall n \geq 1
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\} \subset[0,1],\left\{\beta_{n}\right\} \subset[0,1]$, and $\lambda_{n} \in[0,2 \alpha]$, satisfy

$$
\begin{aligned}
& 0<c \leq \beta_{n} \leq d<1, \quad 0<a \leq \lambda_{n} \leq b<2 \alpha \\
& \lim _{n \rightarrow \infty}\left(\lambda_{n}-\lambda_{n+1}\right)=0, \lim _{n \rightarrow \infty} \alpha_{n}=0, \text { and } \sum_{n=1}^{\infty} \alpha_{n}=\infty .
\end{aligned}
$$

Then $\left\{x_{n}\right\}$ converges strongly to $z=P_{F(S) \cap E P(F, A)} u$.
Very recently, Qin, Kang and Cho [8] further considered the generalized equilibrium problem (1.3). They obtained the following result in a real Hilbert space.

Theorem 1.2. Let C be a nonempty closed convex subset of a real Hilbert space H and f a contraction with the $\tau \in[0,1)$ of C into itself. Let F_{1} and F_{2} be two bi-functions from $C \times C$ to \mathbb{R} satisfying (A1)-(A4), respectively. Let $A: C \rightarrow H$ be an α-inverse-strongly monotone mapping and $B: C \rightarrow H$ a β-inverse-strongly monotone mapping. Let $T: C \rightarrow C$ be a k-strict pseudocontraction with a fixed point. Define a mapping $S: C \rightarrow C$ by $S x=k x+$ $(1-k) T x, \forall x \in C$. Assume that $F=E P\left(F_{1}, A\right) \cap E P\left(F_{2}, B\right) \cap F(T) \neq \emptyset$. Let $u \in C, x_{1} \in C$, and $\left\{x_{n}\right\} \subset C$ be sequences generated by

$$
\left\{\begin{array}{l}
F_{1}\left(u_{n}, u\right)+\left\langle A x_{n}, u-u_{n}\right\rangle+\frac{1}{r}\left\langle u-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \forall u \in C \\
F_{2}\left(v_{n}, v\right)+\left\langle B x_{n}, v-v_{n}\right\rangle+\frac{1}{s}\left\langle v-v_{n}, v_{n}-x_{n}\right\rangle \geq 0, \forall v \in C \\
y_{n}=\gamma_{n} u_{n}+\left(1-\gamma_{n}\right) v_{n} \\
x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) S\left[\alpha_{n} u+\left(1-\alpha_{n}\right) y_{n}\right], \forall n \geq 1
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$, and $\left\{\gamma_{n}\right\}$ are sequences in $(0,1), r \in(0,2 \alpha)$ and $s \in(0,2 \beta)$. If the above control sequences satisfy the following restrictions
(a) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(b) $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$;
(c) $\lim _{n \rightarrow \infty} \gamma_{n}=\gamma \in(0,1)$,
then $\left\{x_{n}\right\}$ will converge strongly to $z \in F$, where $z=P_{F} u$.

In 2008, Takahashi et al. ([10] Theorem 4.1) proved the following theorem by a new hybrid method.

Theorem 1.3. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let T be a nonexpansive mapping of C into itself such that $F(T) \neq \emptyset$ and let $x_{0} \in H$. For $C_{1}=C$ and $u_{1}=P_{C_{1}} x_{0}$, define a sequence $\left\{u_{n}\right\}$ of C as follows:

$$
\left\{\begin{array}{l}
y_{n}=\alpha_{n} u_{n}+\left(1-\alpha_{n}\right) T u_{n} \\
C_{n+1}=\left\{z \in C_{n}:\left\|y_{n}-z\right\| \leq\left\|u_{n}-z\right\|\right\} \\
u_{n+1}=P_{C_{n+1}} x_{0}, n \in N
\end{array}\right.
$$

where $0 \leq \alpha_{n} \leq a<1$ for all $n \in N$. Then, $\left\{u_{n}\right\}$ converges strongly to $z_{0}=P_{F(T)} x_{0}$.

In this paper, motivated by $[1,8,9,10]$, applying parallel and cyclic algorithms, we obtain strong convergence theorems for finding a common element of the fixed point set of a finite family of strict pseudo-contractions and the solution set of the problem (1.3) by the monotone hybrid methods.

We will use the notations:

1. \rightharpoonup for the weak convergence and \rightarrow for the strong convergence.
2. $\omega_{w}\left(x_{n}\right)=\left\{x: \exists x_{n_{j}} \rightharpoonup x\right\}$ denotes the weak ω-limit set of $\left\{x_{n}\right\}$.

2. Preliminaries

We need some facts and tools in a real Hilbert space H which are listed below.

Lemma 2.1. Let H be a real Hilbert space. Then the following identities hold. (i) $\|x-y\|^{2}=\|x\|^{2}-\|y\|^{2}-2\langle x-y, y\rangle, \forall x, y \in H$.
(ii) $\|t x+(1-t) y\|^{2}=t\|x\|^{2}+(1-t)\|y\|^{2}-t(1-t)\|x-y\|^{2}, \forall t \in[0,1], \forall x, y \in H$.

Lemma 2.2. [7] Let C be a nonempty closed convex subset of H. Let $\left\{x_{n}\right\}$ is a sequence in H and $u \in H$. Let $q=P_{C} u$. Suppose $\left\{x_{n}\right\}$ is such that $\omega_{w}\left(x_{n}\right) \subset C$ and satisfies the condition

$$
\left\|x_{n}-u\right\| \leq\|u-q\| \text { for all } n
$$

Then $x_{n} \rightarrow q$.
Lemma 2.3. [3] Let $S: C \rightarrow H$ be a κ-strict pseudo-contraction. Define $T: C \rightarrow H$ by $T x=\lambda x+(1-\lambda) S x$ for each $x \in C$. Then, as $\lambda \in[\kappa, 1), T$ is a nonexpansive mapping such that $F(T)=F(S)$.

Proposition 2.4. [1] Assume C is a nonempty closed convex subset of a real Hilbert space H.
(i) If $T: C \rightarrow C$ is a κ-strict pseudo-contraction, then T satisfies the Lipschitz condition

$$
\|T x-T y\| \leq \frac{1+\kappa}{1-\kappa}\|x-y\|, \forall x, y \in C
$$

(ii) If $T: C \rightarrow C$ is a κ-strict pseudo-contraction, then the mapping $I-T$ is demiclosed (at 0). That is, if $\left\{x_{n}\right\}$ is a sequence in C such that $x_{n} \rightharpoonup x$ and $(I-T) x_{n} \rightarrow 0$, then $(I-T) x=0$.
(iii) If $T: C \rightarrow C$ is a κ-strict pseudo-contraction, then the fixed point set $F(T)$ of T is closed and convex so that the projection $P_{F(T)}$ is well defined.
(iv) Given an integer $N \geq 1$, assume, for each $1 \leq i \leq N, T_{i}: C \rightarrow C$ be a κ_{i}-strict pseudo-contraction for some $0 \leq \kappa_{i}<1$. Assume $\left\{\lambda_{i}\right\}_{i=1}^{N}$ is a positive sequence such that $\sum_{i=1}^{N} \lambda_{i}=1$. Then $\sum_{i=1}^{N} \lambda_{i} T_{i}$ is a κ-strict pseudo-contraction, with $\kappa=\max \left\{\kappa_{i}: 1 \leq i \leq N\right\}$.
(v) Let $\left\{T_{i}\right\}_{i=1}^{N}$ and $\left\{\lambda_{i}\right\}$ be given as in (iv) above. Suppose that $\left\{T_{i}\right\}_{i=1}^{N}$ has a common fixed point. Then

$$
F\left(\sum_{i=1}^{N} \lambda_{i} T_{i}\right)=\bigcap_{i=1}^{N} F\left(T_{i}\right) .
$$

Lemma 2.5. [2] Let C be a nonempty closed convex subset of H, let F be bi-function from $C \times C$ to \mathbb{R} satisfying (A1)-(A4) and let $r>0$ and $x \in H$. Then there exists $z \in C$ such that

$$
F(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \text { for all } y \in C
$$

Lemma 2.6. [4] For $r>0, x \in H$, define a mapping $T_{r}: H \rightarrow C$ as follows:

$$
T_{r}(x)=\left\{z \in C \left\lvert\, F(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0\right., \forall y \in C\right\}
$$

for all $x \in H$. Then, the following statements hold:
(i) T_{r} is single-valued;
(ii) T_{r} is firmly nonexpansive, i.e., for any $x, y \in H$,

$$
\left\|T_{r} x-T_{r} y\right\|^{2} \leq\left\langle T_{r} x-T_{r} y, x-y\right\rangle
$$

(iii) $F\left(T_{r}\right)=E P(F)$;
(iv) $E P(F)$ is closed and convex.

3. Parallel Algorithm

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F_{1} and F_{2} be two bi-functions from $C \times C$ to \mathbb{R} satisfying (A1)-(A4). Let $A: C \rightarrow H$ be an α-inverse-strongly monotone mapping and
$B: C \rightarrow H$ a β-inverse-strongly monotone mapping, respectively. Let $N \geq 1$ be an integer. Let, for each $1 \leq i \leq N, S_{i}: C \rightarrow C$ be a $\kappa_{i}-$ strict pseudocontraction for some $0 \leq \kappa_{i}<1$. Let $\kappa=\max \left\{\kappa_{i}: 1 \leq i \leq N\right\}$. Assume that

$$
\Omega=\cap_{i=1}^{N} F\left(S_{i}\right) \cap E P\left(F_{1}, A\right) \cap E P\left(F_{2}, B\right) \neq \emptyset .
$$

Assume also that $\left\{\eta_{i}^{(n)}\right\}_{i=1}^{N}$ is a finite sequence of positive numbers such that $\sum_{i=1}^{N} \eta_{i}^{(n)}=1$ for all $n \in \mathbb{N}$ and $\inf _{n \geq 1} \eta_{i}^{(n)}>0$ for all $1 \leq i \leq N$. Let the mapping V_{n} be defined by

$$
V_{n}=\sum_{i=1}^{N} \eta_{i}^{(n)} S_{i}
$$

Given $x_{1} \in C=C_{1}$, let $\left\{x_{n}\right\}$ be a sequence generated by the following algorithm:

$$
\left\{\begin{array}{l}
F_{1}\left(u_{n}, u\right)+\left\langle A x_{n}, u-u_{n}\right\rangle+\frac{1}{r}\left\langle u-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \forall u \in C \tag{3.1}\\
F_{2}\left(v_{n}, v\right)+\left\langle B x_{n}, v-v_{n}\right\rangle+\frac{1}{s}\left\langle v-v_{n}, v_{n}-x_{n}\right\rangle \geq 0, \forall v \in C \\
z_{n}=\gamma_{n} u_{n}+\left(1-\gamma_{n}\right) v_{n} \\
V_{n}^{\lambda_{n}}=\lambda_{n} I+\left(1-\lambda_{n}\right) V_{n} \\
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) V_{n}^{\lambda_{n}} z_{n}, \\
C_{n+1}=\left\{z \in C_{n}:\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
x_{n+1}=P_{C_{n+1}} x_{1},
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\gamma_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ are sequences in $(0,1), r \in(0,2 \alpha)$ and $s \in(0,2 \beta)$. If the above control sequences satisfy the following restrictions:
(i) $\alpha_{n} \subset[0, a]$ with $a<1$;
(ii) $\lim _{n \rightarrow \infty} \gamma_{n}=\gamma \in(0,1)$;
(iii) $\lambda_{n} \in[\kappa, b], \kappa<b<1$.

Then $\left\{x_{n}\right\}$ converges strongly to $x^{*}=P_{\Omega} x_{1}$.
Proof. First, we claim that the mappings $I-r A$ and $I-s B$ are nonexpansive. Indeed, for each $x, y \in C$, we have

$$
\begin{aligned}
\|(I-r A) x-(I-r A) y\|^{2} & =\|x-y-r(A x-A y)\|^{2} \\
& =\|x-y\|^{2}-2 r\langle x-y, A x-A y\rangle+r^{2}\|A x-A y\|^{2} \\
& \leq\|x-y\|^{2}-2 r \alpha\|A x-A y\|^{2}+r^{2}\|A x-A y\|^{2} \\
& =\|x-y\|^{2}-r(2 \alpha-r)\|A x-A y\|^{2} .
\end{aligned}
$$

It follows from the condition $r \in(0,2 \alpha)$ that the mapping $I-r A$ is nonexpansive, so is $I-s B$. Note that u_{n} can be rewritten as $u_{n}=T_{r}(I-r A) x_{n}$ and v_{n} can be rewritten as $v_{n}=T_{s}(I-s B) x_{n}$ for each $n \geq 1$. Let $p \in \Omega$, it follows from Lemma 2.3 and Proposition 2.4 that

$$
p=T_{r}(I-r A) p=T_{s}(I-s B) p=V_{n} p=V_{n}^{\lambda_{n}} p .
$$

Thus we have

$$
\left\|u_{n}-p\right\| \leq\left\|x_{n}-p\right\| \text { and }\left\|v_{n}-p\right\| \leq\left\|x_{n}-p\right\| .
$$

The proof is divided into seven steps.
Step 1. Show that $\left\{x_{n}\right\}$ is well defined.
Indeed, C_{n+1} is the intersection of C_{n} with the half space $\left\{z \in C: 2\left\langle x_{n}-\right.\right.$ $\left.\left.y_{n}, z\right\rangle \leq\left\|x_{n}\right\|^{2}-\left\|y_{n}\right\|^{2}\right\}$. Since $C_{1}=C$ is closed and convex, it is obvious that C_{n} is closed and convex for each $n \in N$.

Take $p \in \Omega$, since $V_{n}^{\lambda_{n}}$ is nonexpansive, we have

$$
\begin{align*}
\left\|y_{n}-p\right\| & =\left\|\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) V_{n}^{\lambda_{n}} z_{n}-p\right\| \\
& \leq \alpha_{n}\left\|x_{n}-p\right\|+\left(1-\alpha_{n}\right)\left\|V_{n}^{\lambda_{n}} z_{n}-p\right\| \\
& \leq \alpha_{n}\left\|x_{n}-p\right\|+\left(1-\alpha_{n}\right)\left\|z_{n}-p\right\| \\
& =\alpha_{n}\left\|x_{n}-p\right\|+\left(1-\alpha_{n}\right)\left\|\gamma_{n} u_{n}+\left(1-\gamma_{n}\right) v_{n}-p\right\| \tag{3.2}\\
& \leq \alpha_{n}\left\|x_{n}-p\right\|+\left(1-\alpha_{n}\right)\left[\gamma_{n}\left\|u_{n}-p\right\|+\left(1-\gamma_{n}\right)\left\|v_{n}-p\right\|\right] \\
& \leq\left\|x_{n}-p\right\|
\end{align*}
$$

for all $n \in \mathbb{N}$. So $p \in C_{n}$ for all n. Hence $\Omega \subset C_{n}$ holds for all $n \geq 1$.
Step 2. Show that

$$
\begin{equation*}
\left\|x_{n}-x_{1}\right\| \leq\left\|x_{1}-x^{*}\right\|, \text { where } x^{*}=P_{\Omega} x_{1} . \tag{3.3}
\end{equation*}
$$

Notice the facts $\Omega \subset C_{n}$ and $x_{n}=P_{C_{n}} x_{1}$ imply

$$
\left\|x_{n}-x_{1}\right\| \leq\left\|x_{1}-p\right\| \text { for all } p \in \Omega
$$

Then $\left\{x_{n}\right\}$ is bounded and (3.3) holds. From (3.2) and Proposition 2.4, we also obtain $\left\{u_{n}\right\},\left\{v_{n}\right\},\left\{z_{n}\right\},\left\{y_{n}\right\},\left\{S_{i} x_{n}\right\}$ and $\left\{V_{n} x_{n}\right\}$ are bounded. From the nonexpansivity of $V_{n}^{\lambda_{n}}$, it follows that $\left\{V_{n}^{\lambda_{n}} x_{n}\right\}$ is also bounded.

Step 3. Show that

$$
\begin{equation*}
\left\|x_{n+1}-x_{n}\right\| \rightarrow 0 \tag{3.4}
\end{equation*}
$$

Since $x_{n}=P_{C_{n}} x_{1}, x_{n+1}=P_{C_{n+1}} x_{1}$ and $C_{n+1} \subset C_{n}$, by the property of the projection, we have

$$
\begin{aligned}
0 & \leq\left\langle x_{1}-x_{n}, x_{n}-x_{n+1}\right\rangle \\
& =\left\langle x_{1}-x_{n}, x_{n}-x_{1}+x_{1}-x_{n+1}\right\rangle \\
& \leq-\left\|x_{n}-x_{1}\right\|^{2}+\left\|x_{n}-x_{1}\right\|\left\|x_{1}-x_{n+1}\right\|,
\end{aligned}
$$

that is, $\left\|x_{n}-x_{1}\right\| \leq\left\|x_{1}-x_{n+1}\right\|$. The sequence $\left\{\left\|x_{n}-x_{1}\right\|\right\}$ is nondecreasing. Since $\left\{\left\|x_{n}-x_{1}\right\|\right\}$ is bounded, $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{1}\right\|$ exists. Moreover,

$$
\begin{aligned}
\left\|x_{n+1}-x_{n}\right\|^{2} & =\left\|x_{n+1}-x_{1}-\left(x_{n}-x_{1}\right)\right\|^{2} \\
& =\left\|x_{n+1}-x_{1}\right\|^{2}-\left\|x_{n}-x_{1}\right\|^{2}-2\left\langle x_{n+1}-x_{n}, x_{n}-x_{1}\right\rangle \\
& \leq\left\|x_{n+1}-x_{1}\right\|^{2}-\left\|x_{n}-x_{1}\right\|^{2} .
\end{aligned}
$$

Then (3.4) holds.
Step 4. Show that

$$
\left\|A x_{n}-A p\right\| \rightarrow 0 \text { and }\left\|B x_{n}-B p\right\| \rightarrow 0
$$

By $x_{n+1}=P_{C_{n+1}} x_{1}$, it follows that

$$
\begin{align*}
& \left\|y_{n}-x_{n+1}\right\| \leq\left\|x_{n}-x_{n+1}\right\| \\
& \left\|y_{n}-x_{n}\right\| \leq\left\|y_{n}-x_{n+1}\right\|+\left\|x_{n}-x_{n+1}\right\| \leq 2\left\|x_{n}-x_{n+1}\right\| \rightarrow 0 \tag{3.5}
\end{align*}
$$

For each $p \in \Omega$, we have

$$
\begin{align*}
\left\|y_{n}-p\right\|^{2}= & \left\|\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) V_{n}^{\lambda_{n}} z_{n}-p\right\|^{2} \\
\leq & \alpha_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right)\left\|z_{n}-p\right\|^{2} \\
= & \alpha_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right)\left\|\gamma_{n} u_{n}+\left(1-\gamma_{n}\right) v_{n}-p\right\|^{2} \\
\leq & \alpha_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right)\left[\gamma_{n}\left\|u_{n}-p\right\|^{2}+\left(1-\gamma_{n}\right)\left\|v_{n}-p\right\|^{2}\right] \\
= & \alpha_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right)\left[\gamma_{n}\left\|T_{r}(I-r A) x_{n}-p\right\|^{2}\right. \\
& \left.+\left(1-\gamma_{n}\right)\left\|T_{s}(I-s B) x_{n}-p\right\|^{2}\right] \\
\leq & \alpha_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right)\left[\gamma_{n}\left\|x_{n}-p-r\left(A x_{n}-A p\right)\right\|^{2}\right. \\
& \left.+\left(1-\gamma_{n}\right)\left\|x_{n}-p-s\left(B x_{n}-B p\right)\right\|^{2}\right] \\
= & \alpha_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right) \gamma_{n}\left(\left\|x_{n}-p\right\|^{2}-2 r\left\langle x_{n}-p, A x_{n}-A p\right\rangle\right. \\
& \left.+r^{2}\left\|A x_{n}-A p\right\|^{2}\right) \\
& +\left(1-\alpha_{n}\right)\left(1-\gamma_{n}\right)\left(\left\|x_{n}-p\right\|^{2}-2 s\left\langle x_{n}-p, B x_{n}-B p\right\rangle\right. \\
& \left.+s^{2}\left\|B x_{n}-B p\right\|^{2}\right) \\
\leq & \alpha_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right) \gamma_{n}\left[\left\|x_{n}-p\right\|^{2}-r(2 \alpha-r)\left\|A x_{n}-A p\right\|^{2}\right] \\
& +\left(1-\alpha_{n}\right)\left(1-\gamma_{n}\right)\left[\left\|x_{n}-p\right\|^{2}-s(2 \beta-s)\left\|B x_{n}-B p\right\|^{2}\right] \\
= & \left\|x_{n}-p\right\|^{2}-\left(1-\alpha_{n}\right) \gamma_{n} r(2 \alpha-r)\left\|A x_{n}-A p\right\|^{2} \\
& -\left(1-\alpha_{n}\right)\left(1-\gamma_{n}\right) s(2 \beta-s)\left\|B x_{n}-B p\right\|^{2} . \tag{3.6}
\end{align*}
$$

This implies that

$$
\begin{aligned}
\left(1-\alpha_{n}\right) \gamma_{n} r(2 \alpha-r)\left\|A x_{n}-A p\right\|^{2} & \leq\left\|x_{n}-p\right\|^{2}-\left\|y_{n}-p\right\|^{2} \\
& \leq\left\|y_{n}-x_{n}\right\|\left(\left\|x_{n}-p\right\|+\left\|y_{n}-p\right\|\right)
\end{aligned}
$$

From the conditions (i), (ii) and (3.5), we see that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A x_{n}-A p\right\|=0 \tag{3.7}
\end{equation*}
$$

Similarly, from the conditions (i), (ii), (3.5) and (3.6), we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|B x_{n}-B p\right\|=0 \tag{3.8}
\end{equation*}
$$

Step 5. Show that

$$
\begin{equation*}
\left\|V_{n} x_{n}-x_{n}\right\| \rightarrow 0 \tag{3.9}
\end{equation*}
$$

By $u_{n}=T_{r}(I-r A) x_{n}$, it follows that

$$
\begin{aligned}
\left\|u_{n}-p\right\|^{2}= & \left\|T_{r}(I-r A) x_{n}-T_{r}(I-r A) p\right\|^{2} \\
& \leq\left\langle(I-r A) x_{n}-(I-r A) p, u_{n}-p\right\rangle \\
= & \frac{1}{2}\left[\left\|(I-r A) x_{n}-(I-r A) p\right\|^{2}+\left\|u_{n}-p\right\|^{2}\right. \\
& \left.-\left\|(I-r A) x_{n}-(I-r A) p-\left(u_{n}-p\right)\right\|^{2}\right] \\
\leq & \frac{1}{2}\left[\left\|x_{n}-p\right\|^{2}+\left\|u_{n}-p\right\|^{2}-\left\|x_{n}-u_{n}-r\left(A x_{n}-A p\right)\right\|^{2}\right] \\
= & \frac{1}{2}\left[\left\|x_{n}-p\right\|^{2}+\left\|u_{n}-p\right\|^{2}-\left(\left\|x_{n}-u_{n}\right\|^{2}-2 r\left\langle x_{n}-u_{n}, A x_{n}-A p\right\rangle\right.\right. \\
& \left.\left.+r^{2}\left\|A x_{n}-A p\right\|^{2}\right)\right] .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left\|u_{n}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}+2 r\left\|x_{n}-u_{n}\right\|\left\|A x_{n}-A p\right\| . \tag{3.10}
\end{equation*}
$$

Similarly, we can obtain that

$$
\begin{equation*}
\left\|v_{n}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n}-v_{n}\right\|^{2}+2 s\left\|x_{n}-v_{n}\right\|\left\|B x_{n}-B p\right\| . \tag{3.11}
\end{equation*}
$$

From (3.6), we get

$$
\begin{equation*}
\left\|y_{n}-p\right\|^{2} \leq \alpha_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right)\left[\gamma_{n}\left\|u_{n}-p\right\|^{2}+\left(1-\gamma_{n}\right)\left\|v_{n}-p\right\|^{2}\right] . \tag{3.12}
\end{equation*}
$$

Substituting (3.10) and (3.11) into (3.12), we see that

$$
\begin{gather*}
\left.\left\|y_{n}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}-\left(1-\alpha_{n}\right) \gamma_{n}\left\|x_{n}-u_{n}\right\|^{2}-\left(1-\alpha_{n}\right)\left(1-\gamma_{n}\right) \| x_{n}-v_{n}\right) \|^{2} \\
+2 r\left\|x_{n}-u_{n}\right\|\left\|A x_{n}-A p\right\|+2 s\left\|x_{n}-v_{n}\right\|\left\|B x_{n}-B p\right\| . \tag{3.13}
\end{gather*}
$$

It follows that

$$
\begin{aligned}
& \left(1-\alpha_{n}\right) \gamma_{n}\left\|x_{n}-u_{n}\right\|^{2} \\
& \leq\left\|x_{n}-p\right\|^{2}-\left\|y_{n}-p\right\|^{2}+2 r\left\|x_{n}-u_{n}\right\|\left\|A x_{n}-A p\right\| \\
& \quad+2 s\left\|x_{n}-v_{n}\right\|\left\|B x_{n}-B p\right\| \\
& \leq\left\|y_{n}-x_{n}\right\|\left(\left\|x_{n}-p\right\|+\left\|y_{n}-p\right\|\right)+2 r\left\|x_{n}-u_{n}\right\|\left\|A x_{n}-A p\right\| \\
& \quad+2 s\left\|x_{n}-v_{n}\right\|\left\|B x_{n}-B p\right\| .
\end{aligned}
$$

From the conditions (i), (ii), (3.5), (3.7) and (3.8), we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-u_{n}\right\|=0 \tag{3.14}
\end{equation*}
$$

Similarly, from (3.13), the conditions (i), (ii), (3.5), (3.7) and (3.8), we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-v_{n}\right\|=0 \tag{3.15}
\end{equation*}
$$

On the other hand, we have

$$
\begin{aligned}
\left\|z_{n}-x_{n}\right\| & =\left\|\gamma_{n} u_{n}+\left(1-\gamma_{n}\right) v_{n}-x_{n}\right\| \\
& \leq \gamma_{n}\left\|u_{n}-x_{n}\right\|+\left(1-\gamma_{n}\right)\left\|v_{n}-x_{n}\right\| .
\end{aligned}
$$

In view of the condition (ii), (3.14) and (3.15), we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0 \tag{3.16}
\end{equation*}
$$

Since

$$
\begin{aligned}
\left\|y_{n}-x_{n}\right\| & =\left\|\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) V_{n}^{\lambda_{n}} z_{n}-x_{n}\right\| \\
& =\left(1-\alpha_{n}\right)\left\|V_{n}^{\lambda_{n}} z_{n}-x_{n}\right\| .
\end{aligned}
$$

From condition (i) and (3.6), we obtain

$$
\begin{equation*}
\left\|V_{n}^{\lambda_{n}} z_{n}-x_{n}\right\| \rightarrow 0 \tag{3.17}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
\left\|x_{n}-V_{n}^{\lambda_{n}} x_{n}\right\| & \leq\left\|x_{n}-V_{n}^{\lambda_{n}} z_{n}\right\|+\left\|V_{n}^{\lambda_{n}} z_{n}-V_{n}^{\lambda_{n}} x_{n}\right\| \\
& \leq\left\|x_{n}-V_{n}^{\lambda_{n}} z_{n}\right\|+\left\|z_{n}-x_{n}\right\| .
\end{aligned}
$$

From (3.16) and (3.17), we see that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-V_{n}^{\lambda_{n}} x_{n}\right\|=0
$$

Since

$$
\begin{aligned}
\left\|V_{n}^{\lambda_{n}} x_{n}-x_{n}\right\| & =\left\|\lambda_{n} x_{n}+\left(1-\lambda_{n}\right) V_{n} x_{n}-x_{n}\right\| \\
& =\left(1-\lambda_{n}\right)\left\|V_{n} x_{n}-x_{n}\right\| \\
& \geq(1-b)\left\|V_{n} x_{n}-x_{n}\right\| .
\end{aligned}
$$

Condition (iii) implies

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|V_{n} x_{n}-x_{n}\right\|=0 \tag{3.18}
\end{equation*}
$$

Step 6. Show that

$$
\begin{equation*}
\omega_{w}\left(x_{n}\right) \subset \Omega . \tag{3.19}
\end{equation*}
$$

We first show $\omega_{w}\left(x_{n}\right) \subset \cap_{i=1}^{N} F\left(S_{i}\right)$. To see this, we take $\omega \in \omega_{w}\left(x_{n}\right)$ and assume that $x_{n_{j}} \rightharpoonup \omega$ as $j \rightarrow \infty$ for some subsequence $\left\{x_{n_{j}}\right\}$ of x_{n}.

Without loss of generality, we may assume that

$$
\begin{equation*}
\eta_{i}^{\left(n_{j}\right)} \rightarrow \eta_{i}(\text { as } j \rightarrow \infty), 1 \leq i \leq N \tag{3.20}
\end{equation*}
$$

It is easily seen that each $\eta_{i}>0$ and $\sum_{i=1}^{N} \eta_{i}=1$. We also have

$$
V_{n_{j}} x \rightarrow V x(\text { as } j \rightarrow \infty) \text { for all } x \in C,
$$

where $V=\sum_{i=1}^{N} \eta_{i} S_{i}$. Note that by Proposition $2.4, V$ is κ-strict pseudocontraction and $F(V)=\cap_{i=1}^{N} F\left(S_{i}\right)$. Since

$$
\begin{aligned}
\left\|V x_{n_{j}}-x_{n_{j}}\right\| & \leq\left\|V_{n_{j}} x_{n_{j}}-V x_{n_{j}}\right\|+\left\|V_{n_{j}} x_{n_{j}}-x_{n_{j}}\right\| \\
& \leq \sum_{i=1}^{N} \mid \eta_{i}^{\left(n_{j}\right)}-\eta_{i}\| \| S_{i} x_{n_{j}}\|+\| V_{n_{j}} x_{n_{j}}-x_{n_{j}} \|,
\end{aligned}
$$

we obtain by virtue of (3.9) and (3.20)

$$
\left\|V x_{n_{j}}-x_{n_{j}}\right\| \rightarrow 0 .
$$

So by the demiclosedness principle (Proposition 2.4 (ii)), it follows that $\omega \in$ $F(V)=\cap_{i=1}^{N} F\left(S_{i}\right)$ and hence the fact that $\omega_{w}\left(x_{n}\right) \subset \cap_{i=1}^{N} F\left(S_{i}\right)$ holds.

Next, we define a mapping $R: C \rightarrow C$ by

$$
R x=\gamma T_{r}(I-r A) x+(1-\gamma) T_{s}(I-s B) x, \forall x \in C
$$

where $(0,1) \ni \gamma=\lim _{n \rightarrow \infty} \gamma_{n}$. From Proposition 2.4 (iv), we see that R is a nonexpansive mapping with

$$
F(R)=F\left(T_{r}(I-r A)\right) \cap F\left(T_{s}(I-s B)\right)=E P\left(F_{1}, A\right) \cap E P\left(F_{2}, B\right)
$$

Note that

$$
\begin{aligned}
\left\|x_{n}-R x_{n}\right\| & \leq\left\|z_{n}-x_{n}\right\|+\left\|z_{n}-R x_{n}\right\| \\
& =\left\|z_{n}-x_{n}\right\|+\left\|\gamma_{n} u_{n}+\left(1-\gamma_{n}\right) v_{n}-\left[\gamma u_{n}+(1-\gamma) v_{n}\right]\right\| \\
& \leq\left\|z_{n}-x_{n}\right\|+\left|\gamma_{n}-\gamma\right| M,
\end{aligned}
$$

where M is an appropriate constant such that $M \geq \sup _{n \geq 1}\left\{\left\|u_{n}\right\|+\left\|v_{n}\right\|\right\}$. This implies that

$$
\lim _{j \rightarrow \infty}\left\|x_{n_{j}}-R x_{n_{j}}\right\|=0
$$

In view of Proposition 2.4 (ii), we obtain that $\omega \in F(R)$. That is,

$$
\omega \in E P\left(F_{1}, A\right) \cap E P\left(F_{2}, B\right) \cap \cap_{i=1}^{N} F\left(S_{i}\right) .
$$

Hence (3.19) holds.
Step 7. Show that $x_{n} \rightarrow x^{*}=P_{\Omega} x_{1}$.
From (3.3), (3.19) and Lemma 2.2, we conclude that $x_{n} \rightarrow x^{*}$, where $x^{*}=$ $P_{\Omega} x_{1}$.

4. Cyclic Algorithm

Let C be a closed and convex subset of a Hilbert space H and let $\left\{S_{i}\right\}_{i=0}^{N-1}$ be $N \kappa_{i}$-strict pseudo-contractions on C such that the common fixed point set

$$
\bigcap_{i=0}^{N-1} F\left(S_{i}\right) \neq \emptyset .
$$

Let $x_{0} \in C$ and let $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ be a sequence in $(0,1)$. The cyclic algorithm generates a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in the following way:

$$
\begin{aligned}
& x_{1}=\alpha_{0} x_{0}+\left(1-\alpha_{0}\right) S_{0} x_{0} \\
& x_{2}=\alpha_{1} x_{1}+\left(1-\alpha_{1}\right) S_{1} x_{1}, \\
& \cdots \\
& x_{N}=\alpha_{N-1} x_{N-1}+\left(1-\alpha_{N-1}\right) S_{N-1} x_{N-1}, \\
& x_{N+1}=\alpha_{N} x_{N}+\left(1-\alpha_{N}\right) S_{0} x_{N} \\
& \cdots
\end{aligned}
$$

In general, x_{n+1} is defined by

$$
x_{n+1}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) S_{[n]} x_{n}
$$

where $S_{[n]}=S_{i}$, with $i=n(\bmod) N, 0 \leq i \leq N-1$.
Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F_{1} and F_{2} be two bi-functions from $C \times C$ to \mathbb{R} satisfying (A1)-(A4). Let $A: C \rightarrow H$ be an α-inverse-strongly monotone mapping and $B: C \rightarrow H$ a β-inverse-strongly monotone mapping, respectively. Let $N \geq 1$ be an integer. Let, for each $0 \leq i \leq N-1, S_{i}: C \rightarrow C$ be a $\kappa_{i}-$ strict pseudocontraction for some $0 \leq \kappa_{i}<1$. Let $\kappa=\max \left\{\kappa_{i}: 0 \leq i \leq N-1\right\}$. Assume that $\Omega=\cap_{i=0}^{N-1} F\left(S_{i}\right) \cap E P\left(F_{1}, A\right) \cap E P\left(F_{2}, B\right) \neq \emptyset$. Given $x_{0} \in C=C_{0}$, let $\left\{x_{n}\right\}$ be a sequence generated by the following algorithm:

$$
\left\{\begin{array}{l}
F_{1}\left(u_{n}, u\right)+\left\langle A x_{n}, u-u_{n}\right\rangle+\frac{1}{r}\left\langle u-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \forall u \in C \tag{4.1}\\
F_{2}\left(v_{n}, v\right)+\left\langle B x_{n}, v-v_{n}\right\rangle+\frac{1}{s}\left\langle v-v_{n}, v_{n}-x_{n}\right\rangle \geq 0, \forall v \in C \\
z_{n}=\gamma_{n} u_{n}+\left(1-\gamma_{n}\right) v_{n} \\
S_{[n]}^{\lambda_{n}}=\lambda_{n} I+\left(1-\lambda_{n}\right) S_{[n]}, \\
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) S_{[n]}^{\lambda_{n}} z_{n}, \\
C_{n+1}=\left\{z \in C_{n}:\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\}, \\
x_{n+1}=P_{C_{n+1}} x_{0}
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\gamma_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ are sequences in $(0,1), r \in(0,2 \alpha)$ and $s \in(0,2 \beta)$. If the above control sequences satisfy the following restrictions:
(i) $\alpha_{n} \subset[0, a]$ with $a<1$;
(ii) $\lim _{n \rightarrow \infty} \gamma_{n}=\gamma \in(0,1)$;
(iii) $\lambda_{n} \in[\kappa, b], \kappa<b<1$.

Then $\left\{x_{n}\right\}$ converges strongly to $x^{*}=P_{\Omega} x_{0}$.
Proof. The proof of this theorem is similar to that of Theorem 3.1. The main points are:

Step 1. The sequence $\left\{x_{n}\right\}$ is well defined.
Step 2. $\left\|x_{n}-x_{0}\right\| \leq\left\|x^{*}-x_{0}\right\|$ for all n, where $x^{*}=P_{\Omega} x_{1}$.

Step 3. $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$.
Step 4. $\left\|A x_{n}-A p\right\| \rightarrow 0$ and $\left\|B x_{n}-B p\right\| \rightarrow 0$.
Step 5. $\left\|S_{[n]} x_{n}-x_{n}\right\| \rightarrow 0$.
To prove the above steps, one simply replaces V_{n} with $S_{[n]}$ in the corresponding step of Theorem 3.1.

Step 6. $\omega_{w}\left(x_{n}\right) \subset \Omega$.
Indeed, let $\omega \in \omega_{w}\left(x_{n}\right)$ and $x_{n_{m}} \rightharpoonup \omega$ for some subsequence $\left\{x_{n_{m}}\right\}$ of $\left\{x_{n}\right\}$. We may assume that $l=n_{m}(\bmod N)$ for all m. Since by $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$, we also have $x_{n_{m}+j} \rightharpoonup \omega$ for all $j \geq 0$, we deduce that

$$
\left\|x_{n_{m}+j}-S_{[l+j]} x_{n_{m}+j}\right\|=\left\|x_{n_{m}+j}-S_{\left[n_{m}+j\right]} x_{n_{m}+j}\right\| \rightarrow 0
$$

Then the demiclosedness principle implies that $\omega \in F\left(S_{[l+j]}\right)$ for all j. This ensures that $\omega \in \cap_{i=1}^{N} F\left(S_{i}\right)$.

The proof of $\omega \in E P\left(F_{1}, A\right) \cap E P\left(F_{2}, B\right)$ is similar to that of Theorem 3.1.
Step 7. The sequence x_{n} converges strongly to x^{*}.
The strong convergence to x^{*} of $\left\{x_{n}\right\}$ is the consequence of Step 2, Step 6 and Lemma 2.2.

References

[1] G.L. Acedo and H. K. Xu, Iterative methods for strict pseudo-contractions in Hilbert spaces. Nonlinear Anal., 2007, 67, 2258-2271.
[2] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems. Math. Stud., 1994, 63, 123-145.
[3] F.E. Browder and W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space. Proc. Symp. Pure. Math., 1985, 18, 78-81.
[4] P.L. Combettes and S.A Hirstoaga, Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal., 2005, 6, 117-136.
[5] V. Colao, G. Marino and H.K. Xu, An iterative method for finding common solutions of equilibrium and fixed point problems, J. Math. Anal. Appl., 2008, 344, 340-352.
[6] S.D. Flam and A.S. Antipin, Equilibrium programming using proximal-like algorithms. Math.Program,1997, 78, 29-41.
[7] C. Matinez-Yanes and H.K. Xu, Srong convergence of the CQ method for fixed point processes, Nonlinear Anal., 2006, 64, 2400-2411.
[8] X.L. Qin, S.M. Kang and Y.J. Cho, Convergence theorems on generalized equilibrium problems and fixed point problems with applications. Proc. Estonian Acad. Science, 2009, 58,
[9] S. Takahashi and W. Takahashi, Strong convergence theorems for a generalized equilibrium problems and a nonexpansive mapping in a Hlibert space. Nonlinear Anal., 2008,69, 1025-1033.
[10] W. Takahashi, Y. Takeuchi and R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 2008, 341, 276-286.

[^0]: ${ }^{0}$ Received August 26, 2010. Revised February 28, 2011.
 ${ }^{0} 2000$ Mathematics Subject Classification: $47 \mathrm{H} 09,47 \mathrm{H} 10,47 \mathrm{~J} 05,47 \mathrm{~J} 20,47 \mathrm{~J} 25$.
 ${ }^{0}$ Keywords: Strict pseudo-contraction, equilibrium problem, variational inequality, parallel algorithm, cyclic algorithm, hybrid method, fixed point.

