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Abstract. Let {Si}Ni=1 be N strict pseudo-contractions defined on a closed convex subset

C of a real Hilbert space H. Consider the problem of finding a common element of the

fixed point set of these mappings and the solution set of generalized equilibrium problems by

parallel and cyclic algorithms. In this paper, we propose new iterative schemes for solving

this problem and prove these schemes converge strongly by monotone hybrid methods.

1. Introduction

Let H be a real Hilbert Space with the inner product 〈·, ·〉 and ‖ · ‖, respec-
tively. Let C be a nonempty closed convex subset of H.

Recall that a mapping S : C → C is said to be a κ-strict pseudo-contraction
if there exists a constant κ ∈ [0, 1) such that

‖Sx− Sy‖2 ≤ ‖x− y‖2 + κ‖(I − S)x− (I − S)y‖2, ∀x, y ∈ C.

Clearly, the class of strict pseudo-contractions strictly includes the class of
nonexpansive mappings which are mapping S on C such that

‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C.

That is, S is nonexpansive if and only if S is a 0−strict pseudo-contraction.
In this paper, we use F (S) to denote the fixed point set of S (i.e., F (S) =

{x ∈ C : Sx = x}).
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A nonlinear mapping A : C → H is said to be α-inverse-strongly monotone
if there exists a constant α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.

Recall that the classical variational inequality problem, denoted by V I(C,A),
is to find u ∈ C such that

〈Au, v − u〉 ≥ 0, ∀v ∈ C. (1.1)

Given x ∈ H and y ∈ C, then y = PCx if and only if there holds the
relation:

〈x− y, y − z〉 ≥ 0 for all z ∈ C,
where PC denotes the metric projection from H onto C. From the above we
see that u ∈ C is a solution to problem (1.1) if and only if u satisfies the
following equation:

u = PC(u− ρAu), (1.2)

where ρ > 0 is a constant. This implies that problem (1.1) and (1.2) are
equivalent. This alternative formula is very important from the numerical
analysis point of view.

Let A : C → H be an α-inverse strongly monotone mapping, F a bifunction
from C×C to R, where R is the set of real numbers. We consider the following
generalized equilibrium problem.

Find x ∈ C such that F (x, y) + 〈Ax, y − x〉 ≥ 0, ∀y ∈ C. (1.3)

In this paper, the set of such an x ∈ C is denoted by EP (F,A).
Next, we give two special cases of problem (1.3).

(i) if A ≡ 0, then problem (1.3) is reduced to the following equilibrium prob-
lem:

Find x ∈ C such that F (x, y) ≥ 0, ∀y ∈ C. (1.4)

In this paper, the set of such an x ∈ C is denoted by EP (F ).
(ii) if F ≡ 0, then problem (1.3) is reduced to the variational inequality prob-
lem (1.1).

Problem (1.3) is very general in the sense that it includes, as special cases,
optimization problems, variational inequalities, mini-max problems, Nash equi-
librium problem in noncooperative games and others; see, for instance, [2, 4,
5, 6].

For solving the equilibrium problem, let us assume that the bi-function F
satisfies the following conditions:

(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e.F (x, y) + F (y, x) ≤ 0 for any x, y ∈ C;
(A3) for each x, y, z ∈ C, lim supt→0 F (tz + (1− t)x, y) ≤ F (x, y);
(A4) F (x, ·) is convex and lower semicontionuous for each x ∈ C.
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Recently, Takahashi and Takahashi [9] considered the problem (1.3) by an
iterative method. To be more precise, they proved the following theorem.

Theorem 1.1. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let F be a bi-function from C × C to R satisfying (A1)-(A4). Let
A : C → H be an α-inverse-strongly monotone mapping of C into H and let
S be a nonexpansive mapping of C into itself such that F (S)∩EP (F,A) 6= ∅.
Let u ∈ C and x1 ∈ C and let {zn} ⊂ C and {xn} ⊂ C be sequences generated
by {

F (zn, y) + 〈Axn, y − zn〉+ 1
λn
〈y − zn, zn − xn〉 ≥ 0,∀y ∈ C,

xn+1 = βnxn + (1− βn)S[αnu+ (1− αn)zn], ∀n ≥ 1,

where {αn} ⊂ [0, 1], {βn} ⊂ [0, 1], and λn ∈ [0, 2α], satisfy

0 < c ≤ βn ≤ d < 1, 0 < a ≤ λn ≤ b < 2α,

lim
n→∞

(λn − λn+1) = 0, lim
n→∞

αn = 0, and

∞∑
n=1

αn =∞.

Then {xn} converges strongly to z = PF (S)∩EP (F,A)u.

Very recently, Qin, Kang and Cho [8] further considered the generalized
equilibrium problem (1.3). They obtained the following result in a real Hilbert
space.

Theorem 1.2. Let C be a nonempty closed convex subset of a real Hilbert
space H and f a contraction with the τ ∈ [0, 1) of C into itself. Let F1 and
F2 be two bi-functions from C×C to R satisfying (A1)-(A4), respectively. Let
A : C → H be an α-inverse-strongly monotone mapping and B : C → H a
β-inverse-strongly monotone mapping. Let T : C → C be a k-strict pseudo-
contraction with a fixed point. Define a mapping S : C → C by Sx = kx +
(1 − k)Tx, ∀x ∈ C. Assume that F = EP (F1, A) ∩ EP (F2, B) ∩ F (T ) 6= ∅.
Let u ∈ C, x1 ∈ C, and {xn} ⊂ C be sequences generated by

F1(un, u) + 〈Axn, u− un〉+ 1
r 〈u− un, un − xn〉 ≥ 0,∀u ∈ C,

F2(vn, v) + 〈Bxn, v − vn〉+ 1
s 〈v − vn, vn − xn〉 ≥ 0,∀v ∈ C,

yn = γnun + (1− γn)vn,
xn+1 = βnxn + (1− βn)S[αnu+ (1− αn)yn], ∀n ≥ 1,

where {αn}, {βn}, and {γn} are sequences in (0, 1), r ∈ (0, 2α) and s ∈ (0, 2β).
If the above control sequences satisfy the following restrictions

(a) limn→∞ αn = 0 and
∑∞

n=1 αn =∞;
(b) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(c) limn→∞ γn = γ ∈ (0, 1),

then {xn} will converge strongly to z ∈ F , where z = PFu.
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In 2008, Takahashi et al. ([10] Theorem 4.1) proved the following theorem
by a new hybrid method.

Theorem 1.3. Let H be a Hilbert space and let C be a nonempty closed
convex subset of H. Let T be a nonexpansive mapping of C into itself such
that F (T ) 6= ∅ and let x0 ∈ H. For C1 = C and u1 = PC1x0, define a sequence
{un} of C as follows: yn = αnun + (1− αn)Tun,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖un − z‖},
un+1 = PCn+1x0, n ∈ N,

where 0 ≤ αn ≤ a < 1 for all n ∈ N . Then, {un} converges strongly to
z0 = PF (T )x0.

In this paper, motivated by [1, 8, 9, 10], applying parallel and cyclic algo-
rithms, we obtain strong convergence theorems for finding a common element
of the fixed point set of a finite family of strict pseudo-contractions and the
solution set of the problem (1.3) by the monotone hybrid methods.

We will use the notations:
1. ⇀ for the weak convergence and → for the strong convergence.
2. ωw(xn) = {x : ∃xnj ⇀ x} denotes the weak ω−limit set of {xn}.

2. Preliminaries

We need some facts and tools in a real Hilbert space H which are listed
below.

Lemma 2.1. Let H be a real Hilbert space. Then the following identities hold.
(i) ‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉, ∀x, y ∈ H.
(ii) ‖tx+(1−t)y‖2 = t‖x‖2+(1−t)‖y‖2−t(1−t)‖x−y‖2,∀t ∈ [0, 1],∀x, y ∈ H.

Lemma 2.2. [7] Let C be a nonempty closed convex subset of H. Let {xn}
is a sequence in H and u ∈ H. Let q = PCu. Suppose {xn} is such that
ωw(xn) ⊂ C and satisfies the condition

‖xn − u‖ ≤ ‖u− q‖ for all n.

Then xn → q.

Lemma 2.3. [3] Let S : C → H be a κ-strict pseudo-contraction. Define
T : C → H by Tx = λx+ (1− λ)Sx for each x ∈ C. Then, as λ ∈ [κ, 1), T is
a nonexpansive mapping such that F (T ) = F (S).

Proposition 2.4. [1] Assume C is a nonempty closed convex subset of a real
Hilbert space H.
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(i) If T : C → C is a κ-strict pseudo-contraction, then T satisfies the
Lipschitz condition

‖Tx− Ty‖ ≤ 1 + κ

1− κ
‖x− y‖,∀x, y ∈ C.

(ii) If T : C → C is a κ-strict pseudo-contraction, then the mapping I −T
is demiclosed (at 0). That is, if {xn} is a sequence in C such that
xn ⇀ x and (I − T )xn → 0, then (I − T )x = 0.

(iii) If T : C → C is a κ−strict pseudo-contraction, then the fixed point
set F (T ) of T is closed and convex so that the projection PF (T ) is well
defined.

(iv) Given an integer N ≥ 1, assume, for each 1 ≤ i ≤ N , Ti : C → C be a
κi-strict pseudo-contraction for some 0 ≤ κi < 1. Assume {λi}Ni=1 is a

positive sequence such that
∑N

i=1 λi = 1. Then
∑N

i=1 λiTi is a κ-strict
pseudo-contraction, with κ = max{κi : 1 ≤ i ≤ N}.

(v) Let {Ti}Ni=1 and {λi} be given as in (iv) above. Suppose that {Ti}Ni=1
has a common fixed point. Then

F
( N∑
i=1

λiTi

)
=

N⋂
i=1

F (Ti).

Lemma 2.5. [2] Let C be a nonempty closed convex subset of H, let F be
bi-function from C × C to R satisfying (A1)-(A4) and let r > 0 and x ∈ H.
Then there exists z ∈ C such that

F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, for all y ∈ C.

Lemma 2.6. [4] For r > 0, x ∈ H, define a mapping Tr : H → C as follows:

Tr(x) = {z ∈ C|F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}

for all x ∈ H. Then, the following statements hold:

(i) Tr is single-valued;
(ii) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉;
(iii) F (Tr) = EP (F );
(iv) EP (F ) is closed and convex.

3. Parallel Algorithm

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let F1 and F2 be two bi-functions from C × C to R satisfying
(A1)-(A4). Let A : C → H be an α-inverse-strongly monotone mapping and
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B : C → H a β-inverse-strongly monotone mapping, respectively. Let N ≥ 1
be an integer. Let, for each 1 ≤ i ≤ N , Si : C → C be a κi−strict pseudo-
contraction for some 0 ≤ κi < 1. Let κ = max{κi : 1 ≤ i ≤ N}. Assume
that

Ω = ∩Ni=1F (Si) ∩ EP (F1, A) ∩ EP (F2, B) 6= ∅.
Assume also that {η(n)

i }Ni=1 is a finite sequence of positive numbers such that∑N
i=1 η

(n)
i = 1 for all n ∈ N and infn≥1 η

(n)
i > 0 for all 1 ≤ i ≤ N . Let the

mapping Vn be defined by

Vn =
N∑
i=1

η
(n)
i Si.

Given x1 ∈ C = C1, let {xn} be a sequence generated by the following algo-
rithm:

F1(un, u) + 〈Axn, u− un〉+ 1
r 〈u− un, un − xn〉 ≥ 0,∀u ∈ C,

F2(vn, v) + 〈Bxn, v − vn〉+ 1
s 〈v − vn, vn − xn〉 ≥ 0,∀v ∈ C,

zn = γnun + (1− γn)vn,
V λn
n = λnI + (1− λn)Vn,
yn = αnxn + (1− αn)V λn

n zn,
Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x1,

(3.1)

where {αn}, {γn} and {λn} are sequences in (0, 1), r ∈ (0, 2α) and s ∈ (0, 2β).
If the above control sequences satisfy the following restrictions:

(i) αn ⊂ [0, a] with a < 1;
(ii) limn→∞ γn = γ ∈ (0, 1);

(iii) λn ∈ [κ, b], κ < b < 1.

Then {xn} converges strongly to x∗ = PΩx1.

Proof. First, we claim that the mappings I−rA and I−sB are nonexpansive.
Indeed, for each x, y ∈ C, we have

‖(I − rA)x− (I − rA)y‖2 = ‖x− y − r(Ax−Ay)‖2

= ‖x− y‖2 − 2r〈x− y,Ax−Ay〉+ r2‖Ax−Ay‖2

≤ ‖x− y‖2 − 2rα‖Ax−Ay‖2 + r2‖Ax−Ay‖2

= ‖x− y‖2 − r(2α− r)‖Ax−Ay‖2.

It follows from the condition r ∈ (0, 2α) that the mapping I − rA is nonex-
pansive, so is I − sB. Note that un can be rewritten as un = Tr(I − rA)xn
and vn can be rewritten as vn = Ts(I − sB)xn for each n ≥ 1. Let p ∈ Ω, it
follows from Lemma 2.3 and Proposition 2.4 that

p = Tr(I − rA)p = Ts(I − sB)p = Vnp = V λn
n p.
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Thus we have

‖un − p‖ ≤ ‖xn − p‖ and ‖vn − p‖ ≤ ‖xn − p‖.

The proof is divided into seven steps.
Step 1. Show that {xn} is well defined.
Indeed, Cn+1 is the intersection of Cn with the half space {z ∈ C : 2〈xn −

yn, z〉 ≤ ‖xn‖2−‖yn‖2}. Since C1 = C is closed and convex, it is obvious that
Cn is closed and convex for each n ∈ N.

Take p ∈ Ω, since V λn
n is nonexpansive, we have

‖yn − p‖ = ‖αnxn + (1− αn)V λn
n zn − p‖

≤ αn‖xn − p‖+ (1− αn)‖V λn
n zn − p‖

≤ αn‖xn − p‖+ (1− αn)‖zn − p‖
= αn‖xn − p‖+ (1− αn)‖γnun + (1− γn)vn − p‖
≤ αn‖xn − p‖+ (1− αn)[γn‖un − p‖+ (1− γn)‖vn − p‖]
≤ ‖xn − p‖

(3.2)

for all n ∈ N. So p ∈ Cn for all n. Hence Ω ⊂ Cn holds for all n ≥ 1.
Step 2. Show that

‖xn − x1‖ ≤ ‖x1 − x∗‖, where x∗ = PΩx1. (3.3)

Notice the facts Ω ⊂ Cn and xn = PCnx1 imply

‖xn − x1‖ ≤ ‖x1 − p‖ for all p ∈ Ω.

Then {xn} is bounded and (3.3) holds. From (3.2) and Proposition 2.4, we
also obtain {un}, {vn}, {zn}, {yn}, {Sixn} and {Vnxn} are bounded. From
the nonexpansivity of V λn

n , it follows that {V λn
n xn} is also bounded.

Step 3. Show that
‖xn+1 − xn‖ → 0. (3.4)

Since xn = PCnx1, xn+1 = PCn+1x1 and Cn+1 ⊂ Cn, by the property of the
projection, we have

0 ≤ 〈x1 − xn, xn − xn+1〉
= 〈x1 − xn, xn − x1 + x1 − xn+1〉
≤ −‖xn − x1‖2 + ‖xn − x1‖‖x1 − xn+1‖,

that is, ‖xn−x1‖ ≤ ‖x1−xn+1‖. The sequence {‖xn−x1‖} is nondecreasing.
Since {‖xn − x1‖} is bounded, limn→∞ ‖xn − x1‖ exists. Moreover,

‖xn+1 − xn‖2 = ‖xn+1 − x1 − (xn − x1)‖2

= ‖xn+1 − x1‖2 − ‖xn − x1‖2 − 2〈xn+1 − xn, xn − x1〉
≤ ‖xn+1 − x1‖2 − ‖xn − x1‖2.
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Then (3.4) holds.
Step 4. Show that

‖Axn −Ap‖ → 0 and ‖Bxn −Bp‖ → 0.

By xn+1 = PCn+1x1, it follows that

‖yn − xn+1‖ ≤ ‖xn − xn+1‖,
‖yn − xn‖ ≤ ‖yn − xn+1‖+ ‖xn − xn+1‖ ≤ 2‖xn − xn+1‖ → 0.

(3.5)

For each p ∈ Ω, we have

‖yn − p‖2 = ‖αnxn + (1− αn)V λn
n zn − p‖2

≤ αn‖xn − p‖2 + (1− αn)‖zn − p‖2

= αn‖xn − p‖2 + (1− αn)‖γnun + (1− γn)vn − p‖2

≤ αn‖xn − p‖2 + (1− αn)[γn‖un − p‖2 + (1− γn)‖vn − p‖2]

= αn‖xn − p‖2 + (1− αn)[γn‖Tr(I − rA)xn − p‖2

+ (1− γn)‖Ts(I − sB)xn − p‖2]

≤ αn‖xn − p‖2 + (1− αn)[γn‖xn − p− r(Axn −Ap)‖2

+ (1− γn)‖xn − p− s(Bxn −Bp)‖2]

= αn‖xn − p‖2 + (1− αn)γn(‖xn − p‖2 − 2r〈xn − p,Axn −Ap〉
+ r2‖Axn −Ap‖2)

+ (1− αn)(1− γn)(‖xn − p‖2 − 2s〈xn − p,Bxn −Bp〉
+ s2‖Bxn −Bp‖2)

≤ αn‖xn − p‖2 + (1− αn)γn[‖xn − p‖2 − r(2α− r)‖Axn −Ap‖2]

+ (1− αn)(1− γn)[‖xn − p‖2 − s(2β − s)‖Bxn −Bp‖2]

= ‖xn − p‖2 − (1− αn)γnr(2α− r)‖Axn −Ap‖2

− (1− αn)(1− γn)s(2β − s)‖Bxn −Bp‖2.
(3.6)

This implies that

(1− αn)γnr(2α− r)‖Axn −Ap‖2 ≤ ‖xn − p‖2 − ‖yn − p‖2

≤ ‖yn − xn‖(‖xn − p‖+ ‖yn − p‖).

From the conditions (i), (ii) and (3.5), we see that

lim
n→∞

‖Axn −Ap‖ = 0. (3.7)
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Similarly, from the conditions (i), (ii), (3.5) and (3.6), we obtain that

lim
n→∞

‖Bxn −Bp‖ = 0. (3.8)

Step 5. Show that
‖Vnxn − xn‖ → 0. (3.9)

By un = Tr(I − rA)xn, it follows that

‖un − p‖2 = ‖Tr(I − rA)xn − Tr(I − rA)p‖2

≤ 〈(I − rA)xn − (I − rA)p, un − p〉

=
1

2
[‖(I − rA)xn − (I − rA)p‖2 + ‖un − p‖2

− ‖(I − rA)xn − (I − rA)p− (un − p)‖2]

≤ 1

2
[‖xn − p‖2 + ‖un − p‖2 − ‖xn − un − r(Axn −Ap)‖2]

=
1

2
[‖xn − p‖2 + ‖un − p‖2 − (‖xn − un‖2 − 2r〈xn − un, Axn −Ap〉

+ r2‖Axn −Ap‖2)].

Hence

‖un − p‖2 ≤ ‖xn − p‖2 − ‖xn − un‖2 + 2r‖xn − un‖‖Axn −Ap‖. (3.10)

Similarly, we can obtain that

‖vn − p‖2 ≤ ‖xn − p‖2 − ‖xn − vn‖2 + 2s‖xn − vn‖‖Bxn −Bp‖. (3.11)

From (3.6), we get

‖yn− p‖2 ≤ αn‖xn− p‖2 + (1−αn)[γn‖un− p‖2 + (1− γn)‖vn− p‖2]. (3.12)

Substituting (3.10) and (3.11) into (3.12), we see that

‖yn − p‖2 ≤‖xn − p‖2 − (1− αn)γn‖xn − un‖2 − (1− αn)(1− γn)‖xn − vn)‖2

+ 2r‖xn − un‖‖Axn −Ap‖+ 2s‖xn − vn‖‖Bxn −Bp‖.
(3.13)

It follows that

(1− αn)γn‖xn − un‖2

≤ ‖xn − p‖2 − ‖yn − p‖2 + 2r‖xn − un‖‖Axn −Ap‖
+ 2s‖xn − vn‖‖Bxn −Bp‖
≤ ‖yn − xn‖(‖xn − p‖+ ‖yn − p‖) + 2r‖xn − un‖‖Axn −Ap‖

+ 2s‖xn − vn‖‖Bxn −Bp‖.
From the conditions (i), (ii), (3.5), (3.7) and (3.8), we obtain that

lim
n→∞

‖xn − un‖ = 0. (3.14)
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Similarly, from (3.13), the conditions (i), (ii), (3.5), (3.7) and (3.8), we have
that

lim
n→∞

‖xn − vn‖ = 0. (3.15)

On the other hand, we have

‖zn − xn‖ = ‖γnun + (1− γn)vn − xn‖
≤ γn‖un − xn‖+ (1− γn)‖vn − xn‖.

In view of the condition (ii), (3.14) and (3.15), we obtain that

lim
n→∞

‖zn − xn‖ = 0. (3.16)

Since

‖yn − xn‖ = ‖αnxn + (1− αn)V λn
n zn − xn‖

= (1− αn)‖V λn
n zn − xn‖.

From condition (i) and (3.6), we obtain

‖V λn
n zn − xn‖ → 0. (3.17)

It follows that

‖xn − V λn
n xn‖ ≤ ‖xn − V λn

n zn‖+ ‖V λn
n zn − V λn

n xn‖

≤ ‖xn − V λn
n zn‖+ ‖zn − xn‖.

From (3.16) and (3.17), we see that

lim
n→∞

‖xn − V λn
n xn‖ = 0.

Since
‖V λn

n xn − xn‖ = ‖λnxn + (1− λn)Vnxn − xn‖
= (1− λn)‖Vnxn − xn‖
≥ (1− b)‖Vnxn − xn‖.

Condition (iii) implies
lim
n→∞

‖Vnxn − xn‖ = 0. (3.18)

Step 6. Show that
ωw(xn) ⊂ Ω. (3.19)

We first show ωw(xn) ⊂ ∩Ni=1F (Si). To see this, we take ω ∈ ωw(xn) and
assume that xnj ⇀ ω as j →∞ for some subsequence {xnj} of xn.

Without loss of generality, we may assume that

η
(nj)
i → ηi (as j →∞), 1 ≤ i ≤ N. (3.20)

It is easily seen that each ηi > 0 and
∑N

i=1 ηi = 1. We also have

Vnjx→ V x (as j →∞) for all x ∈ C,
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where V =
∑N

i=1 ηiSi. Note that by Proposition 2.4, V is κ−strict pseudo-
contraction and F (V ) = ∩Ni=1F (Si). Since

‖V xnj − xnj‖ ≤ ‖Vnjxnj − V xnj‖+ ‖Vnjxnj − xnj‖

≤
N∑
i=1

|η(nj)
i − ηi|‖Sixnj‖+ ‖Vnjxnj − xnj‖,

we obtain by virtue of (3.9) and (3.20)

‖V xnj − xnj‖ → 0.

So by the demiclosedness principle (Proposition 2.4 (ii)), it follows that ω ∈
F (V ) = ∩Ni=1F (Si) and hence the fact that ωw(xn) ⊂ ∩Ni=1F (Si) holds.

Next, we define a mapping R : C → C by

Rx = γTr(I − rA)x+ (1− γ)Ts(I − sB)x, ∀x ∈ C,
where (0, 1) 3 γ = limn→∞ γn. From Proposition 2.4 (iv), we see that R is a
nonexpansive mapping with

F (R) = F (Tr(I − rA)) ∩ F (Ts(I − sB)) = EP (F1, A) ∩ EP (F2, B).

Note that

‖xn −Rxn‖ ≤ ‖zn − xn‖+ ‖zn −Rxn‖
= ‖zn − xn‖+ ‖γnun + (1− γn)vn − [γun + (1− γ)vn]‖
≤ ‖zn − xn‖+ |γn − γ|M,

where M is an appropriate constant such that M ≥ supn≥1{‖un‖ + ‖vn‖}.
This implies that

lim
j→∞

‖xnj −Rxnj‖ = 0.

In view of Proposition 2.4 (ii), we obtain that ω ∈ F (R). That is,

ω ∈ EP (F1, A) ∩ EP (F2, B) ∩ ∩Ni=1F (Si).

Hence (3.19) holds.
Step 7. Show that xn → x∗ = PΩx1.
From (3.3), (3.19) and Lemma 2.2, we conclude that xn → x∗, where x∗ =

PΩx1. �

4. Cyclic Algorithm

Let C be a closed and convex subset of a Hilbert space H and let {Si}N−1
i=0

be N κi−strict pseudo-contractions on C such that the common fixed point
set

N−1⋂
i=0

F (Si) 6= ∅.
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Let x0 ∈ C and let {αn}∞n=0 be a sequence in (0, 1). The cyclic algorithm
generates a sequence {xn}∞n=1 in the following way:

x1 = α0x0 + (1− α0)S0x0,

x2 = α1x1 + (1− α1)S1x1,

· · ·
xN = αN−1xN−1 + (1− αN−1)SN−1xN−1,

xN+1 = αNxN + (1− αN )S0xN ,

· · · .
In general, xn+1 is defined by

xn+1 = αnxn + (1− αn)S[n]xn,

where S[n] = Si, with i = n (mod) N, 0 ≤ i ≤ N − 1.

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let F1 and F2 be two bi-functions from C × C to R satisfying
(A1)-(A4). Let A : C → H be an α-inverse-strongly monotone mapping and
B : C → H a β-inverse-strongly monotone mapping, respectively. Let N ≥ 1
be an integer. Let, for each 0 ≤ i ≤ N − 1, Si : C → C be a κi−strict pseudo-
contraction for some 0 ≤ κi < 1. Let κ = max{κi : 0 ≤ i ≤ N − 1}. Assume

that Ω = ∩N−1
i=0 F (Si) ∩ EP (F1, A) ∩ EP (F2, B) 6= ∅. Given x0 ∈ C = C0, let

{xn} be a sequence generated by the following algorithm:

F1(un, u) + 〈Axn, u− un〉+ 1
r 〈u− un, un − xn〉 ≥ 0,∀u ∈ C,

F2(vn, v) + 〈Bxn, v − vn〉+ 1
s 〈v − vn, vn − xn〉 ≥ 0,∀v ∈ C,

zn = γnun + (1− γn)vn,

Sλn[n] = λnI + (1− λn)S[n],

yn = αnxn + (1− αn)Sλn[n]zn,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0,

(4.1)

where {αn}, {γn} and {λn} are sequences in (0, 1), r ∈ (0, 2α) and s ∈ (0, 2β).
If the above control sequences satisfy the following restrictions:

(i) αn ⊂ [0, a] with a < 1;
(ii) limn→∞ γn = γ ∈ (0, 1);
(iii) λn ∈ [κ, b], κ < b < 1.

Then {xn} converges strongly to x∗ = PΩx0.

Proof. The proof of this theorem is similar to that of Theorem 3.1. The main
points are:

Step 1. The sequence {xn} is well defined.
Step 2. ‖xn − x0‖ ≤ ‖x∗ − x0‖ for all n, where x∗ = PΩx1.
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Step 3. ‖xn+1 − xn‖ → 0.
Step 4. ‖Axn −Ap‖ → 0 and ‖Bxn −Bp‖ → 0.
Step 5. ‖S[n]xn − xn‖ → 0.
To prove the above steps, one simply replaces Vn with S[n] in the corre-

sponding step of Theorem 3.1.
Step 6. ωw(xn) ⊂ Ω.
Indeed, let ω ∈ ωw(xn) and xnm ⇀ ω for some subsequence {xnm} of {xn}.

We may assume that l = nm (mod N) for all m. Since by ‖xn+1 − xn‖ → 0,
we also have xnm+j ⇀ ω for all j ≥ 0, we deduce that

‖xnm+j − S[l+j]xnm+j‖ = ‖xnm+j − S[nm+j]xnm+j‖ → 0.

Then the demiclosedness principle implies that ω ∈ F (S[l+j]) for all j. This

ensures that ω ∈ ∩Ni=1F (Si).
The proof of ω ∈ EP (F1, A)∩EP (F2, B) is similar to that of Theorem 3.1.
Step 7. The sequence xn converges strongly to x∗.
The strong convergence to x∗ of {xn} is the consequence of Step 2, Step 6

and Lemma 2.2. �
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