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Abstract. In this paper, we introduce a new iterative scheme for finding the common
element of the set of fixed points of an asymptotically nonexpansive mapping, the set of
solutions of an equilibrium problem and the set of solutions of a general system of varia-
tional inequalities for inverse-strongly monotone mappings in Hilbert spaces. We prove that
the sequence converges strongly to a common element of the above three sets under some
parameters controlling conditions. This main result improve and extend the corresponding

results announced by many others. Using this theorem, we obtain three corollaries.

1. INTRODUCTION AND PRELIMINARIES

Let H be a real Hilbert space with inner product (-, -) and norm |- ||. — and
— denote weak and strong convergence, respectively. Let C' be a nonempty
closed convex subset of H. Recall that a self-mapping 7" : C — C' is said
to be nonexpansive if [Tz — Ty| < |z — y|| for all z,y € C. T is said
to be asymptotically nonexpansive if there exists a sequence {h,} in [1,00)
with limp_ochy, = 1 such that ||[T"z — T™y|| < hy||lz — y|| for all z,y € C
and n € N. We use F(T) to denote the set of fixed points of T', that is,
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F(T)={zx € C:Tx =z} A mapping f of C into itself is called contraction
if there exists a constant p € (0, 1) such that ||f(x) — f(v)| < pl|lz — y|| for all
x,y € C.

It is clear that every contraction is nonexpansive, and every nonexpansive
mapping is asymptotically nonexpansive. The converses do not hold. The
asymptotically nonexpansive mappings are important generalizations of non-
expansive mappings. For details, we refer the reader to [6].

Let F': C' x C — R be a bifunction of C' x C' into R, where R is the set of
real numbers. The equilibrium problem for F': C x C' — R is to find z € C
such that

F(z,) > 0 (1.1)
for all y € C. The set of solutions of (1.1) is denoted by EP(F). Given
a mapping T : C — H, let F(z,y) = (Tx,y — z) for all z,y € C. Then
z € EP(F) if and only if (T'z,y — z) > 0 for all y € C, i.e., z is a solution of
the variational inequality. For solving the equilibrium problem for a bifunction
F:C xC — R, let us assume that F' satisfies the following conditions:

(A1) F(z,x) =0 for all x € C;

(A2) F is monotone, i.e., F(z,y) + F(y,z) <0 for all z,y € C;

(A3) for each z,y,z € C’ limg_o F(tz+ (1 —t)z,y) < F(x Y);

(A4) for each z € C, y — F(x,y) is convex and lower semicontinuous.

It is well known that for every point x € H, there exists a unique nearest
point in C', denoted by Pox, such that

|z — Pex|| < |lz -yl
for all y € C. Py is called the metric projection of H onto C. Pg is a
nonexpansive mapping of H onto C' and satisfies
(x —y, Pox — Pey) > || Pox — Poylf? (1.2)

for every x,y € H. Moreover, Pox is characterized by the following properties:
Pox € C and
(x — Pox,y — Pox) <0, (1.3)
lz = yl* > ||z — Pez|® + |ly — Pox||? (1.4)
foralz € H,y e C.

Let A: C — H be a mapping. The classical variational inequality, denoted
by VI(A,C), is to find z* € C such that

(Az*, v —2%) >0 (1.5)
for all v € C. It is easy to see that the following is true:
ueVI(AC) e u=Po(u—NAu), A>0. (1.6)

A mapping A of C into H is called a-inverse-strongly monotone if there exists
a positive real number « such that (Au — Av,u — v) > af|Au — Av|? for all
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u,v € C. It is obvious that any a-inverse-strongly monotone mapping A is
monotone and Lipschitz continuous.

For finding an element of the set of fixed points of a nonexpansive mapping
T and the set of solutions of a variational inequality problem, Takahashi and
Toyoda [11] introduced the following iterative scheme:

T+l = QpTp + (1 - O‘n)TPC(xn - AnAxn)a (17)

where g = z € C, {a, } is asequence in (0, 1) and {)\,,} is a sequence in (0, 2cv).
Motivated by the idea of Korpelevich [7], Nadezhkina and Takahashi [9], Zeng
and Yao [17] and Yao and Yao [16] proposed some so-called extragradient
methods for finding a common element of F(T)NVI(A,C).

Let A, B : C' — H be two mappings. Now we concern the following problem
of finding (z*,y*) € C' x C such that

{()\Ay +:U —y x—x>

> v

Vo € C,
which is called a general system of variational inequalities where A > 0 and

p > 0 are two constants. In particular, if A = B, then problem (1.8) reduces
to finding (z*,y*) € C' x C such that

(My* + 2" —y*,z —z%) >
(pAz* +y* — a2z —y*) >

, Vredl,

0
(1.9)
0, Vel

which is defined by Verma [12] (see also [13]) and is called the new system
of variational inequalities. Further, if we add up the requirement that z* =
y*, then problem (1.9) reduces to the classical variational inequality problem
(1.5). For solving problem (1.8), recently, Ceng et al. [3] introduced and
studied a relaxed extragradient method. Based on the relaxed extragradient
method and the viscosity approximation method, W. Kumam and P. Kumam
[8] constructed a new viscosity relaxed extragradient approximation method
for finding an element of the set of fixed points of a nonexpansive mapping 7T,
the set of solutions of the equilibrium problem (1.1) and the set of solutions of
a general system of variational inequalities (1.8). Very recently, based on the
extragradient method, Yao et al. [15] proposed an iterative method for finding
a common element of the set of a general system of variational inequalities and
the set of fixed points of a strictly pseudocontractive mapping in a real Hilbert
space.

Motivated and inspired by the above works, in this paper, we introduce an
iterative method based on the extragradient method and viscosity method for
finding the common element of the set of fixed points of an asymptotically
nonexpansive mapping, the set of solutions of an equilibrium problem and
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the set of solutions of a general system of variational inequalities for inverse-
strongly monotone mappings in real Hilbert spaces. We establish some strong
convergence theorems for our iterative scheme.

In order to prove our main results, we also need the following lemmas.

Lemma 1.1 ([10]). Let {zyn} and {yn} be bounded sequences in a Banach space
X and let {5,} be a sequence in [0, 1] with 0 < liminf, o B, < limsup,,_, . Bn <
1. Suppose pi1 = (1—Pn) Yn+LBn xn, for all integers n > 0 and limsup,,_, . (||
Yn+1 = Yn | — [ @np1 —an || ) 0. Then limpoo || yn — @ [|= 0.

Lemma 1.2 ([4]). Let H be a Hilbert space, C' a closed convex subset of H,
and T : C — C an asymptotically nonexpansive mapping with F(T) # (.
If {z,} is a sequence in C weakly converging to x € C and if {(I — T)x,}
converges strongly to 0, then x = Tx.

Lemma 1.3 ([14]). Assume {a,} is a sequence of nonnegative real numbers
such that
ant1 < (1 — an)an + 6py, n >0,
where {any} is a sequence in (0,1) and {0,} is a sequence in R such that
(1) 252y o = oo,
(2) limsup,,_, o, g—z <0ory 22 | on|< 0.
Then lim,,_ s an = 0.

Lemma 1.4 ([2]). Let C be a nonempty closed convex subset of H and let F
be a bifunction of C x C into R satisfying (A1) — (A4). Letr >0 and x € H.
Then, there exists z € C' such that

F(z,y)—k%(y—z,z—x) >0 forally e C.

Lemma 1.5 ([5]). Assume that F' : C x C — R satisfies (A1) — (A4). For

r>0 and x € H, define a mapping T, : H — C' as follows:
To(z)={2€C:F(z,y) +{y—2z,2—12) >0, Vy € C}

for all x € H. Then, the following hold:

1. T, is single-valued;

2. T, is firmly nonexpansive, i.e., for any x,y € H,
T2 — Toyl* < (Trx = Try,x — y);

3. F(T,) = EP(F);

4. EP(F) is closed and convex.

Lemma 1.6 ([3]). For given z*,y* € C, (z*,y*) is a solution of problem (1.8)
if and only if x* is a fized point of the mapping G : C' — C defined by

G(x) = Po[Po(x — pBx) — MAPo(x — uBz)], Vx € C,

where y* = Po(z* — pBx*).
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Note that the mapping G is nonexpansive provided A\ € (0,2a) and p €
(0,28). Throughout this paper, the set of fixed points of the mapping G is
denoted by I.

Lemma 1.7. In a real Hilbert space H, there holds the inequality
lz +yl? < |2 + 2(y, = + ), Va,y€H.

Lemma 1.8 ([1]). Let H be a Hilbert space, C' a closed convex subset of H,
and T : C — C' a nonexpansive mapping with F(T) # 0. If {x,} is a sequence
in C weakly converging to x € C and if {(I — T)x,} converges strongly to 0,
then x = Tx.

2. MAIN RESULTS

Theorem 2.1. Let C' be a nonempty closed convex subset of a real Hilbert
space H. Let F be a bifunction from C x C — R satisfying (Al) — (A4),
the mappings A, B : C — H be a-inverse-strongly monotone and B-inverse
strongly monotone, respectively. Let T : C — C be an asymptotically non-
expansive mapping with Q := F(T)EP(F)(\T # 0. Let f : C — C be a
p-contraction. Suppose x1 € C' and {x,} is generated by

F(unay)+%<y_unaun_$n> >0, VyEC’,
Yn = Po(un — pBuy), (2.1)
Tp4+1 = anf(xn) + Bnan + ’YnTnPC(yn - )\Ayn),

where A € (0,2a), p € (0,25), {an}, {Bn}, {1} are sequences in [0,1] and
{rn} C (0,00) is a real sequence such that

(1) an+ Bn+m =1,

i1) limy, o0 oy = 0, 302

(
(731) 0 < liminf, o0 By < limsup,,_,o, Bn < 1,
(
(

oy = 00 and lim,, hgfl =0,
n

iv) liminf,, oo > 0 and limy, o0 | Tpy1 — 0 |= 0,

v) T satisfies the asymptotically regularity on C: for any bounded subset

limsup{||7" "z — T"z| : x € K} =0,
n—o0

then {x,} given by (2.1) converges strongly to x* = Pof(x*) and (z*,y*) is
a solution of the general system of variational inequalities (1.8), where y* =
Po(x* — pBx*).

Proof. Let Q = Po. Then Qf is a contraction of C into itself. Since C is a
closed set of H, there exists a unique element of * € C such that z* = Q f(z*).
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For any x,y € C and X € (0,2a), we note that
I(I = AA)z — (I = XA)y|* = [l —y — M(Az — Ay)|]®
=[lz — ylI> = 2X\z — y, Az — Ay) + X*| Az — Ay|]? (22)
<z =yl + AA = 20) | Az — Ay[* < [« -y,

which implies that I — AA is nonexpansive. In the same way we can obtain
that I — uB is also nonexpansive and

I(I = uB)z — (I = uB)y|* < ||z — y|I*> + p(u = 28)[| Bz — By||>  (2.3)

for all z,y € C and p € (0,208).

Let {7}, } be a sequence of mapping defined as in Lemma 1.5 and let 2* € Q.
Then z* = Tz* = T, x* and z* = Po[Po(z* — pBx*) — NAPc(x* — uBzx*)].
Putting y* = Po(z* — pBz*) and v, = Po(yn — AAy,), we have z* = Po(y* —
AAy*) and

Tn4+1 = anf($n) + ann + ’)’nTnUn-
From (2.1) we have that

un — || = | Ty, 20 — Tpp || < |20 — 27, (2.4)

|yn —y*[| = | Po(un—pBuy) — Po(z* —pBz™)|| < |lup—2"|| < |lzn—2%] (2.5)
and
|vn—2[| = | Pc(yn—AAyn) — Po(y" =AY < lyn—y*[| < lzn—2"]]. (2.6)

By condition (i), for any z*, 0 < ¢ < 1 — p and sufficient large n > 1, we have
Yn(hn — 1) < e, and hence
[@n1 — =]

ol f(zn) — 2| + Bullen — ™[ 4+ vnl[T"vn — 27|

Son([Lf(zn) = fF@) 4 £ (@) = 27[) + Bullzn — 27| + ymhnllon — 27|

Sanpllzn — 27| + anl[f(27) = 27| + Bullzn — 27| + ynhnllzn — 27|

=[1 = an + anp +n(hn = D][zn — 27| + anllf(z") — 27|

<max{||z, —2*|, (1 = p— &) 7| f(2") — "}
By induction, we have that

l2n = 2*|| < max{f|zr —a*[|, (1 = p =) | f(&*) = 2*|},Vn € N.  (2.7)

Thus the sequence {x,} is bounded. Consequently, the sets {uy}, {yn}, {vn},
{T"yn},{Bu,} and {Ay,} are also bounded.
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Next, we claim that lim, e ||€n4+1 — 2n|| = 0. Indeed, we define a sequence
{sn} by Tp+1 = Bnxn + (1 — Bn)sn, ¥n > 1. Thus, we have

_ Tp42 — Brn+1Tn1l  Tntl — BnZn

Sn4+1 — Sn = 1— BnJrl - 1_ Bn
:an+1f(513n+1) + '7n+1Tn+1Un+1 . anf(l‘n) + 'ynTn'Un
1- ﬁnJrl 1—- /Bn
o An+1 79 (2 8)
= —f(x - f(x .
[1 _/Bn—i-lf( 1) = 7 —5nf( n))
+ Tn+1 [Tn+1,vn+1 i Tn+1'l]n}
1- Bn-‘rl
Ty Ty On+1 T+l Qn T, .
A v

We note that
|vns1 — vnll = Po(I = MA)yns1 — Po(I = MA)ynll < [Ynt1 — nl|

|PoT - pBYugir — Poll - pBYual] < s — gl &
From u, = T;,xn and upy1 = Ty, Tny1, we have that
Flun,y) + :n<y — Up,Up — Tp) >0, Vyel (2.10)
and
F(up+1,y) + — (Y — Upt1, Unt1 — Tnt1) > 0, Yy e C. (2.11)

Putting y = up41 in (2.10) and y = u,, in (2.11) respectively, we obtain

1
F(Un;un—l—l) + 7<un+1 — Up, Up — xn) >0
n

and
1

Tn+1

F(un+1a un) + <un — Up+1, Un+1 — xn+1> > 0.

So, from (A2) we have

Up — Tn Up4+1 — Tp41
<un+1 — Unp, - > > 0.
Tn Tn+1

Hence
Tn

<Un+1 — Unp,Un — Tn — (un—‘rl - xn—l—l)) >0

Tn+1
and
Tn

<un+1 — Up, Up — Un+1 + Unt1 — Tp — (un+1 - $n+1)> > 0.

Tn+1



454 Jing Zhao

Since lim inf,,_, o, 7, > 0, without loss of generality, we may assume that there
exists a real number ¢ such that r,, > ¢ > 0 for all n > 1. Then we have

ltns1 — UnH2 < (Uny1 — Un, Tong1 — T + (1 —

< Hum—l - un”{Hxn—l-l - an—i- ’ 1-

and hence

1
[unt1 = unll < [l2n1 — 2|l +

T'n+1

Tn

)(un—i-l - $n+l)>

Tn

Tn+1

’ Hun-&-l - xn—&-lH}
n+1

| "1 — 7o | Juns1 — Zoga|

(2.12)

Ly
< NTns1 — x| + = | Tna1 — T |,

where L = sup{||u, — x| : n > 1}. Substituting (2.12) into (2.9), we have

Ly
||Un+1 - Un” < ”xn+1 - xn” =+ ? | T'n+1 — Tn | . (2-13)
Combining (2.8) and (2.13), we have
841 = Snll = |Tnt1 — 2n ||
A1 «
<——(If @nr) | + 1T onll) + == (£ @n) | + [ T"0n]))
1 BnJrl 1 ,Bn
+ Ity - T | 4 T ey — T 0| — s — 2l
1-— 5n+1
Ap41 [0
<——(If @nr) | + [T o) + == (I1f @) | + [ T"0n]))
1 /Bn—i-l 1 /Bn
h
+ Iy = Ol 1T 0 — T | = |41 — 2
1—Bni1
On+1 (6
<——(If @nr) | + 1T vnll) + == (I1f @) | + [ T"0n]))
1 /Bn—f—l 1 /Bn
nt+1hnt1 Ynt1hns1 Ln
nrlinrl _ mtlntl =1 _
+( 1— Bpis Mzn+1 — znll + 1— Bpe1 c | "1 — 7 |
+ ||T”+lvn —T"v,||
On+1 (6
=——(If @nt DIl + 1T vnll) + = (I (@n)[| + 1 T"vnl])
1 - Bny1 - Bn
Yot1(hnt1 — 1) Qn+1 Yn+1hn+1 L1
+ - Tntl — Tp|| + ————— | Tpy1 — T
[ 1— 5n+1 1— Bn—‘rl]H n+1 TL” 1 _Bn—‘rl c ’ n+1 n

+ HT"an — T vy .

Thus it follows from conditions (i7), (iv) (v) and h, — 1 that

limsup([[sp+1 = snll = [[Zn+1 — znl]) < 0.
n—oo
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By Lemma 1.1 we get lim,, o ||$n, — || = 0. Consequently,
lim ||zp41 — 2] = lim (1 — By)|[sn — xu|| = 0. (2.14)
n—00 n—oo

From (iv), (2.9), (2.12) and (2.13), we also have v, 41 —vn — 0, Upy1 —up — 0
and yp4+1 — yn — 0 as n — oo.

Further, we can obtain that lim,_,~ ||Ay, — Ay*|| = 0 and lim,,,~ || Bu, —
Bz*|| = 0. Indeed, from (2.2) — (2.6) we get that

[
<anl| f(zn) = z** + Ballzn — ¥ + nhivn — 2*|?
<anl| f(zn) = z** + Bullzn — 2|1 + yuhi |(I — AA)yn — (I — AA)y*|?
<anl|f(zn) — =*|* + Bullzn — 2*|?
+ i {llyn — v 17 + A = 20)[| Ay, — Ay*|?}
<anl|f(zn) = 2*|* + Bullzn — 2|1 + yuha |z — 2*|?
+ Ynhi A(X = 20) || Ay, — Ay*||
=anl|f(zn) = 2*[]* + [1 — an + by — D]f|zn — 2*|?
+ b AA = 20) || Ay, — Ay*|?
and
g1 — ¥
<anl|f(zn) — 2*|° + Bullzn — 2*|> + yuhi lvn — 217
<an|lf(zn) = ** + Bullzn — ¥ + vuhl yn — v*[°
<anl|f(zn) = 2** + Bullzn — 2*|* + yuho|(I — pB)uy — (I — pB)a*|?
<anl|f(zn) — %> + Bullzn — 2*|?
+ mhafllun — 2> + p(p — 28)|| Bu, — Bz*||*}
<anl|f(zn) = 2*|° + Bullzn — 2|1 + yuho |z — 2*|?
+ ynhi (i — 28)|| Buy — Bx*|)?
=apl| f(zn) — 2| + [1 — an + (b — V)]0 — z*||?
+ Y2 p(p — 2B)|| Bun, — Ba*||.
It follows that
A2 N[ Ay — Ay
el (o) — 272 + a2 — 1) — gl — 7]
(82— DA — 20)]|Agn — Ay [P + [z — 22 — mss — °]1
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=an || f(2n) — x*HQ + [’Yn(h?z —1) — ay]l|zn — x*”Q

+ (ki = DA — 20)[| Ay, — Ay*|?

+ (lzn — 2% + lzn+1 — 2" [D(lzn — 2% = [lzns1 — 27|))
<anl|f(zn) — 2?4+ [y (hl — 1) — o] |2n — 2¥|?

+ Y (hi; = DA — 20)[| Ay, — Ay*|?

+ (|zn — 2| + |Tn41 — 27 |Tnt1 — 20|

and

(28 — p)|| Buy, — Ba*||?
<apl|f(zn) — x*”Q + ['Yn(h?z —1) —ay]lzn — x*Hz
+ (b = Dp(p = 28)|| Buy — Ba*||* + [y — ¥ = [l — 2™
=an| f(xn) — 2 + (ki — 1) — ag]l|lz, — 2*|?
+Yu(hi — Dplp — 28)|| Buy, — Ba*||?
+ (lzn = 2% + [lzn41 — 2" D (lzn — 2| = 2n1 — 27])
<an|f(zn) — &[] + [y (hy — 1) — anl |0 — 2|2
+ n(hy — (e — 28)|| Bun, — Ba*|?

+ (lzn — 2% + l[2na = 2" Dllener — @nl-

Since oy, — 0, hy, — 1, ||@n — p41|| — 0 and liminf,, . v, > 0, we obtain
lim,, 00 [[Ayn — Ay*|| = 0 and lim,_, ||Bu, — Bz*|| = 0.

Now we show that ||Tv, — v,|| — 0 as n — oo. Noting that P is firmly
nonexpansive, from ||u, — z*|| < ||z, — z*| we have

lyn — 712
Pl — pBYun — Pol — uB)a|?
§<(I - /‘B)Un — (I - /LB)Z'*ayn - y*>
1 * *
=§[||(I — pB)up, — (I — pB)x*||? + |y — y*|?
—||(I = pB)un — (I — uB)x* — (yn — y*)|1?]
1 * * * * *
§§[||Un — 22+ lyn — ¥ 1> = un — yn — p(Buy, — Bx*) — (2 — y)||]
1 * * * *
<Slllan -2 12+ Ny — ¥*112 = llun — yn — (2* — )|

+ 201{uy — g — (& — y"), Buy, — Ba") — 2| Bu,, — Ba" ||
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and from ||y, — y*|| < ||z, — *|| we also have
lon — 2|
=||Po(I = AA)yn — Po(I = AA)y*|?
(I = A)yn — (I = AA)y", vp — 27)
1 * *
=5 T = Ay = (I = XA |I* + [|on — 27
— |1 = AA)y — (I = AA)y" — (vn — 2™)||”]
1 * * * * *
<5 lllym = w7+ o = 17 = llyn = vn = MAya — Ay") = (y" = 2")|"]
1 * * * *
Si[”*’”ﬂ -z H2 + |lop — ||2 —yn —vn + (2" —y )H2
+2Myn — vn + (&% = y), Ayn — Ay") = N[ Ay, — Ay*|].
Thus, we have
Ll L T o)
+ 2M<un —Yn — (:L‘* - y*), Buy, — B$*>
and
lvn = 2*(1” <llzn — 2*|% = llyn — va + (@ = y)II? (2.17)
+ 2>‘<yn — Up + (l'* - y*)’Ayn - Ay*)

By (2.6) and (2.16) we get

[E
<an|f(@n) = 21> + Ballzn — 2*|* + bl lop — 2*||?
<an||f(zn) — a;*H2 + Bullzn — x*H2 + ’Ynhiuyn _ y*”2
<an|| f(zn) — x*HQ + Bnllzn — QT*HZ + ’Ynh%{Hxn — x*H2
—Jlun = yn = (" = y")I° + 2p(un =y — (2" — y*), Bun, — Ba")}
<an|lf(@n) — |? + [1 = an 4+ (k2 = D] ||zn — z*|?
— ’YnhiHUn T y*)”Q
+ 29,2 | un — Yo — (& — y*)|| - || Bun, — Bz
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which implies that
Yalltn = yn — (@ = y)|I?
<anllf(@n) = & + l|lzn — 2*|* = [lenr — 2|
+ (ks = 1) = aglllzn — 22 = (bl = Dllug — yo — (2* —y*)|I?
+ 2yhip il — yo — (2* = y)|| - [| Buy — Bz*||
<an|| f(wn) = 2P+ (lzn — 2| + |2ns1 — 2Dz — 24 |
+ [y = 1) = anlllen — 2| = by = Dllun =y — (=* =y

+ 29 b pllun = yo — (" = y*)|| - | Buy — Ba™|.
(2.18)
It follows from (2.17) that

[E—
* (12 * (12 2 * (12

Sanllf(zn) — 2 ||° + Bullzn — 2|7 + by |lvn — 27|
<au|lf(@n) — 21?4+ Bullzn — =*||* + whi{||zn — 2|

— [y — vn + (@ = y)I® + 2Myn — vn + (2F — y*), Ay, — Ay*)}
<anllf(@n) — ¥ + [1 — on + y(hE — ]|z — =¥

- 'Ynh?zHyn — Un + (QS‘ - y*)HQ

+ 290 h2 A |y — vn + (2 — )| - || Ay — Ay

*

which implies that
Yallyn — v + (2* = y*)|?

anllf(zn) — 2P + lzn — 2*|° = [|zng1 — ¥

+ [k = 1) = an[|an — 2*[]* = v (b = Dy — v + (& —y)|°

+ 290 hi Allyn — va + (& = y*)| - [ Ayn — Ay*|| (2.19)
<anl|f(zn) — 2P + (|20 — 2| + |Zns1 — 2 )|z — Tppa |

+ [k = 1) = an]l|an — 2*[]* = v (b = Dy — v + (& — )|

+ 290 h2 Allyn — va + (& — y*)| - || Ayn — Ay*|.

Note that ||z, — zpt1|| = 0, oy = 0, hyy, — 1, || Buy, — Bz*|| — 0, ||Ayn —
Ay*|| = 0 and liminf,,_, v, > 0. From (2.18) and (2.19) we deduce

lim Jun — o — (2" — )| = 0 (2:20)
n—oo

and
lim |yn —vn + (2% —y*)|| = 0. (2.21)

n—oo
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Since 75, is firmly nonexpansive for each n > 1, we have
lun — z*||? = | T}, xp — Ty, z*||> < (T} 2p — T}, 2%, — x*)
1
2
and hence |lu, — z*||? < ||z — 2% — ||2n — un||®. Tt follows from (2.5) and
(2.6) that

1 — 2|
<an||f(@n) = a*||* + Ballzn — 2*|* + mhi[Jog — z*||?
<anl|f(@n) = &*|1* + Ballzn — 2*|1* + bl Jun — "2
<apl|f(zn) — x*|]2 +[1—an+ ’Vn(hgz = D]fjzn — x*||2 - %hillxn - un||2
and hence
Ynllzn — Un”2
<an||f(zn) = 2|* + l|lzn — 2[* — [|lzp41 — 2|
+ [k = 1) = anlzn — 27| = (bl = D)z — un®
<an| f(zn) = 2*|* + (lzn — 2| + @1 — 2*)]an — znt
+ [ (b = 1) = ]|z — 2|2 = (B = 1)l — un]*.

So, we have

= (un — 2", 2 — 2*) = S (l[un — 2*[* + 2 — 2*|* ~ ||z — unl?)

lim |z, — u,|| = 0. (2.22)
n—oo
Moreover, from (2.20) and (2.21) we obtain
lim |ju, —v,|| = lim ||x, —v,|| = 0. (2.23)
n—o0 n— o0

From zp41—2n = an f(2n) + BnZn+ T 00 — 20 = an(f(xn) —xn) +vn (T vy, —
Tpn), we get Yo (T"vy — xp) = Tny1 — Tn — an(f(zn) — x,). It follows from
Tpt1 — Tn — 0 and oy, — 0 that

lim || T"v, — x| = 0. (2.24)
n—oo
Since ||T" vy, — vy || < || Ty — xn|| + |20 — vy |, from (2.23) and (2.24) we have
IT" v, — vy|| = 0. It follows from
[vn = Ton|l < |lvn = T"vn || + [ T"vn — Tn+1UnH + ||Tn+1vn — Tuy|
< T — Ty || 4+ (14 hy)|jvn — T,
that
lim [jv, — Tv,| = 0. (2.25)
n—oo
Next, we show that
limsup(f(z*) — 2", z, — 2*) <0,

n—oo
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where x* = Po f(z*). As {v,} is bounded, we can choose a subsequence {vy, }
of {vy,} such that v,, = z € C and
limsup(f(z*) — 2™, v, — ") = lim (f(z™) — 2", vy, — =¥).
n—oo 1—00
From ||[Tv, — vn|| — 0 and Lemma 1.2, we obtain z € F(T'). Let us show
z € EP(F). Since uy, = T}, xy, we have

1
n
From (A2), we also have
1
— (Y — Un, up, — ) > Fy,up)
Tn
and hence
Up, — T,

<y*uni’ > zF(y,unz)
n;

From ||up, —2y| — 0 and ||z, — vy, || = 0 we get u,, — 2. Since ||up, —p,|| = 0
and liminf, o, r, > 0, it follows from (A4) that
0> Fl(y,z), VyeC.

Fortwith0<t<landyeC,lety, =ty+ (1 —t)z. Sincey € C and z € C,
we have y; € C' and hence F'(y;,z) < 0. So from (A1) and (A4) we have

0= F(yt,yt) <tF(yt,y) + (1 = t)F(ye, 2) < tF(yr,y)

and hence 0 < F(y;,y). From (A3), we get 0 < F(z,y) for all y € C and
z € EP(F). We shall show z € Q. Since G is nonexpansive, we have that

[on = G ()|
=||Pc[Pc(un — pBuy) — NAPc(uyn — pBuy)] — G(v,) ||
=[G (un) = G(on)|
<[t — vnl|
—0.

From Lemma 1.8 we have z € F/(G) and hence z € I'. Hence z € Q. It follows
from ||z, — vn|| = 0, * = Pqf(z*) and (1.3) that

limsup(f(z*) — 2™, z, — ™) =limsup(f(z*) — %, 2, — vy + v, — ")

n—o0 n—00
<limsup(f(a") — 2%, v, — 27)
n—»00
= lim <f(IL'*) — a7, Un; — $*>
i—o0
=(f(2") — a7,z — %)
<0.

(2.26)
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At last, we show that lim, ,. x, = 2*. From Lemma 1.7 we get that
lznr1 — 2"
<lan(f(zn) — %) + Bn(zn — %) + Y (T"vn — 95*)”2
<[1Bn(@n — &) + 3 (T"0n — &) |* + 200 (f (20) — 2", 241 — 2¥)
<Bnllzn — | + Whallzn — ) + 2anpllen — 2| - |2p41 — |
+ 200 (f(2") — 2%, T g1 — 27)
<[1 = an + 3 lhn = DP[|lzn — 2* | + anp(l|lzn — 2*|* + 201 — 2*|)
+ 200 (f(2") — 2%, Tny1 — 27)
<[1 =2~ plan +aj + 3(hn = D]llzn — |1 + anpllwnts — ||
+ 20, (f(2") — 2, xpge1 — xF).
It follows that
e
(@) =" s )

=(1 —op)||zn — JL‘*||2 + O,

|1 —2*|* < e — 2|2

where o,, = 2(11__’2% and §,, = %Hxn—x*w—kl%&ﬁ(ﬂx*)—x*,an—

z*). It follows from (7i), (2.26) and Lemma 1.3 that z,, — x*. This completes
the proof. O

As direct consequences of Theorem 2.1, we obtain three corollaries.

Corollary 2.1 Let C be a nonempty closed convex subset of a real Hilbert
space H. Let F be a bifunction from C x C — R satisfying (Al) — (A4),
the mappings A, B : C — H be a-inverse-strongly monotone and B-inverse
strongly monotone, respectively. Let T : C — C be an asymptotically non-
expansive mapping with Q := F(T)(EP(F)\T # 0. For fivzed u € C and
given x1 € C arbitrarily, {x,} is generated by

F(tn, y) + 7=y = tn, n — ) > 0, Vy € C,
Yn = Po(un, — pBuy,), (2.27)
Tpt1 = At + BpZn + T Po(yn — AMyn),
where X € (0,2a), p € (0,28), {an},{Bn}, {1} are sequences in [0,1] and
{rn} C (0,00) is a real sequence such that

(Z) an+ﬂn+7n:17

() limy—yo0 oy, = 0, X220, = 00 and limy, 00 hgfl =0,
n




462 Jing Zhao

(131) 0 < liminf, o B, < limsup, o Bn < 1,
(1v) liminf,, o0y > 0 and limy, 00 | Tpy1 — 70 |= 0,
(v) T satisfies the asymptotically reqularity on C: for any bounded subset
K of C,
limsup{||T" Mz — T"z||: 2 € K} =0,
n—oo

then {x,} given by (2.27) converges strongly to x* = Pqf(x*) and (x*,y*) is
a solution of the general system of variational inequalities (1.8), where y* =
Po(x* — uBx*).

Corollary 2.2 Let C be a nonempty closed convex subset of a real Hilbert
space H. Let the mappings A, B : C'— H be a-inverse-strongly monotone and
B-inverse strongly monotone, respectively. LetT : C' — C' be an asymptotically
nonexpansive mapping with Q = F(T)(\T # 0. Let f : C — C be a p-
contraction. Suppose x1 € C and {x,} is generated by

Yn = PC(xn - Nan)a
Tnt+1 = Oénf(xn) + Bnxn + ’YnTnPC(yn - )‘Ayn)7

where A € (0,2a), p € (0,25), {an}, {Bn} and {1} are sequences in [0,1]
such that
(Z) Oln"‘ﬁn_}")/n:l;

(2.28)

(44) limyp o0 0y = 0, Y20 1o, = 00 and limy, e hz;I =0,
(#11) 0 < liminf,, 00 B, < limsup,_,o Bn < 1,

(v) T satisfies the asymptotically reqularity on C': for any bounded subset
K of C,

limsup{||7" "z — T"z| : z € K} =0,

n—oo
then {x,} given by (2.28) converges strongly to x* = Pqf(z*) and (z*,y*) is
a solution of the general system of variational inequalities (1.8), where y* =
Po(z* — pBa*).

Corollary 2.3 Let C be a nonempty closed convex subset of a real Hilbert
space H. Let the mappings A, B : C' — H be a-inverse-strongly monotone and
B-inverse strongly monotone, respectively. LetT' : C' — C' be an asymptotically
nonexpansive mapping with Q := F(T)(\T # 0. For fized u € C and given
x1 € C arbitrarily, {x,} is generated by

{yn = PC(xn - ,U/an)a (229)

Tyl = QpU + Brnxn + 'YnTnPC(yn - )\Ayn)a

where X\ € (0,2a), p € (0,28), {an},{Bn} and {y,} are sequences in [0, 1]
such that
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i) an+ Bn+m =1,

14) limy o0 oy, = 0, 202y = 00 and limy, o0 hg—;l =0,

i11) 0 < liminf, o0 B < limsup,,_o, Bn < 1,

iv) T satisfies the asymptotically reqularity on C': for any bounded subset

K of C,

limsup{||7" "z — T"z| : x € K} =0,

n—oo

then {x,} given by (2.29) converges strongly to x* = Pqf(z*) and (z*,y*) is
a solution of the general system of variational inequalities (1.8), where y* =
Po(z* — pBx*).
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