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Abstract.In this paper, we introduce a new iterative scheme based on the relaxed extra-
gradient method for finding a common element of the set of solutions of a general system of
variational inequalities and the set of fixed points of IV strict pseudo-contractions in a real
Hilbert space. We prove that the sequence converges strongly to a common element of the

above sets under some controlling conditions.

1. INTRODUCTION

Let H be a real Hilbert space with inner product (-, -) and norm || -||. Let C
be a nonempty closed convex subset of H. For every point x € H, there exists
a unique nearest point in C, denoted by Pcox, such that ||x — Pox|| < ||z — y|
for all y € C. The mapping P is said to be the metric projection of H onto
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C. Tt is well known that P¢ is a nonexpansive mapping and satisfies
(x —y, Pox — Pey) > || Pox — Peylf? (1.1)

for every z,y € H. Moreover, we know that Pox is characterized by the
following property:

(x — Pox,y — Pox) <0 (1.2)

forallx € H, y € C.
Recall that a mapping S : C' — C is said to be a k-strict pseudo-contraction
if there exists a constant x € [0, 1) such that

1Sz — Syl|* < llo = y|I* + &Il (I = )z — (I = S)y|?

for all z,y € C. We use F(S) to denote the set of fixed points of 5, i.e.,
F(S) ={x € C: Sx = x}. Note that the class of strict pseudo-contractions
strictly includes the class of nonexpansive mappings which are mappings S :
C — C such that ||[Sz — Sy|| < [z — y|| for all z,y € C. A mapping f :
C — C is called contraction if there exists a constant p € [0,1) such that
1f (@) = f)ll < pllz —yl| for all z,y € C.

For two given nonlinear operators A, B : C' — H, we consider the following
problem of finding (z*,y*) € C' x C such that

A* *_ * _ * >
{()\ v ot -y e —2*) >0, Vredl, (1.3)

(uBx* +y* —x*,x —y*) >0, Vzel,

where A > 0 and g > 0 are two constants.This is so-called a general system
of Variational inequalities, which is defined by Verma [9]. If A = B, then
problem (1.3) reduces to finding (z*,y*) € C' x C such that

Au* * ok — ) >
{()\ vyt -yt e —a*) >0, Veedl, (1.4)

(WAzx* +y* —o*, . —y*) >0, Vrel,

which is said to be the new system of variational inequalities. Further, if
we add up the requirement that z* = y*, then problem (1.4) reduces to the
classical variational inequality, denoted by VI(A, C), which is to find an z* €
C such that
(Az*,x —2*) >0

for all z € C. The variational problem is one of the important branches of
sciences, and the variational inequality has been extensively studied. See, e.g.
[4, 5, 6,9, 11].

Let C be a closed convex subset of real Hilbert space H. It is known that
A is called a-inverse-strongly monotone if there exists a positive real number
a > 0 such that

(Au — Av,u —v) > al|Au — Av|?
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for all u,v € C. Recently, Ceng et al. [4] introduced and studied a relaxed
extragradient method for finding solutions of problem (1.3). Let A,B: C — H
be a-inverse-strongly monotone and S-inverse-strongly monotone, respectively.
Let S be a nonexpansive mapping and suppose 1 = u € C and {z,} is
generated by

Yn = Po(vn — pBxy),
Tn+l = QpU + 6nxn + ’VnSPC(yn - >\Ayn)a

where X € (0,2«), u € (0,253). Then, they proved that the iterative sequence
{z,} strongly converges to a common element under some parameters con-
trolling conditions. Very recently, for approximating a common element of the
set of fixed points of a strict pseudo-contraction and the set of solutions of
problem (1.3), Yao et al. [11] introduced a new iterative scheme:

Zn = PC(fUn - :UB-rn)v
Yn = nQxpn + (1 — ap)Po(zn — AAzy),
I+l = BrnTn + 'YnPC(Zn - )\Azn) + 5nsyn’

where @ is a contraction and S is a strict pseudo-contraction. Furthermore,
they also obtained a strong convergence theorem in a real Hilbert space.

Motivated and inspired by the above works, in this paper, we consider a
new iterative scheme based on the extragradient method for finding a com-
mon element of the set of solutions of (1.3) and the set of fixed points of N
strict pseudo-contractions. We also prove that the iterative scheme strongly
converges to a common element of the above sets.

2. PRELIMINARIES

In order to prove our main results, we collect the following lemmas in this
section.

Lemma 2.1 ([4]). For given z*,y* € C, (z*,y*) is a solution of problem (1.3)
if and only if x* is a fixed point of the mapping G : C — C defined by

G(z) = Po[Po(x — pBx) — AMAPc(x — pBx)], Yz € C,
where y* = Po(z* — pBx*).

Remark 2.1 ([4]). If the mappings A,B : C — H are a-inverse-strongly
monotone and B-inverse-strongly monotone respectively, then G : C — C is a
nonexpansive mapping provided X € (0,2a) and u € (0,20).

Throughout this paper, the set of fixed points of the mapping G is denoted
by €.
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Lemma 2.2 ([7]). Let (E,(-,-)) be an inner product space. Then, for all
z,y,z € E and o, B,y € [0,1] with « + 5+ v =1, we have

laz+By+vzl* = allz]*+Blly >+l 2l1* — abllz—y|* ~ayla—=2I*~ Bylly—=]*.

Lemma 2.3 ([8]). Let {x,} and {yn} be bounded sequences in a Banach space
X and let {5} be a sequence in [0, 1] with 0 < liminf,,_, B, < limsup,,_, ., Bn <
1. Suppose xpn11 = (1—0n) Yn+LBn T, for all integers n > 0 and limsup,, . (||
Ynt1 = Yn |l — [ Tnt1 — 20 || ) < 0. Then limy o0 || Yn — 20 [[= 0.

Lemma 2.4 ([10]). Assume {a,} is a sequence of nonnegative real numbers
such that

An+1 S (1 - PYn)an + 577,; n Z 07

where {7y} is a sequence in (0,1) and {0,} is a sequence such that
(i) 2202y Yn =0,
(i) limsup,,_, ,‘i—: <0 ory 22| on|< 0.

Then lim,,_ o ay = 0.

Lemma 2.5 ([2]). Let H be a Hilbert space, C' a closed convex subset of H,
and T : C — C a nonexpansive mapping with F(T) # 0. If {xn} is a sequence
in C weakly converging to x € C (for short, x,, — x € C), and if {(I —T)xn}
converges strongly to y (for short, (I —T)x, — y), then (I —T)x = y.

Proposition 2.6 ([1]). Assume C is a closed convex subset of a Hilbert space
H.
(i) If T : C — C is a k-strict pseudo-contraction, then T satisfies the
Lipschitz condition

1+ kK
11—k«

[Tz — Tyl < lz =yl Va,y € C.

(ii) If T : C — C is a k-strict pseudo-contraction, then the mapping I —T
is demiclosed (at 0). That is, if {x,} is a sequence in C such that
Ty =7 and (I —T)x, — 0, then (I —T)z = 0.

(iii) If T : C — C is a k-strict pseudo-contraction, then the fized point set
F(T) of T is closed and convex so that the projection Pp(ry is well
defined.

(iv) Given an integer N > 1, assume, for each 1 <i < N, T;: C — C is a
Ki-strict pseudo-contraction for some 0 < k; < 1. Assume {)\i}f\il 18
a positive sequence such that Eﬁilz\i =1. Then Zi]ilx\iTi 1S a k-strict
pseudo-contraction with kK = max{r; : 1 <i < N}.
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(v) Let {T;}¥, and {\;}Y, be given as in (iv) above. Suppose that {T;}Y,
has a common fixed point. Then

N N
F(Y AT = () F(T).
=1 i=1

Lemma 2.7 ([3]). Let S : C — H be a k— strict pseudo-contraction. Define
T:C—HbyTer =X e+ (1—\)Sz for each x € C. Then, as \ € [k,1), T is
a nonexpansive mapping such that F(T) = F(S).

Lemma 2.8 ([4]). In a real Hilbert space H, there holds the inequality
|z +ylI* < l|=l* + 2(y, x +y), Va,y € H.

3. MAIN RESULTS

Now we state and prove our main result of this paper.

Theorem 3.1 Let C' be a nonempty closed convex subset of a real Hilbert space
H. Let A,B : C — H be a-inverse-strongly monotone and [-inverse-strongly
monotone, respectively. Let S; : C — C be a k;-strict pseudo-contraction
for some 0 < k; < 1. Let kK = max{r; : 1 < i < N}. Assume the set
NY,F(S)NQ#0. Assume also {nz-(n)}fil are sequences of positive numbers
such that vazl ni(n) =1 for alln > 1 and inf,,>1 77@(”) >0 foralll <i<N.
Let the mapping V, be defined by V, = ZZ]\LI ngn)Si. Let f : C — C be a
contraction with coefficient p € [0, %) Suppose x1 € C and {x,} is generated
by the following algorithm.:

Yn = Po(xn — pBxy,),
Vo = 5,0 + (1 —6,)Vy,
Tn+1 = Oénf(xn) + Bnwn + 'any?nPC(yn - )\Ayn)u
where A € (0,2a), u € (0,20), {on} C [k,b] for some b € [r,1), and {ay},
{Bn}, {m}, {ngn)} are sequences in [0, 1] such that
(i) an+ Bn+ v =1Yn>1;
i) limp oo ap =0 and 322 o, = 00;
(iii) 0 < liminf, o By < limsup,,_ . Bn < 1;
(iV) limy, 00 ’ Ont1— On ’: 0;
(v) limy 00 | m(n+1) — 772(") |=0, for 1 <i < N.
Then {xy} converges strongly to T = PﬁN_lF(Si)ﬁQf(j) and (Z,q) is a solution
of problem (1.3), where § = Po(Z — pBzx).
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Proof. Let Q = Pm?‘LlF(Si)mQ' Then Qf is a contraction of C into C. In fact,
we have that -

1Qf(x) = QF W) < [If (=) = fW)Il < pllz —yll

for all x,y € C. This implies that @f is a contraction on C. Since H is
complete, there exists a unique element z* € C such that z* = Q f(z*).

The following proof is divided into several steps.

Step 1: Show that {z,} is bounded firstly.

Let z* € NN, F(S;) Q. By Proposition 2.6 (v), Lemma 2.7 and Lemma
2.1, we know that V,z* = 2*, V.o"z* = 2* and

z* = PolPo(z* — pBx™) — NAPo(xz* — pBa™)].

Put y* = Po(2* — pBx*) and t, = Po(yn — AAyy). Then 2* = Po(y* — AAy™)
and

Tntl = Oénf(xn) + /ann + fYnVr(fntn'
Observe that

|Pc(I — AA)z — Po(I — M)y|* < (I — M)z — (I — AA)y|?
=z —y — MAz — Ay)|?

3.1
=z —yl* = 2Mz — y, Az — Ay) + N?|| Az — Ay|? )
<llz =yl + (X = 20) | Az — Ay|* < [|lz — yI?

and similarly,
|Po(I = uB)z — Pe(I — pB)y|* < ||(I — pB)x — (I — uB)yl|? (32)
<llz = yl* + ulp - 28)||Bz — By|* < [|lz — y|I?
for all z,y € H. Thus from (3.1) and (3.2), we have
tn — || = |Po(yn — My,) — Po(y* — MNAy*
| I = [lPc(y Yn) (y vl (3.3)

<llyn ="l = IPc(zn — pBan) = Po(z® — pBx®)|| < [lzn — 27|
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Hence, it follows that

|0+t — 2| = Nanf (@) + Bawn + Ve ta — 27|
<an||f(wn) = &*|| + Ballwn — 2| + Y| Vi tn — |
<anllf(zn) = F(@) + anllf (2*) = ¥ + Ballzn — 2*|| + 3l V3 tn — 2|
<(anp + B)llzn — 27| + cnll f(27) — 27| + valltn — 27|
<(anp + B+ yn)llzn — 2*|| + anll f(z7) — 27|

(1= an(L = p)llen — "] + a1 - p) IHEL =
< max{ o, — o | 7| ") ~ "I}

* 1 * *
< max{[lzy =7, 7—l1/(27) =27}

Thus, {x,} is bounded. Consequently, the sequences {t,}, {yn}, {Ayn},
{Bx,}, {f(zn)}, {Sitn}, {Vit,} and {V%¢,} are also bounded.

Step 2: Show limy, o0 ||Tnt1 — zn|| = 0.

From (3.1) and (3.2), we also observe that

[tnt1 = toll = 1Po(Ynt1 — Ayni1) — Po(yn — AAyn) ||
SNynt1 = wnll = 1 Po(@nir — pBrny1) — Po(zn — pBra)| (3.4)
<llzn+1 — znll.

dn
Let 41 = Bpen + (1 — Bn)zn, where z, = a"f(x’i)jg:‘/" n  Then we get

ani1f(Tngr) + ’Yn+1V Wt anf(2) + Vot

lzns1 = 2all = | - 2l
1_/871—1—1 1_/871
Opt1 Q41 n
< | (1) — S ()] + | ~ z
T ) = fn)ll+ |2 = I )l
1 n n 1 n
T IV e = Vit 4 |32 = [Vl
1_Bn 1- n
(3.5)
Qpt1 « +1 n
< Tl | o (uf<xn>u+uv2 tall)
1_6 1-— +1 n
Tn+1 Sn .
+ s ”Vn+{1tn+1_v7f th

1= Bnt1
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Using the convexity of || - ||, we have

IV g = Vit < [Vt tngs = Vi tall + 1V, — Vvt
Sth—H - tn” + H(sn—l-ltn + (1 - 5n+1)vn+1tn - 5ntn - (1 - 5n)vnth
SHxn+1 - xn” + ”(5n+1 - 5n)(tn - Vntn) + (1 - 5n+1)(vn+1tn - Vntn)”
w1 — ool + [0nt1 — dnllltn — Vatal|

N N
(=) Y 0" VSt — 3 0" St

=1
< ns1 — zal| + |5n+1 — Onllltn — Vata|l

(1= bup1) ZW*” [ Sitl|

N
Slner = @all + 18apr = 8l My + (1= Fnir) Ma Y ™ =),
i=1
(3.6)
where My = sup,>q{|[tn — Vatal} and Mo = sup,,>; 1 <;<n 1l Sitn|l} . Combin-
ing (3.5) and (3.6), we have

[2n+1 — znll — H$n+1 — Zn|
Qn+1 5
S‘ ‘( (@)l + |V tn )
1= By I1f @n) || + ] |
Oén+1,0 Tn+1
+ ( + - 1) Tl — @
1- ﬁnJrl 1- Bn+ H mH nH
bl [|5n+1 On| My + (1 = 6pg1) Mo Z "t — 711(”)|]
1- 5n+ i—1
Gt O ()l + V) + 2= D )
1= Bn-l—l " 1- /Bn—i-l m "

Tn+1 B (n+1) (n)
Fro— [|6n+1 Bul My + (1= 641) MzZm — ™).

This implies that limsup, . (||zn+1 — 2nl| = |Znt1 — 2n||) < 0. Hence by
Lemma 2.3 we obtain lim,_, ||z, — 25| = 0. Consequently,

7}1_{1010 ”xn—i-l - $n” = nh_glo(l - 571)”'% - an =0. (3.7)

From (3.4) and (3.7), it follows that lim, 0 ||tn+1 — tnll = Imy—eo ||Yn+1 —

ynH - 0.
Step 3: Show lim, o0 ||V, — || = 0.
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Note that

Tpy1 — Tn = an(f(Tn) — 2n) + ’Yn(vrfntn — Tn).

This together with (#) and (3.7) implies that ||[V,9%¢,, — x,,|| — 0 as n — ooc.
Step 4: lim,, o0 || Ayn — Ay*|| = 0 and lim, o || Bz, — Bz*|| = 0.
Since z* € ﬂi\il F(S;)NQ, from (3.1), (3.2), (3.3) and Lemma 2.2, we
obtain

@1 = 212 = lanf (2n) + Bun + Vit = 2
<l f(@n) = "2 + Ballen = "I + valltn — 2|
—anll f(wn) = @12 + Bullzn — 2" I + all Po(yn — M) = Poly” — My")|?
<anlf(zn) = 2| + Bullzn — *|
90 (g = 52 + AA = 20)]| Ay — Ay*|?)
<l f(@n) = 2" 2 + 0 — 22 + A — 20) | Ay — Ay,

and

41 = 2*I* < anllf(zn) = 217 + Bullzn — 2*(* + yalltn — 2|
<an| f(zn) = 2*II° + Ballzn — 2" I + vllyn — v
=an | f(2n) = 2" | + Ballzn — 2" + P (20 — nBrn) — Po(z™ — pBa)|?
<an| f(zn) = 2*|* + llzn — 1 + yup(p — 28)|| Ben — Ba*||*.

Therefore, we have

mA2a = N Ay, — Ay*|* < anl f(zn) = 2|° + |z — 2*|? — [l2nsr — 27|

<an||f(zn) = 2** + (len — & + 21 — ") @n — 2nti
(3.8)
and similarly

Wnit(26 — )| Bzy, — Ba*||?

<anl|f(zn) = 277 + (len = 27 + 201 — 27D ][2n — znpa -
Since oy, — 0 and ||z, — zp11|| — 0 as n — oo, from (3.8) and (3.9) we derive
limy, o0 ||Ayn — Ay*|| = 0 and lim,, o || Bz, — Bx*|| = 0.
Step 5: Show limy, 00 |[(xr, — yn) — (2* — y*)|| = 0.
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From (1.1) and (3.1) we get

lyn — v*|1> = ||Po(@n — pBx,) — Po(x* — pBx*)|?
§<(xn - Man) - (l‘* - ,UBx*)’yn - y*>

1 * * *
=5l(zn — pBzy) — (2" — pBz WP+ llyn — v 117
—|[(zn — pBxyn) — (¢ — uBx*) — (yn — y*)|1*)

1 * * * * *
<Sllln =21 + llyn = v I* = (@0 — pBan) = (2" = pBz") = (yn — y")II’]

1 * * * * *
=§[Ilwn — 22+ [lyn — ¥ I1* = (0 — yn) — (2" — y)|1> = || Bz, — Ba*|?
+2u((n — yn) — (2* —y*), Bz, — Bz™)].

So, we obtain

lyn =y II* < llon — 271 = (@0 = yn) = (" = y")|I?

+ 2u((zn — yn) — (2" — y*), Bx, — Bx™).
Hence,

Znr1 = 2*1” < anll f(@n) — ¥ + Bullzn — 2*|° + vnllyn — |
Sanl|f(@n) = &1 + Ballzn — 2*|* + Anllwn — 2|2

=l (@n = yn) = (@ =y + 2yapl(@n — yn) — (2" — y*), Bz, — Ba*)
<an|f(@n) = &2 + |20 — 2*|* = mll(@n = yn) — (=" —y*)|

+ 29p{(zn — yn) — (2" —y*), Bay, — Ba™)

*

which implies that

Yl (@n = yn) — (2" — y*)|?
<on| f(zn) — 2?4+ (|zn — 2% + [|2ns1 — %)) (|2 — 2n1])
+ 29[ (20 — yn) — (2% — y") ||| Bz, — Ba™||.

Note that a,, = 0, ||xp41 — 2| = 0 and || Bz, — Bz*|| — 0 as n — oo, then
we immediately deduce lim,,_ ||(zn — yn) — (z* — y*)|| = 0.
Step 6: Show limy, o0 ||(yn — tn) + (z* — y*)|| = 0.
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Now, from Lemma 2.8 and (1.1)
1 — ta) + (& — )12
=[l(yn — AMyn) — (" = MAY") — [Po(yn — AAyn) — Po(y™ — MAy")]
+ A(Ayy — Ay)|1?
<(yn — AMyn) — (y* — NAY*) — [Po(yn — My,) — Poly™ — AAy")]|1?
+ 2XMAyn — AY*, (Yo — tn) + (7 —y"))
<\ (yn — AMyn) — (v* — My*)||* — HPC(yn — Myy) — Po(y* — My")||?
+ 20| Ay — Ay | (g — ta) + (& — ).
Since
| Peyn — Muyn) — Po(y” = My")|| = |t — 2| > |Vrt, — Vina®|,
it follows that
Iy — ta) + (@* = y*)?
<Ny — AMuyn) — (5 = MY — [Virt, — Vima|?
+ 20| Ay — Ay || (g — ta) + (@ — )]
<N (yn — Myn) — (y* — AAy*) — (V5”t — )|
% (Ium = Myn) = (" = MG + Vit — 27|} + 27 Ay — Ay’
X N[ — ta) + (" — )|
=[[(&* —y) = (20 — yn) + (20 = Vt0) — MAya — Ay
% (Ilum = Myn) = (5" = MY + Vit — 27|} + 27| Ay — Ay’
% [[(yn — tn) + (2% — 47|
<(I" = 5% = @a = ya)ll + ko = Virtall + Xl Ayn — Ay*)
% (I = Myn) = (" = A + Vit — 2|} + 27| Ay — Ay’
% ||y — tn) + (2" = ).

Since [[(zn — yn) — (2" — y*)|| = 0, [|[V;2rt, — @n|| = 0 and [| Ay, — Ay*|| = 0
as n — oo, it follows that lim, e ||(yn — tn) + (2% — y*)|| = 0.

Step 7: Show lim, oo ||V, — t,|| = 0.

We observe that

IVt —tall < Vi tn =zl + 1l (20 —yn) = (@ =) 1+ | (gn — ta) + (2" —y*)-

Combining the above results, we get ||[V.9t,, —t,|| — 0 as n — oo.
Step 8: limsup,,_,.(f(Z) — Z,z, — Z) < 0 where & = sz\ilF(Si)me(a_:)'
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Indeed, since {V,%7t,} is a bounded sequence in C, we can choose a subse-
S, On;
quence {Vp;”t,,} of {V9t,} such that Vi tn; — z and limsup,, . (f(Z) —
On s n;
T, Vrty — ) = limj o0 (f(Z) — &, Vi, tn, — ). Since forall 1 <i < N, {7]1( J)}
(

is bounded, there exists a subsequence {n;, } of {n;} such that ninj’“) —n; (as
k — o) for all 1 < i < N. Without loss of generality, we can assume that

ngnj)—w]i (as j = 00),1 <i<N.

Since ||V,ot, — t,| — 0, we obtain tn; — z as j — oo. Now we claim that

z € ﬂfil F(S;) . First, it is easy to get each 7; > 0 and Zf\il n; = 1. We
also have

Voo — Va (as j — o)
for all x € C, where V = Zi\il n:Si. Using Proposition 2.6 (iv) and (v), V' is
k-strict pseudo-contraction and F(V') = ﬂf\; 1 F(S;). Observe that
Hthj - tnj” < ||thj - antnjH + ||antnj - tnj”

1
1— 0,

N
) On.
<>l — 018t | + 1Vt — ta .

i=1
. On ;
Thus by ngn]) — m; and [|Vy;” tn, —tn, || — 0, we obtain ||V't,, —t, || — 0. So by
the demiclosedness principle (proposition 2.6 (i7)), it follows that z € F(V) =
01];\;1 F(S;). Next, we prove that z € Q. From Lemma 2.1 and Remark 2.1 we
note that

[tn — G(tn)ll = |Pc[Po(wyn — pBryn) — AAPc(xn — pBry)] — G(t,) ||
=[|G(xn) — G(tn)l| < [|zn —tull < [lzn — Vrfnth + ||V7?ntn — tn]|.

Since ||[V,ot, — to|| — 0 and ||z, — V.Ot,|| — 0 as n — oo, we get ||t —
G(tn)|l = 0. According to Lemma 2.5 we obtain z € ). Therefore there holds
z € ﬂfil F(S;) N . Hence it follows from (1.2) that

lim sup(f (&) — &, z, — Z) = limsup(f (&) — z, Vo"t, — T)

n—o0 n—oo

= lim (f(z) — 3, Vi tn, — 3) = (f(z) — 7,2 — T) <0,

Jj—00

(3.10)

Step 9: Show lim,, .o T, = T.
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Note that

|zns1 — 2
=(anf(xn) + Bntn + WVt — T, Tpi1 — T)
=an(f(Tn) — T, Tpt1 — ) + BnlTn — T,Tn41 — T) + 'Vn<V1$ntn —Z,Tpy1 — T)
<an(f(zn) — 2, Tpt1 — p) + an(f(2n) — f(Z), 20 — T)

¥ an( @)~ 20— )+ 2 (o0 — # + 21— 7?)
+ LIt = 3P + llass —21%)

<anllf @n) = llenss = 2all + anplian = 72 + anlf(7) = 7,20 — 2)
22 = 20 4 s = 21+ Ll — 32 + s — 7)

1 _ 1 _
<[5 = an) + anplllzn — z||* + 5 (1= an)llznis — z||?

+ o f(zn) = Zll[lentr — znll + an(f(Z) — 2,20 — T),
which implies that

a4t = 2[* < [1 = an(l = 20)]l|zn — 2|* + an(1 - 2p)
2 2
x (Togy M) = allenss = oall + 35 f @) = 2,00 = 7).
Consequently, according to (3.10) and Lemma 2.4, we deduce that {z,} con-

verges strongly to Z. This completes the proof. O
As direct consequences of Theorem 3.1, we obtain two corollaries.

Corollary 3.2 Let C be a nonempty closed convex subset of a real Hilbert
space H. Let A : C' — H be an a-inverse-strongly monotone mapping. Let
S; + C — C be a k;-strict pseudo-contraction for some 0 < k; < 1. Let
k =max{k; : 1 <i < N}. Assume the set ﬂf\il F(S;)NQ # 0. Assume also
{'ni(n)}i:1 are sequences of positive numbers such that Zf\;l ngn) =1 for all
n > 1 and inf, > ngn) >0 foralll <i < N. Let the mapping V,, be defined by
Vi, = Zf\;l n(n)SZ-. Let f : C — C be a contraction with coefficient p € [0, %)

i

Suppose x1 € C and {x,} is generated by the following algorithm:
Yn = PC(xn - MA:L'n),
Vi = 6,1 + (1= 6,) Vi,
Tnt1 = anf(Tn) + Bnn + 'YHVr?nPC(yn — AMyy),

where A\, € (0,2a), {6,} C [k, b] for some b € [k,1) and {an,}, {6n}, { M},
{ni(n)} are sequences in [0,1] such that
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(i) an + B+ =1,Yn>1;

(i) limp—eo anp =0 and X2 o, = 00;

(iii) 0 < liminf, o By < limsup, o Bn < 1;

(iv) limp oo | Opt1 — 0n |=0;

(v) limy o0 | ngnﬂ) - ngn) |=0, for 1 <i<N.

Then {x,} converges strongly to T = Pﬂf-v:lF(Si)ﬁQf(j) and (Z,7) is a solution
of problem (1.4), where § = Po(T — pAz).

Proof. Set B = A in Theorem 3.1. Then from Theorem 3.1 we obtain the
desired result. O

Corollary 3.3 Let C be a nonempty closed convexr subset of a real Hilbert
space H. Let A, B : C — H be a-inverse-strongly monotone and B-inverse-
strongly monotone, respectively. Let S; : C — C be a k;-strict pseudo-
contraction for some 0 < k; < 1. Let k = max{k; : 1 <i < N}. Assume the
set IV, F(S;) NQ # 0. Assume {ni(n) N | are sequences of positive numbers
such that vazl ni(n) =1 for alln > 1 and inf,, > 77@(”) >0 foralll <i<N.
Let the mapping V,, be defined by V,, = 21111 ngn)Si. Suppose u,x1 € C and
{zn} is generated by the following algorithm:

Yn = PC(xn - Nan)7
Von = 8,1 + (1 — 8,) Vi,
Tpil = QpU + 6nxn + ’anyisnPC(yn - /\Ayn)a

where A € (0,2a), u € (0,28), {0} C [k,b] for some b € [k,1) and {ay},
{Bn}, {m} {771(”)} are sequences in [0,1] such that
(i) an+ B+ =1,Yn>1;
i) limy, o0 o = 0 and X902, oy, = 00;
(iii) 0 < liminf, o0 By < limsup,_,o Bn < 1;
(iv) limy oo | Ont1 — 0n [=0;
(v) limy oo | nl-(nﬂ) - ngn) |=0, for 1 <i<N.
Then {z,} converges strongly to & = Pﬂf"le(Si)mQu and (Z,y) is a solution of
problem (1.3), where § = Po(Z — puBZ).

Proof. Set f(x,,) =wu for all n > 1 in Theorem 3.1. Then by Theorem 3.1 we
obtain the desired result. U
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