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Abstract. We deal with a common zero problem for a countable family of maximal mono-

tone operators. Using the shrinking projection method, we obtain strong convergence of an

iterative sequence. This result can be applied to a system of equilibrium problems and the

iterative sequence converges strongly to their common solution.

1. Introduction

Let E be a real Banach space and A a set-valued mapping of E into E∗

such that

〈x− y, x∗ − y∗〉 ≥ 0

whenever x, y ∈ E and x∗, y∗ ∈ E∗ satisfy that x∗ ∈ Ax and y∗ ∈ Ay. This
mapping is called a monotone operator of E into E∗. Finding a zero of a
monotone operator is a significant problem in nonlinear analysis because it
contains various important problems such as convex optimization problems,
saddle point problems, equilibrium problems, and others. We call it a zero
point problem for A. It is also closely related with fixed point problems for
nonexpansive mappings because the resolvent operator for A is a nonexpansive
mapping in the case where E is a Hilbert space.

In 2008, Takahashi, Takeuchi, and Kubota established a strong convergence
theorem by a new type of projection method.
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Theorem 1.1 (Takahashi-Takeuchi-Kubota [12]). Let H be a real Hilbert
space and C a nonempty closed convex subset of H. Let T be a nonexpan-
sive mapping of C into itself such that the set F (T ) of fixed points of T is
nonempty. Let {αn} be a sequence in [0, a], where 0 < a < 1. For a point
x ∈ H, generate a sequence {xn} by the following iterative scheme: x1 ∈ C,
C1 = C, and

yn = αnxn + (1− αn)Txn,

Cn+1 = {z ∈ H : ‖z − yn‖ ≤ ‖z − xn‖} ∩ Cn,
xn+1 = PCn+1x

for n ∈ N. Then, {xn} converges strongly to PF (T )x ∈ C, where PK is the
metric projection of H onto a nonempty closed convex subset K of H.

This iterative scheme is known as the shrinking projection method. We
remark that their original result is a strongly convergent iterative scheme to
a common fixed point of a family of nonexpansive mappings under certain
conditions.

Inspired by this result, Kimura and Takahashi [8] obtained the following
convergence theorem for the zero point problem for a maximal monotone op-
erator defined on a Banach space.

Theorem 1.2 (Kimura-Takahashi [8]). Let E be a strictly convex reflexive
Banach space having a Fréchet differentiable norm and the Kadec-Klee prop-
erty. Let A be a maximal monotone operator of E into E∗ satisfying that
A−10 6= ∅. Let {αn} ⊂ [0, 1] and {ρn} ⊂ ]0,∞[ be real sequences such that
lim infn→∞ αn < 1 and that infn∈N ρn > 0. For a point x ∈ E, generate a
sequence {xn} by the following iterative scheme: x1 ∈ E, C1 = E, and

yn = J∗(αnJxn + (1− αn)J(J + ρnA)−1Jxn),

Cn+1 = {z ∈ E : φ(z, yn) ≤ φ(z, xn)} ∩ Cn,
xn+1 = PCn+1x

for n ∈ N. Then, {xn} converges strongly to PA−10x ∈ C, where PK is the
metric projection of E onto a nonempty closed convex subset K of E.

On the other hand, using another type of resolvent, Kimura, Nakajo, and
Takahashi proved a strong convergence theorem for a countable family of
monotone operators as follows:

Theorem 1.3 (Kimura-Nakajo-Takahashi [7]). Let E be a strictly convex,
smooth, and reflexive Banach space having the Kadec-Klee property. Let {Aj :
j ∈ I} be a countable family of maximal monotone operators of E into E∗ and
suppose that Z =

⋂
j∈I A

−1
j 0 6= ∅. Let {ρn} ⊂ ]0,∞[ be a real sequence. Let

i : N→ I and suppose that for each j ∈ I, there exists a subsequence {nk} of
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N such that i(nk) = j for every k ∈ N and that infk∈N ρnk
> 0. Let x ∈ E and

generate a sequence {xn} by the following iterative scheme: x1 ∈ E, C1 = E,
and

yn = (I + ρnJ
∗Ai(n))

−1xn,

Cn+1 = {u ∈ E : 〈yn − u, J(xn − yn)〉 ≥ 0} ∩ Cn,
xn+1 = PCn+1x

for n ∈ N. Then, {xn} converges strongly to PZx ∈ E.

Motivated by these results, we prove strong convergence of an iterative
scheme by the shrinking projection method for a countable family for max-
imal monotone operators, which generalizes Theorem 1.2. This result can
be applied to a system of equilibrium problems and the iterative sequence
converges to their common solution.

2. Preliminaries

In what follows, E is a real Banach space with a norm ‖·‖. The dual space
of E is denoted by E∗ and its norm is also denoted by ‖·‖.

The normalized duality mapping on E is denoted by J . That is,

Jx = {x∗ ∈ E∗ : ‖x‖2 = 〈x, x∗〉 = ‖x∗‖2}
for x ∈ E, where 〈x, x∗〉 = x∗(x) ∈ R. Suppose that E is strictly convex,
reflexive, and smooth. Then, J is a single-valued one-to-one mapping of E
onto E∗. In this case, J−1 coincides with the duality mapping J∗ on E∗. If
the norm of E is Fréchet differentiable, then J is norm-to-norm continuous.

We say E has the Kadec-Klee property if a weakly convergent sequence
{xn} of E with a limit x0 converges strongly to x0 whenever {‖xn‖} converges
to ‖x0‖. It is known that E∗ has a Fréchet differential norm if and only if
E is reflexive, is strictly convex, and has the Kadec-Klee property. For more
details, see [11].

Let {Kn} be a sequence of nonempty closed convex subsets of a reflexive
Banach space E. Define s-LinKn and w-LsnKn as follows: x ∈ s-LinKn

if and only if there exists {xn} ⊂ E such that {xn} converges strongly to x
and that xn ∈ Kn for all n ∈ N; y ∈ w-LsnKn if and only if there exist a
subsequence {Kni} of {Kn} and a sequence {yi} ⊂ E such that {yi} converges
weakly to y and that yi ∈ Kni for all i ∈ N. If K0 satisfies that

K0 = s-Li
n
Kn = w-Ls

n
Kn,

then we say that {Kn} converges to K0 in the sense of Mosco [10] and we
write K0 = M-limn→∞Kn. It is easy to show that if {Kn} is decreasing with
respect to inclusion, then {Kn} converges to

⋂∞
n=1Kn in the sense of Mosco.

For more details, see [3].
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Let K be a nonempty closed convex subset of a strictly convex reflexive
Banach space E. Then, for arbitrarily fixed x ∈ E, there exists a unique point
yx ∈ K such that

‖x− yx‖ = inf
y∈K
‖x− y‖ .

Using this point, we define the metric projection PK : E → K by PKx = yx
for x ∈ E.

The following theorem proved by Tsukada [13] plays an important role in
the main result.

Theorem 2.1 (Tsukada [13]). Let {Kn} be a sequence of nonempty closed
convex subsets of a strictly convex reflexive Banach space E having the Kadec-
Klee property. If {Kn} converges to a nonempty closed convex subset K0 of
E in the sense of Mosco, then {PKnx} converges strongly to PK0x for each
x ∈ E.

A set-valued mapping A : E ⇒ E∗ is said to be monotone if the inequality

〈x− y, x∗ − y∗〉 ≥ 0

holds for any x, y ∈ E and x∗, y∗ ∈ E∗ satisfying x∗ ∈ Ax and y∗ ∈ Ay. A
monotone operator A is said to be maximal if the graph of A is not a proper
subset of the graph of any other monotone operator. A point z ∈ E satisfying
that 0 ∈ Az is called a zero of A and the set of such points is denoted by
A−10. We know that if A is maximal monotone, then A−10 is a closed convex
subset of E.

Suppose that a Banach space E is strictly convex, reflexive, and smooth.
Then, for a maximal monotone operator A : E ⇒ E∗ and a positive real
number ρ, a mapping J + ρA : E ⇒ E∗ has a single-valued inverse. Further,
its range is the whole space E∗. Therefore, we may define a single-valued
mapping (J +ρA)−1J : E → E, which is called a resolvent of A for ρ > 0. For
more details, see [2, 11] and others.

Let E be a smooth Banach space. Define a function φ : E × E → R by

φ(x, y) = ‖x‖2 − 2 〈x, Jy〉+ ‖y‖2

for x, y ∈ E. We know several fundamental properties of φ as follows: φ(x, y) ≥
0 for all x, y ∈ E. For a sequence {yn} in E and x ∈ E, {yn} is bounded if and
only if {φ(x, yn)} is bounded. Suppose that E be a strictly convex reflexive
smooth Banach space. Let A : E ⇒ E∗ be maximal monotone and ρ > 0.
Then, we know from [9] that

φ(z, (J + ρA)−1Jx) ≤ φ(z, (J + ρA)−1Jx) + φ((J + ρA)−1Jx, x) ≤ φ(z, x)

for any z ∈ A−10 and x ∈ E. For more details of φ, see, for example, [5].
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3. The main result

We consider a common zero problem for a countable family {Aj : j ∈ I} of
maximal monotone operators defined on a real Banach space E. The set of
solutions of this problem is⋂

j∈I
A−1j 0 = {z ∈ E : Ajz = 0 for all j ∈ I}.

Using the shrinking projection method, we obtain strong convergence of an
iterative scheme.

Theorem 3.1. Let E be a strictly convex reflexive Banach space having a
Fréchet differentiable norm and the Kadec-Klee property. Let {Aj : j ∈ I} be a
countable family of maximal monotone operators of E into E∗ and suppose that
Z =

⋂
j∈I A

−1
j 0 6= ∅. Let {αn} ⊂ [0, 1] and {ρn} ⊂ ]0,∞[ be real sequences. Let

i : N→ I and suppose that for each j ∈ I, there exists a subsequence {nk} of
N such that i(nk) = j for every k ∈ N, limk→∞ αnk

< 1, and infk∈N ρnk
> 0.

Let x ∈ E and generate a sequence {xn} by the following iterative scheme:
x1 ∈ E, C1 = E, and

yn = J∗(αnJxn + (1− αn)J(J + ρnAi(n))
−1Jxn),

Cn+1 = {u ∈ E : φ(u, yn) ≤ φ(u, xn)} ∩ Cn,
xn+1 = PCn+1x

for n ∈ N. Then, {xn} converges strongly to PZx ∈ E, where PK is the metric
projection of E onto a nonempty closed convex subset K of E.

Proof. For the well-definedness of the iterative sequence {xn}, we suppose
that x1, x2, . . . , xn are defined and C1, C2, . . . , Cn are nonempty closed convex
subsets of E which include Z. Then, since

Cn+1 = {u ∈ E : φ(u, yn) ≤ φ(u, xn)} ∩ Cn
= {u ∈ E : 〈u, Jxn − Jyn〉+ (‖yn‖2 − ‖xn‖2)/2 ≤ 0} ∩ Cn,

Cn+1 is a closed convex subset of E. Let wn = (J + ρnAi(n))
−1Jxn for n ∈ N

and z ∈ Z =
⋂
j∈I A

−1
j 0. Since φ(z, wn) ≤ φ(z, xn) for n ∈ N, we have that

φ(z, yn)

= ‖z‖2 − 2 〈z, αnJxn + (1− αn)Jwn〉+ ‖αnJxn + (1− αn)Jwn‖2

≤ ‖z‖2 − 2αn 〈z, Jxn〉 − 2(1− αn) 〈z, Jwn〉+ αn ‖xn‖2 + (1− αn) ‖wn‖2

= αn

(
‖z‖2 − 2 〈z, Jxn〉+ ‖xn‖2

)
+ (1− αn)

(
‖z‖2 − 2 〈z, Jwn〉+ ‖wn‖2

)
= αnφ(z, xn) + (1− αn)φ(z, wn)

≤ φ(z, xn).
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It follows that z ∈ Cn+1 and hence Z ⊂ Cn+1. Since Z is nonempty, so is
Cn+1. Therefore xn+1 = PCn+1xn is well defined. Since x1 ∈ E is given and
C1 = E is obviously nonempty, closed, convex, and contains Z, we obtain that
{xn} is well defined by induction.

By definition, a sequence {Cn} is decreasing with respect to inclusion. Thus
we have that

M-lim
n→∞

Cn =
∞⋂
n=1

Cn ⊃ Z 6= ∅.

Let C0 =
⋂∞
n=1Cn. Then, by Theorem 2.1 we have that {xn} = {PCnx} con-

verges strongly to x0 = PC0x ∈ E. This also implies that limn→∞ φ(x0, xn) =
0. Since x0 belongs to Cn for every n ∈ N, we get that 0 ≤ φ(x0, yn) ≤
φ(x0, xn) for n ∈ N and, as n→∞, we have that

lim
n→∞

φ(x0, yn) = 0.

Since

0 ≤ lim
n→∞

(‖x0‖ − ‖yn‖)2 ≤ lim
n→∞

φ(x0, yn) = 0,

we have that limn→∞ ‖yn‖ = ‖x0‖. We also have that {Jyn} ⊂ E∗ is bounded.
For fixed j ∈ I, there exists a subsequence {nk} of N such that i(nk) = j for
every k ∈ N, {αnk

} converges to α0 ∈ [0, 1[, infk∈N ρnk
> 0, and {Jynk

}
converges weakly to y∗0 ∈ E∗. Then we have that

0 = lim
k→∞

φ(x0, ynk
)

= lim
k→∞

(
‖x0‖2 − 2 〈x0, Jynk

〉+ ‖ynk
‖2
)

= 2 ‖x0‖2 − 2 lim
k→∞

〈x0, Jynk
〉

= 2(‖x0‖2 − 〈x0, y∗0〉)

and thus

‖x0‖2 = 〈x0, y∗0〉 ≤ ‖x0‖ ‖y∗0‖ ≤ ‖x0‖ lim
k→∞

‖Jynk
‖ = ‖x0‖ lim

k→∞
‖ynk
‖ = ‖x0‖2 .

It follows that ‖x0‖2 = 〈x0, y∗0〉 = ‖y∗0‖
2 and hence Jx0 = y∗0. We also have

that

‖Jx0‖ = ‖x0‖ = lim
k→∞

‖ynk
‖ = lim

k→∞
‖Jynk

‖ .

Since E is reflexive and its norm is Fréchet differentiable, E∗ has the Kadec-
Klee property. Therefore {Jynk

} converges strongly to Jx0. We also have
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that

Jynk
− Jxnk

= JJ∗(αnk
Jxnk

+ (1− αnk
)Jwnk

)− Jxnk

= αnk
Jxnk

+ (1− αnk
)Jwnk

− Jxnk

= (1− αnk
)(Jwnk

− Jxnk
)

for every k ∈ N, and it follows that

0 = lim
k→∞

‖Jynk
− Jx0‖ = (1− α0) lim

k→∞
‖Jwnk

− Jxnk
‖ .

Since α0 < 1, we have that limk→∞ ‖Jx0 − Jwnk
‖ = 0. From the Fréchet

differentiability of the norm on E∗, J∗ is norm-to-norm continuous and thus
we have that {wnk

} converges strongly to x0. Let v ∈ E and v∗ ∈ E∗ be such
that v∗ ∈ Ajv. Since i(nk) = j for any k ∈ N, we have that

wnk
= (J + ρnk

Ai(nk))
−1Jxnk

= (J + ρnk
Aj)
−1Jxnk

and thus
1

ρnk

(Jxnk
− Jwnk

) ∈ Ajwnk

for every k ∈ N. Using the monotonicity of Aj , we have that〈
wnk
− v, 1

ρnk

(Jxnk
− Jwnk

)− v∗
〉
≥ 0

for k ∈ N. As k → ∞ we have that 〈x0 − v, 0− v∗〉 ≥ 0. Since Aj is
maximal monotone, it follows that 0 ∈ Ajx0. Therefore we obtain that

x0 ∈
⋂
j∈I A

−1
j 0 = Z and hence x0 = PZx, which is the desired result. �

In the case where the number of the operators is finite, that is, the index
set is I = {0, 1, 2, . . . , N − 1}, we may use a mapping i : N → I defined by
i(n) = n mod N for n ∈ N. Thus we obtain the following result.

Theorem 3.2 (Kimura [6]). Let E be a strictly convex reflexive Banach space
having the Kadec-Klee property and a Fréchet differentiable norm. Let {Ai :
i ∈ I} be a finite family of maximal monotone operators of E into E∗ with an
index set I = {0, 1, 2, . . . , N − 1} and suppose that Z =

⋂
i∈I A

−1
i 0 6= ∅. Let

{αn} ⊂ [0, 1] and {ρn} ⊂ ]0,∞[ be sequences such that lim infk→∞ αNk+i < 1
for every i ∈ I and that infn∈N ρn > 0. For a point x ∈ E, generate a sequence
{xn} by the following iterative scheme: x1 ∈ E, C1 = E, and

yn = J∗(αnJxn + (1− αn)J(J + ρnA(n mod N))
−1Jxn),

Cn+1 = {u ∈ E : φ(u, yn) ≤ φ(u, xn)} ∩ Cn,
xn+1 = PCn+1x

for n ∈ N. Then, {xn} converges strongly to PZx ∈ E.
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4. Application to an infinite system of equilibrium problems

Let C be a nonempty convex subset of a Banach space E. For a function f :
C ×C → R, we consider the following problem which is called an equilibrium
problem for f : Find x ∈ C such that f(x, y) ≥ 0 for all y ∈ C. The set
of solutions to this problem is denoted by EP (f). We assume the following
conditions:

(i) f(x, x) = 0 for every x ∈ C;
(ii) f(x, y) + f(y, x) ≤ 0 for every x, y ∈ C;

(iii) f(x, ·) is convex and lower semicontinuous for every x ∈ C;
(iv) lim supt↓0 f(ty + (1− t)x, y) ≤ f(x, y) for every x, y ∈ C.

Equilibrium problems are closely related to the zero point problems for
maximal monotone operators. Indeed, suppose that C is a closed convex subset
of a strictly convex reflexive smooth Banach space E. For f : C × C → R
satisfying four conditions above, define Af : E ⇒ E∗ by

Afx =

{
{x∗ ∈ E∗ : f(x, y) ≥ 〈y − x, x∗〉 for all y ∈ C} (x ∈ C)

∅ (x /∈ C).

Then, Af is a maximal monotone operator satisfying A−1f 0 = EP (f). In this

case, the resolvent z = (J + ρAf )−1Jx for ρ > 0 and x ∈ E is the unique
element which satisfies

f(z, y) +
1

ρ
〈y − z, Jz − Jx〉 ≥ 0

for all y ∈ C. For more details, see [4, 1].
Let us consider an infinite system of equilibrium problems for {fn}. Us-

ing the fact mentioned above, we may apply Theorem 3.1 to approximate a
common solution x0 ∈

⋂∞
n=1EP (fn).

Theorem 4.1. Let C be a nonempty closed convex subset of a strictly convex
reflexive Banach space E having the Kadec-Klee property and a Fréchet dif-
ferentiable norm. Let {fn} be a countable family of functions of C × C into
R satisfying the conditions (i)–(iv) and suppose that the set of common solu-
tions Z =

⋂∞
n=1EP (fn) to the equilibrium problems for {fn} is nonempty. Let

{αn} ⊂ [0, 1] and {ρn} ⊂ ]0,∞[ be real sequences. Let i : N → I and suppose
that for each j ∈ I, there exists a subsequence {nk} of N such that i(nk) = j
for every k ∈ N, limk→∞ αnk

< 1, and infk∈N ρnk
> 0. Let x ∈ E and generate

a sequence {xn} by the following iterative scheme: x1 ∈ E, C1 = E, and

yn = J∗(αnJxn + (1− αn)JFρnxn),

Cn+1 = {u ∈ E : φ(u, yn) ≤ φ(u, xn)} ∩ Cn,
xn+1 = PCn+1x
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for n ∈ N, where Fρnxn is the unique element in C satisfying that

fn(Fρnxn, y) +
1

ρn
〈y − Fρnxn, JFρnxn − Jxn〉 ≥ 0

for all y ∈ C. Then, {xn} converges strongly to x0 = PZx ∈
⋂∞
n=1EP (fn).
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