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Abstract. We deal with a common zero problem for a countable family of maximal mono-
tone operators. Using the shrinking projection method, we obtain strong convergence of an
iterative sequence. This result can be applied to a system of equilibrium problems and the

iterative sequence converges strongly to their common solution.

1. INTRODUCTION

Let E be a real Banach space and A a set-valued mapping of F into E*
such that

whenever z,y € E and z*,y* € E* satisfy that 2* € Az and y* € Ay. This
mapping is called a monotone operator of E into E*. Finding a zero of a
monotone operator is a significant problem in nonlinear analysis because it
contains various important problems such as convex optimization problems,
saddle point problems, equilibrium problems, and others. We call it a zero
point problem for A. It is also closely related with fixed point problems for
nonexpansive mappings because the resolvent operator for A is a nonexpansive
mapping in the case where F is a Hilbert space.

In 2008, Takahashi, Takeuchi, and Kubota established a strong convergence
theorem by a new type of projection method.
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Theorem 1.1 (Takahashi-Takeuchi-Kubota [12]). Let H be a real Hilbert
space and C a nonempty closed convex subset of H. Let T be a nonexpan-
sive mapping of C into itself such that the set F(T') of fized points of T is
nonempty. Let {ay} be a sequence in [0,a], where 0 < a < 1. For a point
x € H, generate a sequence {x,} by the following iterative scheme: x; € C,

Ci=0C, and
Yn = Ty + (1 — ap)Txy,
Cnpr={z€ H: ||z —ynl < |z —anl} N Ch,
Tny1 = Po, .7

for n € N. Then, {x,} converges strongly to Ppryx € C, where Pk is the
metric projection of H onto a nonempty closed convex subset K of H.

This iterative scheme is known as the shrinking projection method. We
remark that their original result is a strongly convergent iterative scheme to
a common fixed point of a family of nonexpansive mappings under certain
conditions.

Inspired by this result, Kimura and Takahashi [8] obtained the following
convergence theorem for the zero point problem for a maximal monotone op-
erator defined on a Banach space.

Theorem 1.2 (Kimura-Takahashi [8]). Let E be a strictly convex reflexive
Banach space having a Fréchet differentiable norm and the Kadec-Klee prop-
erty. Let A be a mazrimal monotone operator of E into E* satisfying that
A0 # 0. Let {a,} C [0,1] and {p,} C ]0,00[ be real sequences such that
liminf, o an < 1 and that inf,enpn > 0. For a point x € E, generate a
sequence {xy} by the following iterative scheme: ©1 € E, C1 = E, and

Un = J (o Jxy + (1 — an)J(J + ppd) " zy),
Cni1={2 € E:0(2,yn) < ¢(z,2)} N Ch,
Tnt1 = Po, 7
for n € N. Then, {x,} converges strongly to Py-1gx € C, where Pk is the

metric projection of E onto a nonempty closed convex subset K of E.

On the other hand, using another type of resolvent, Kimura, Nakajo, and
Takahashi proved a strong convergence theorem for a countable family of
monotone operators as follows:

Theorem 1.3 (Kimura-Nakajo-Takahashi [7]). Let E be a strictly convez,
smooth, and reflexive Banach space having the Kadec-Klee property. Let {A; :
j € I} be a countable family of mazimal monotone operators of E into E* and
suppose that Z = (¢, Aj_l() # 0. Let {p,} C ]0,00[ be a real sequence. Let
i : N — I and suppose that for each j € I, there exists a subsequence {ny} of



Shrinking projection methods for maximal monotone operators 483

N such that i(ng) = j for every k € N and that infrey pp, > 0. Let x € E and
generate a sequence {x,} by the following iterative scheme: ©1 € E, C1 = E,
and

Yn = (I + an*Az‘(n))_lxm
Cpnt1={ueE: (yp —u,J(xn —yn)) >0}t NCh,
Tny1 = Po, @
forn € N. Then, {x,} converges strongly to Pzx € E.

Motivated by these results, we prove strong convergence of an iterative
scheme by the shrinking projection method for a countable family for max-
imal monotone operators, which generalizes Theorem 1.2. This result can
be applied to a system of equilibrium problems and the iterative sequence
converges to their common solution.

2. PRELIMINARIES

In what follows, E is a real Banach space with a norm ||-||. The dual space
of E is denoted by E* and its norm is also denoted by ||-]|.

The normalized duality mapping on F is denoted by J. That is,

Jo={z* € E*: ||z|* = (&,a") = ||l2*||}
for x € E, where (x,z*) = x*(z) € R. Suppose that E is strictly convex,
reflexive, and smooth. Then, J is a single-valued one-to-one mapping of F
onto E*. In this case, J~! coincides with the duality mapping J* on E*. If
the norm of FE is Fréchet differentiable, then J is norm-to-norm continuous.

We say E has the Kadec-Klee property if a weakly convergent sequence
{zp} of E with a limit z¢ converges strongly to ¢ whenever {||z,||} converges
to [|zo||. It is known that E* has a Fréchet differential norm if and only if
FE is reflexive, is strictly convex, and has the Kadec-Klee property. For more
details, see [11].

Let {K,} be a sequence of nonempty closed convex subsets of a reflexive
Banach space E. Define s-Li, K,, and w-Ls, K,, as follows: =z € s-Li, K,
if and only if there exists {z,} C E such that {z,} converges strongly to z
and that =, € K, for all n € N; y € w-Ls,, K, if and only if there exist a
subsequence { K, } of {K,} and a sequence {y;} C E such that {y;} converges
weakly to y and that y; € K, for all « € N. If K satisfies that

Ko = s-LiK,, = w-Ls K,
n n

then we say that {K,} converges to Ky in the sense of Mosco [10] and we
write Ko = M-limy, o K. It is easy to show that if {K,,} is decreasing with
respect to inclusion, then {K,} converges to () -, K, in the sense of Mosco.
For more details, see [3].
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Let K be a nonempty closed convex subset of a strictly convex reflexive
Banach space E. Then, for arbitrarily fixed « € F, there exists a unique point
Yz € K such that

— gl = inf ||z —y]|-
le = yoll = inf llz —yl

Using this point, we define the metric projection Px : F — K by Pxx = y,
forx € F.

The following theorem proved by Tsukada [13] plays an important role in
the main result.

Theorem 2.1 (Tsukada [13]). Let {K,} be a sequence of nonempty closed
convex subsets of a strictly convex reflexive Banach space E having the Kadec-
Klee property. If {K,} converges to a nonempty closed convex subset Ky of
E in the sense of Mosco, then {Pk,x} converges strongly to Px,x for each
reE.

A set-valued mapping A : E = E* is said to be monotone if the inequality
(rt —y,z*—y*) >0

holds for any z,y € F and z*,y* € E* satisfying 2* € Ax and y* € Ay. A
monotone operator A is said to be maximal if the graph of A is not a proper
subset of the graph of any other monotone operator. A point z € E satisfying
that 0 € Az is called a zero of A and the set of such points is denoted by
A710. We know that if A is maximal monotone, then A~10 is a closed convex
subset of E.

Suppose that a Banach space F is strictly convex, reflexive, and smooth.
Then, for a maximal monotone operator A : F = E* and a positive real
number p, a mapping J + pA : F = E* has a single-valued inverse. Further,
its range is the whole space E*. Therefore, we may define a single-valued
mapping (J +pA)~1J : E — E, which is called a resolvent of A for p > 0. For
more details, see [2, 11] and others.

Let E be a smooth Banach space. Define a function ¢ : £ x E — R by

$(z,y) = al* =2z, Jy) + Iyl

for z,y € E. We know several fundamental properties of ¢ as follows: ¢(x,y) >
0 for all x,y € E. For a sequence {y,} in E and =z € E, {y,} is bounded if and
only if {¢(z,yn)} is bounded. Suppose that E be a strictly convex reflexive
smooth Banach space. Let A : E = E* be maximal monotone and p > 0.
Then, we know from [9] that

$(z, (J + pA) " x) < ¢(z, (J + pA) " ) + o((J + pA) "z, 2) < ¢(2,7)

for any 2 € A710 and x € E. For more details of ¢, see, for example, [5].
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3. THE MAIN RESULT

We consider a common zero problem for a countable family {A4; : j € I} of
maximal monotone operators defined on a real Banach space E. The set of
solutions of this problem is

(A;'0={z€ E: Ajz=0for all j € T}.

JeI
Using the shrinking projection method, we obtain strong convergence of an
iterative scheme.

Theorem 3.1. Let E be a strictly convex reflexive Banach space having a
Fréchet differentiable norm and the Kadec-Klee property. Let {A; : j € I} be a
countable family of maximal monotone operators of ¥ into E* and suppose that
Z =jer Aj_10 #0. Let {a,} C [0,1] and {pn} C 10, 00] be real sequences. Let
i : N — I and suppose that for each j € I, there exists a subsequence {ny} of
N such that i(ng) = j for every k € N, limg_,o0 oy, < 1, and infrey pn, > 0.
Let x € E and generate a sequence {x,} by the following iterative scheme:
€l Ci=F, and

Yn = J (andJx, + (1 — ap)J(J + pnAi(n))_lJmn),
Cnt1 = {u €E:o(u,yn) < ¢(u>$n)} N Ch,
Tp4+1 = Cn+1$

forn € N. Then, {x,} converges strongly to Pzx € E, where Pk is the metric
projection of E onto a nonempty closed conver subset K of E.

Proof. For the well-definedness of the iterative sequence {z,}, we suppose
that x1,xo,...,x, are defined and C4, Cs, ..., ), are nonempty closed convex
subsets of E which include Z. Then, since

Crt1={u € E: ¢(u,yn) < d(u,zn)} N Cy
={ue E: (u, Jan — Jyn) + (lyall* — llzal*)/2 < 0} N Gy,

Cr+1 is a closed convex subset of E. Let w, = (J + pnAi(n))*lj Ty for n € N
and z € Z =;¢; Aj_lO. Since ¢(z,wy) < ¢(z,xy,) for n € N, we have that

qb(z,yn)

= |12]]? = 2 (z, anJzp + (1 — an)Jwn) + ||onJzn + (1 — o) Jwy||?

< HZH2 — 20 (2, Jon) — 2(1 — an) (2, Jwn) + an |’$nH2 + (1 — ay) ”wnHZ
= an (I120 = 2(z, Jwn) + lal?) + (1 = ) (1121 = 2z, Jwn) + wn]?)
= an@(z,n) + (1 — an)o(z, wn)

< o(z, ).
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It follows that z € Cy,41 and hence Z C Cjp41. Since Z is nonempty, so is
Chy1. Therefore x,11 = Pc,, 2, is well defined. Since z; € F is given and
(1 = E is obviously nonempty, closed, convex, and contains Z, we obtain that
{zy} is well defined by induction.

By definition, a sequence {C),} is decreasing with respect to inclusion. Thus
we have that

n—o0

M-lim Cp, = () Cn D Z #0.
n=1

Let Cy =(),—; Cn. Then, by Theorem 2.1 we have that {z,} = {Pc,x} con-
verges strongly to zg = P,z € E. This also implies that lim,_,~ ¢(xg, ) =
0. Since zy belongs to C), for every n € N, we get that 0 < ¢(xp,y,) <
d(xg,x,) for n € N and, as n — oo, we have that

lim ¢(zp,yn) = 0.
n—oo
Since
0.< lim (Jlzoll — lyall)? < lim 6(xo. ) =0,

we have that lim,,_,« ||yn|| = ||zo]|. We also have that {Jy,} C E* is bounded.
For fixed j € I, there exists a subsequence {ny} of N such that i(ny) = j for
every k € N, {ap,} converges to ag € [0,1], infrenpn, > 0, and {Jyn, }
converges weakly to y5 € E*. Then we have that

0= li
/ci)Holo ¢($0, ynk)
= Tim (Jleol® = 2 (o, Tym,) + lvm )
k—o0
= 2 ||zo||* — 2 lim (z0, Jyn, )
k—o0

=2(||zo|* — (o, ¥3))

and thus
2 . . 2
lzol|” = {0, 36) < llzoll o]l < llzoll i [|yn, || = [lzoll im [y, | = llzo]l”-
—00 k—o0
It follows that ||zo||® = (xo, ) = |lyg]|* and hence Jzo = . We also have
that

[ zoll = llzoll = Hm [lyn, || = Um [y, |-
—00 k—o0

Since F is reflexive and its norm is Fréchet differentiable, £* has the Kadec-
Klee property. Therefore {Jyy, } converges strongly to Jzg. We also have
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that
JYn,, — Jxp, = JJ (o, Jxn, + (1 — ) Jwn, ) — Jxp,
= ap, Jrp, + (1 — ap,)Jwn, — Jzp,
=(1—oayp,)(Jwn, —Jxn,)
for every k € N, and it follows that

0= lim ||Jypn, — Jzo|| = (1 — o) | Jwp, — Jxn, || -
k—o00

lim
k—o00
Since apg < 1, we have that limy_,o ||Jzo — Jwy, || = 0. From the Fréchet
differentiability of the norm on E*, J* is norm-to-norm continuous and thus
we have that {w,, } converges strongly to xo. Let v € E and v* € E* be such
that v* € Ajv. Since i(ny) = j for any k£ € N, we have that

Wy, = (J+ IonkAz(nk))_lenk = (J + pnkAj)_ljxnk

and thus

1
— (Jan, — Jwn,) € Ajwy,

Py,

for every k € N. Using the monotonicity of A;, we have that

1
<wn,c —v, —(Jzp, — Jwy,) — v*> >0

Pry,
for Kk € N. As k — oo we have that (zg—v,0—v*) > 0. Since A; is
maximal monotone, it follows that 0 € Ajxg. Therefore we obtain that
To € ﬂjel Aj_l() = Z and hence xy = Pzx, which is the desired result. O

In the case where the number of the operators is finite, that is, the index
set is I = {0,1,2,...,N — 1}, we may use a mapping ¢ : N — I defined by
i(n) = nmod N for n € N. Thus we obtain the following result.

Theorem 3.2 (Kimura [6]). Let E be a strictly convex reflexive Banach space
having the Kadec-Klee property and a Fréchet differentiable norm. Let {A; :
i € I} be a finite family of mazimal monotone operators of E into E* with an
index set I = {0,1,2,...,N — 1} and suppose that Z = (\;c; A,i_lO # (. Let
{an} C [0,1] and {pn} C ]0,00] be sequences such that liminfy_,oc angyi < 1
for everyi € I and that inf,cn pp, > 0. For a point x € E, generate a sequence
{zn} by the following iterative scheme: x1 € E, C1 = E, and

Yn = S (anJxn + (1 — ) J(J + PrnA(n mod N))ileTL)J
Crni1={u€ E: d(u,yn) < d(u,x,)} NCy,
Tp4+1 = Cn+1x

forn € N. Then, {x,} converges strongly to Pzx € E.
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4. APPLICATION TO AN INFINITE SYSTEM OF EQUILIBRIUM PROBLEMS

Let C' be a nonempty convex subset of a Banach space E. For a function f :
C x C' — R, we consider the following problem which is called an equilibrium
problem for f: Find x € C such that f(xz,y) > 0 for all y € C. The set
of solutions to this problem is denoted by EP(f). We assume the following
conditions:

(i) f(z,z) =0 for every = € C,
(i) f(x,y) + f(y,z) <0 for every z,y € C;

(iii) f(z,-) is convex and lower semicontinuous for every = € C;

(iv) limsup, o f(ty + (1 —t)z,y) < f(=z,y) for every z,y € C.

Equilibrium problems are closely related to the zero point problems for
maximal monotone operators. Indeed, suppose that C'is a closed convex subset
of a strictly convex reflexive smooth Banach space E. For f : C x C' — R
satisfying four conditions above, define A; : E' = E* by

Ao — {z* e E*: f(z,y) > (y—z,2*) forallye C} (ze€C)
Y (x ¢ C).

Then, Ay is a maximal monotone operator satisfying AJIIO = EP(f). In this

case, the resolvent z = (J 4+ pAs)~'Jz for p > 0 and = € E is the unique
element which satisfies

1
fEy)+ 2y =z 2= Ju) 2 0

for all y € C. For more details, see [4, 1].

Let us consider an infinite system of equilibrium problems for {f,}. Us-
ing the fact mentioned above, we may apply Theorem 3.1 to approximate a
common solution zg € (2, EP(fy).

Theorem 4.1. Let C be a nonempty closed conver subset of a strictly convex
reflexive Banach space E having the Kadec-Klee property and a Fréchet dif-
ferentiable norm. Let {f,} be a countable family of functions of C x C into
R satisfying the conditions (i)—(iv) and suppose that the set of common solu-
tions Z = (., EP(fn) to the equilibrium problems for { f} is nonempty. Let
{an} C [0,1] and {pn} C ]0,00[ be real sequences. Let i : N — I and suppose
that for each j € I, there exists a subsequence {ni} of N such that i(ng) = j
for every k € N, limy_s00 00, < 1, and infrey ppn, > 0. Let x € E and generate
a sequence {x,} by the following iterative scheme: x1 € E, C; = E, and

yn = J (anJzn + (1 — an)JF,, zp),
Cn+1 = {U c b Qb(u’yn) < gf)(u,xn)} N Ch,

Tn41 = Cn+1x
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forn € N, where F, x, is the unique element in C satisfying that
1
fn(Fpnxm@/) + ; <y — Fp o, JEy, vp — an> >0
n

for ally € C. Then, {z,} converges strongly to xo = Pzx € (\,—; EP(f»).
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