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Abstract. In this paper, we establish some unique fixed point theorems for rational ex-

pressions of Dass and Gupta and an almost Dass and Gupta type in the setting of cone

b-metric spaces. Our results extend and generalize the corresponding results of [7, 15] and

many others from the existing literature.

1. Introduction and preliminaries

Fixed point theory plays a very important and significant role in the de-
velopment of nonlinear analysis. In this direction, the first important result
was proved by Banach in 1922 for contraction mapping in complete metric
space, known as the Banach contraction principle [3]. The Banach contrac-
tion principle with rational expressions have been expanded and some fixed
and common fixed point theorems have been obtained in [9], [10] and [15].

In 1989, Bakhtin [4] introduced b-metric spaces as a generalization of metric
spaces. He proved the contraction mapping principle in b-metric spaces that
generalized the famous contraction principle in metric spaces. Czerwik used
the concept of b-metric space and generalized the renowned Banach fixed point
theorem in b-metric spaces (see, [5, 6]). In 2007, Huang and Zhang [12] intro-
duced the concept of cone metric spaces as a generalization of metric spaces
and establish some fixed point theorems for contractive mappings in normal
cone metric spaces. Subsequently, several other authors [1, 14, 18, 21] studied
the existence of fixed points and common fixed points of mappings satisfying
contractive type condition on a normal cone metric space.
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In [13], Hussain and Shah introduced the concept of cone b-metric space
as a generalization of b-metric space and cone metric spaces, in 2011. They
established some topological properties in such spaces and improved some
recent results about KKM mappings in the setting of a cone b-metric space.

In this paper, we establish some unique fixed theorems for rational ex-
pressions in the framework of cone b-metric spaces. Our results extend and
generalize several results from the existing literature (see, e.g., [7, 15, 19]).

Definition 1.1. ([12]) Let E be a real Banach space. A subset P of E is
called a cone whenever the following conditions hold:

(c1) P is closed, nonempty and P 6= {0};
(c2) a, b ∈ R, a, b ≥ 0 and x, y ∈ P imply ax+ by ∈ P ;
(c3) P ∩ (−P ) = {0}.

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by
x ≤ y if and only if y − x ∈ P . We shall write x < y to indicate that x ≤ y
but x 6= y, while x � y will stand for y − x ∈ P 0, where P 0 stands for the
interior of P . If P 0 6= ∅ then P is called a solid cone (see [20]).

There exist two kinds of cones-normal (with the normal constant M) and
non-normal ones (see [8]).

Let E be a real Banach space, P ⊂ E a cone and ‘≤’ partial ordering defined
by P . Then P is called normal if there is a number M > 0 such that for all
x, y ∈ P ,

0 ≤ x ≤ y imply ‖x‖ ≤M‖y‖, (1.1)

or equivalently, if (∀n) xn ≤ yn ≤ zn and

lim
n→∞

xn = lim
n→∞

zn = x imply lim
n→∞

yn = x. (1.2)

The least positive number M satisfying (1.1) is called the normal constant of
P .

Example 1.2. ([20]) Let E = C1
R[0, 1] with ‖x‖ = ‖x‖∞+‖x′‖∞ on P = {x ∈

E : x(t) ≥ 0}. This cone is not normal. Consider, for example, xn(t) = tn

n and

yn(t) = 1
n . Then 0 ≤ xn ≤ yn and limn→∞ yn = 0, but ‖xn‖ = maxt∈[0,1] | t

n

n |+
maxt∈[0,1] |tn−1| = 1

n + 1 > 1. Hence xn does not converge to zero. It follows
by (1.2) that P is a non-normal cone.

Definition 1.3. ([12, 22]) Let X be a nonempty set. Suppose that the map-
ping d : X ×X → E satisfies:

(d1) 0 ≤ d(x, y) for all x, y ∈ X with x 6= y and d(x, y) = 0 ⇔ x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
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(d3) d(x, y) ≤ d(x, z) + d(z, y) x, y, z ∈ X.

Then d is called a cone metric [12] on X and (X, d) is called a cone metric
space [12].

The concept of a cone metric space is more general than that of a metric
space, because each metric space is a cone metric space where E = R and
P = [0,+∞).

Example 1.4. ([12]) Let E = R2, P = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0}, X = R
and d : X × X → E defined by d(x, y) = (|x − y|, α|x − y|), where α ≥ 0 is
a constant. Then (X, d) is a cone metric space with normal cone P where
M = 1.

Example 1.5. ([17]) Let E = `2, P = {{xn}n≥1 ∈ E : xn ≥ 0 for all n},
(X, ρ) be a metric space and d : X ×X → E defined by d(x, y) = {ρ(x,y)2n }n≥1.
Then (X, d) is a cone metric space.

Clearly, the above examples show that class of cone metric spaces contains
the class of metric spaces.

Definition 1.6. ([13]) Let X be a nonempty set and s ≥ 1 be a given real
number. A mapping d : X ×X → E is said to be cone b-metric if and only if,
for all x, y, z ∈ X, the following conditions are satisfies:

(b1) 0 ≤ d(x, y) with x 6= y and d(x, y) = 0 ⇔ x = y;
(b2) d(x, y) = d(y, x);
(b3) d(x, y) ≤ s[d(x, z) + d(z, y)].

The pair (X, d) is called a cone b-metric space.

Remark 1.7. The class of cone b-metric spaces is larger than the class of
cone metric space since any cone metric space must be a cone b-metric space.
Therefore, it is obvious that cone b-metric spaces generalize b-metric spaces
and cone metric spaces.

We give some examples, which show that introducing a cone b-metric space
instead of a cone metric space is meaningful since there exist cone b-metric
space which are not cone metric space.

Example 1.8. ([11]) Let E = R2, P = {(x, y) ∈ E : x ≥ 0, y ≥ 0} ⊂ E,
X = R and d : X × X → E defined by d(x, y) = (|x − y|p, α|x − y|p), where
α ≥ 0 and p > 1 are two constants. Then (X, d) is a cone b-metric space with
the coefficient s = 2p > 1, but not a cone metric space.
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Example 1.9. ([11]) Let X = `p with 0 < p < 1, where `p = {{xn} ⊂ R :∑∞
n=1 |xn|p < ∞}. Let d : X × X → R+ defined by d(x, y) =

(∑∞
n=1 |xn −

yn|p
) 1

p
, where x = {xn}, y = {yn} ∈ `p. Then (X, d) is a cone b-metric space

with the coefficient s = 21/p > 1, but not a cone metric space.

Example 1.10. ([11]) Let X = {1, 2, 3, 4}, E = R2, P = {(x, y) ∈ E : x ≥
0, y ≥ 0}. Define d : X ×X → E by

d(x, y) =

{
(|x− y|−1, |x− y|−1) if x 6= y,

0, if x = y.

Then (X, d) is a cone b-metric space with the coefficient s = 6
5 > 1. But it is

not a cone metric space since the triangle inequality is not satisfied,

d(1, 2) > d(1, 4) + d(4, 2), d(3, 4) > d(3, 1) + d(1, 4).

Definition 1.11. ([13]) Let (X, d) be a cone b-metric space, x ∈ X and {xn}
be a sequence in X. Then

• {xn} is a Cauchy sequence whenever, if for every c ∈ E with 0 �
c, then there is a natural number N such that for all n,m ≥ N ,
d(xn, xm)� c;
• {xn} converges to x whenever, for every c ∈ E with 0� c, then there

is a natural number N such that for all n ≥ N , d(xn, x) � c. We
denote this by limn→∞ xn = x or xn → x as n→∞.
• (X, d) is a complete cone b-metric space if every Cauchy sequence is

convergent.

Let us recall ([12]) that if P is a normal solid cone, then xn ∈ X is a
Cauchy sequence if and only if ‖d(xn, xm)‖ → 0 as n,m → ∞. Further,
xn ∈ X converges to x ∈ X if and only if ‖d(xn, x)‖ → 0 as n→∞.

In the following (X, d) will stands for a cone b-metric space with respect to
a cone P with P 0 6= ∅ in a real Banach space E and ‘≤’ is partial ordering in
E with respect to P .

Definition 1.12. ([2]) Let (X, d) be a complete partially ordered metric space.
A self mapping T : X → X is called an almost Dass and Gupta contraction
(Arshad et al. contraction) if it satisfies the following condition:

d(Tx, Ty) ≤ αd(y, Ty)[1 + d(x, Tx)]

1 + d(x, y)
+ β d(x, y)

+L min{d(x, Tx), d(x, Ty), d(y, Tx)}, (1.3)
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for all x, y ∈ X, where L ≥ 0 and α, β ∈ [0, 1) with α+ β < 1.

Definition 1.13. ([7]) Let (X, d) be a metric space. A self mapping T : X →
X is called Dass and Gupta contraction if it satisfies the following condition:

d(Tx, Ty) ≤ αd(y, Ty)[1 + d(x, Tx)]

1 + d(x, y)
+ β d(x, y), (1.4)

for all x, y ∈ X and α, β ∈ [0, 1) with α+ β < 1.

2. Main results

In this section, we shall prove some fixed point theorems for rational ex-
pressions in the framework of cone b-metric spaces.

Theorem 2.1. Let (X, d) be a complete cone b-metric space with the coeffi-
cient s ≥ 1 and P be a normal cone with normal constant M . Suppose that the
mapping T : X → X satisfies the rational contraction (1.3) for all x, y ∈ X,
where L ≥ 0 and α, β ∈ [0, 1) with sα + sβ < 1. Then T has a unique fixed
point in X.

Proof. Choose x0 ∈ X. We construct the iterative sequence {xn}, where
xn = Txn−1, n ≥ 1, that is, xn+1 = Txn = Tn+1x0. From (1.3), we have

d(xn, xn+1) = d(Txn−1, Txn)

≤ αd(xn, Txn)[1 + d(xn−1, Txn−1)]

1 + d(xn−1, xn)
+ β d(xn−1, xn)

+L min{d(xn−1, Txn−1), d(xn−1, Txn), d(xn, Txn−1)}

=
αd(xn, xn+1)[1 + d(xn−1, xn)]

1 + d(xn−1, xn)
+ β d(xn−1, xn)

+L min{d(xn−1, xn), d(xn−1, xn+1), d(xn, xn)}
≤ αd(xn, xn+1) + β d(xn−1, xn). (2.1)

This implies that

d(xn, xn+1) ≤
( β

1− α

)
d(xn−1, xn)

= k d(xn−1, xn), (2.2)

where k = β
1−α , since sα+ sβ < 1, it is clear that 0 < k < 1/s. By induction,

we have

d(xn+1, xn) ≤ k d(xn−1, xn) ≤ k2 d(xn−2, xn−1) ≤ . . .
≤ kn d(x0, x1). (2.3)
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Let m,n ≥ 1 and m > n, we have

d(xn, xm) ≤ s[d(xn, xn+1) + d(xn+1, xm)]

= sd(xn, xn+1) + sd(xn+1, xm)

≤ sd(xn, xn+1) + s2[d(xn+1, xn+2) + d(xn+2, xm)]

= sd(xn, xn+1) + s2d(xn+1, xn+2) + s2d(xn+2, xm)

≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + s3d(xn+2, xn+3)

+ · · ·+ sn+m−1d(xn+m−1, xm)

≤ sknd(x1, x0) + s2kn+1d(x1, x0) + s3kn+2d(x1, x0)

+ · · ·+ smkn+m−1d(x1, x0)

= skn[1 + sk + s2k2 + s3k3 + · · ·+ (sk)m−1]d(x1, x0)

≤
[ skn

1− sk

]
d(x1, x0).

Since P is a normal cone with normal constant M , so we get ‖d(xn, xm)‖ ≤
M skn

1−sk‖d(x1, x0)‖. This implies ‖d(xn, xm)‖ → 0 as n,m → ∞, since 0 <

sk < 1. Hence {xn} is a Cauchy sequence. Since (X, d) is a complete cone
b-metric space, there exists p ∈ X such that xn → p as n→∞. Now, since

d(Tp, p) ≤ s[d(Tp, Txn) + d(Txn, p)]

= sd(Tp, Txn) + sd(Txn, p)

≤ s
[αd(xn, Txn)[1 + d(p, Tp)]

1 + d(p, xn)
+ β d(p, xn)

+L min{d(p, Tp), d(p, Txn), d(xn, Tp)}
]

+ sd(Txn, p)

= s
[αd(xn, xn+1)[1 + d(p, Tp)]

1 + d(p, xn)
+ β d(p, xn)

+L min{d(p, Tp), d(p, xn+1), d(xn, Tp)}
]

+ sd(xn+1, p).

As xn → p and xn+1 → p as n→∞, we get

‖d(Tp, p)‖ ≤ M
[
sβ‖d(p, xn)‖+ s‖d(xn+1, p)‖

]
→ 0 as n→∞.

Hence ‖d(Tp, p)‖ = 0. Thus we get Tp = p, that is, p is a fixed point of T .

Uniqueness. Let p′ be another fixed point of T , that is, Tp′ = p′ such that
p 6= p′. Then from (1.3), we have

d(p, p′) = d(Tp, Tp′)
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≤ αd(p′, Tp′)[1 + d(p, Tp)]

1 + d(p, p′)
+ β d(p, p′)

+L min{d(p, Tp), d(p, Tp′), d(p′, Tp)}

≤ αd(p′, p′)[1 + d(p, p)]

1 + d(p, p′)
+ β d(p, p′)

+L min{d(p, p), d(p, p′), d(p′, p)}
≤ β d(p, p′)

< d(p, p′),

since 0 < β < 1, which is a contradiction. Hence ‖d(p, p′)‖ = 0 and so p = p′.
Thus p is a unique fixed point of T . This completes the proof. �

From Theorem 2.1, we obtain the following result as corollary.

Corollary 2.2. Let (X, d) be a complete cone b-metric space with the coeffi-
cient s ≥ 1 and P be a normal cone with normal constant M . Suppose that the
mapping T : X → X satisfies the Dass and Gupta rational contraction (1.4)
for all x, y ∈ X and α, β ∈ [0, 1) with sα+ sβ < 1. Then T has a unique fixed
point in X.

Proof. The proof of Corollary 2.2 immediately follows from Theorem 2.1 by
taking L = 0. This completes the proof. �

Theorem 2.3. Let (X, d) be a complete cone b-metric space with the coeffi-
cient s ≥ 1 and P be a normal cone with normal constant M . Suppose that
the mapping T : X → X satisfies the rational contraction:

d(Tx, Ty) ≤ αd(x, y) +
β d(y, Ty)[1 + d(x, Tx)]

1 + d(x, y)

+
γ [d(y, Ty) + d(y, Tx)]

1 + d(y, Ty)d(y, Tx)
, (2.4)

for all x, y ∈ X and α, β, γ ∈ [0, 1) with sα+β+γ < 1. Then T has a unique
fixed point in X.

Proof. Choose x0 ∈ X. We construct the iterative sequence {xn}, where
xn = Txn−1, n ≥ 1, that is, xn+1 = Txn = Tn+1x0. From (2.4), we have
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d(xn, xn+1) = d(Txn−1, Txn)

≤ αd(xn−1, xn) +
β d(xn, Txn)[1 + d(xn−1, Txn−1)]

1 + d(xn−1, xn)

+
γ [d(xn, Txn) + d(xn, Txn−1)]

1 + d(xn, Txn)d(xn, Txn−1)

= αd(xn−1, xn) +
β d(xn, xn+1)[1 + d(xn−1, xn)]

1 + d(xn−1, xn)

+
γ [d(xn, xn+1) + d(xn, xn)]

1 + d(xn, xn+1)d(xn, xn)

≤ αd(xn−1, xn) + (β + γ)d(xn, xn+1). (2.5)

This implies that

d(xn, xn+1) ≤
( α

1− β − γ

)
d(xn−1, xn)

= f d(xn−1, xn), (2.6)

where f =
(

α
1−β−γ

)
, since sα + β + γ < 1, it is clear that 0 < f < 1/s. By

induction, we have

d(xn+1, xn) ≤ f d(xn−1, xn) ≤ f2 d(xn−2, xn−1) ≤ . . .
≤ fn d(x0, x1). (2.7)

Let m,n ≥ 1 and m > n, we have

d(xn, xm) ≤ s[d(xn, xn+1) + d(xn+1, xm)]

= sd(xn, xn+1) + sd(xn+1, xm)

≤ sd(xn, xn+1) + s2[d(xn+1, xn+2) + d(xn+2, xm)]

= sd(xn, xn+1) + s2d(xn+1, xn+2) + s2d(xn+2, xm)

≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + s3d(xn+2, xn+3)

+ · · ·+ sn+m−1d(xn+m−1, xm)

≤ sfnd(x1, x0) + s2fn+1d(x1, x0) + s3fn+2d(x1, x0)

+ · · ·+ smfn+m−1d(x1, x0)

= sfn[1 + sf + s2f2 + s3f3 + · · ·+ (sf)m−1]d(x1, x0)

≤
[ sfn

1− sf

]
d(x1, x0).

Since P is a normal cone with normal constant M , so we get ‖d(xn, xm)‖ ≤
M sfn

1−sf ‖d(x1, x0)‖. This implies ‖d(xn, xm)‖ → 0 as n,m → ∞, since 0 <
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sf < 1. Hence {xn} is a Cauchy sequence. Since (X, d) is a complete cone
b-metric space, there exists u ∈ X such that xn → u as n→∞. Now, since

d(Tu, u) ≤ s[d(Tu, Txn) + d(Txn, u)]

= sd(Tu, Txn) + sd(Txn, u)

≤ s
[
αd(u, xn) +

β d(xn, Txn)[1 + d(u, Tu)]

1 + d(u, xn)

+
γ [d(xn, Txn) + d(xn, Tu)]

1 + d(xn, Txn)d(xn, Tu)

]
+ sd(Txn, u)

= s
[
αd(u, xn) +

β d(xn, xn+1)[1 + d(u, Tu)]

1 + d(u, xn)

+
γ [d(xn, xn+1) + d(xn, Tu)]

1 + d(xn, xn+1)d(xn, Tu)

]
+ sd(xn+1, u).

As xn → u and xn+1 → u as n→∞, we get

(1− γ)‖d(Tu, u)‖ ≤ M
[
sα‖d(u, xn)‖+ s‖d(xn+1, u)‖

]
→ 0 as n→∞.

Hence (1− γ)‖d(Tu, u)‖ = 0 ⇒ ‖d(Tu, u)‖ = 0, since (1− γ) > 0. Thus we
get Tu = u, that is, u is a fixed point of T .

Uniqueness. Let v be another fixed point of T , that is, Tv = v such that
u 6= v. Then from (2.4), we have

d(u, v) = d(Tu, Tv)

≤ αd(u, v) +
β d(v, Tv)[1 + d(u, Tu)]

1 + d(u, v)

+
γ [d(v, Tv) + d(v, Tu)]

1 + d(v, Tv)d(v, Tu)

≤ αd(u, v) +
β d(v, v)[1 + d(u, u)]

1 + d(u, v)

+
γ [d(v, v) + d(v, u)]

1 + d(v, v)d(v, u)

≤ (α+ γ)d(u, v)

< d(u, v),

since 0 < (α + γ) < 1, which is a contradiction. Hence ‖d(u, v)‖ = 0 and so
u = v. Thus u is a unique fixed point of T . This completes the proof. �

From Theorem 2.1 and 2.3, we obtain the following result as corollary.
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Corollary 2.4. Let (X, d) be a complete cone b-metric space with the coeffi-
cient s ≥ 1 and P be a normal cone with normal constant M . Suppose that
the mapping T : X → X satisfies the contraction contraction

d(Tx, Ty) ≤ αd(x, y),

for all x, y ∈ X and α ∈ [0, 1) with sα < 1. Then T has a unique fixed point
in X.

Remark 2.5. (i) Our results extend and generalize the corresponding re-
sults of Arshad et al. [2], Dass and Gupta [7] and Uthayakumar and Arockia
prabakar [19] from complete partially ordered metric space, complete metric
space and cone metric space to that setting of cone b-metric space considered
in this paper.
(ii) Theorem 2.3 extends Theorem 3.3 of Sarwar and Rahman [16] from b-
metric space to that setting of cone b-metric space considered in this paper.
(iii) Corollary 2.4 extends well known Banach contraction principle from com-
plete metric space to that setting of complete cone b-metric space considered
in this paper.
(iv) Our results also extends and generalizes several known results from the
existing literature.

Example 2.6. Let E = CR[0, 1], P = {f ∈ E : f ≥ 0} ⊂ E, X = [0,∞) and
d(x, y) = |x− y|2 et. Then (X, d) is a cone b-metric space with the coefficient
s = 2. But it is not a cone metric space. We consider the mappings T : X → X
defined by T (x) = 1

2x. Hence

d(Tx, Ty) =
∣∣∣1
2
x− 1

2
y
∣∣∣2 et =

1

4
|x− y|2 et

≤ 1

2
|x− y|2 et =

1

2
d(x, y).

Clearly 0 ∈ X is the unique fixed point of T .

3. Conclusion

In this paper, we establish some unique fixed point theorems for rational
contractions in the setting of cone b-metric spaces. Our results extend and
generalize several results from the existing literature (see, e.g., [2, 7, 16, 19]
and many others).
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