Nonlinear Functional Analysis and Applications

Vol. 21, No. 2 (2016), pp. 183-193 N

_ . cHF A
http://nfaa.kyungnam.ac.kr/journal-nfaa =
Copyright © 2016 Kyungnam University Press KUPTSss

SOME UNIQUE FIXED POINT THEOREMS FOR
RATIONAL EXPRESSIONS IN CONE »-METRIC SPACES

G. S. Saluja

Department of Mathematics, Govt. Nagarjuna P.G. College of Science
Raipur - 492010 (C.G.), India
e-mail: salujal963Q@Qgmail.com

Abstract. In this paper, we establish some unique fixed point theorems for rational ex-
pressions of Dass and Gupta and an almost Dass and Gupta type in the setting of cone
b-metric spaces. Our results extend and generalize the corresponding results of [7, 15] and

many others from the existing literature.

1. INTRODUCTION AND PRELIMINARIES

Fixed point theory plays a very important and significant role in the de-
velopment of nonlinear analysis. In this direction, the first important result
was proved by Banach in 1922 for contraction mapping in complete metric
space, known as the Banach contraction principle [3]. The Banach contrac-
tion principle with rational expressions have been expanded and some fixed
and common fixed point theorems have been obtained in [9], [10] and [15].

In 1989, Bakhtin [4] introduced b-metric spaces as a generalization of metric
spaces. He proved the contraction mapping principle in b-metric spaces that
generalized the famous contraction principle in metric spaces. Czerwik used
the concept of b-metric space and generalized the renowned Banach fixed point
theorem in b-metric spaces (see, [5, 6]). In 2007, Huang and Zhang [12] intro-
duced the concept of cone metric spaces as a generalization of metric spaces
and establish some fixed point theorems for contractive mappings in normal
cone metric spaces. Subsequently, several other authors [1, 14, 18, 21] studied
the existence of fixed points and common fixed points of mappings satisfying
contractive type condition on a normal cone metric space.
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In [13], Hussain and Shah introduced the concept of cone b-metric space
as a generalization of b-metric space and cone metric spaces, in 2011. They
established some topological properties in such spaces and improved some
recent results about KKM mappings in the setting of a cone b-metric space.

In this paper, we establish some unique fixed theorems for rational ex-
pressions in the framework of cone b-metric spaces. Our results extend and
generalize several results from the existing literature (see, e.g., [7, 15, 19]).

Definition 1.1. ([12]) Let E be a real Banach space. A subset P of E is
called a cone whenever the following conditions hold:

(c1) P is closed, nonempty and P # {0};

(c2) a,b€ R, a,b>0 and z,y € P imply ax + by € P;

(cs) PN (=P) =A{0}.
Given a cone P C FE, we define a partial ordering < with respect to P by
x <y if and only if y — x € P. We shall write x < y to indicate that x < y
but « # y, while 2 < y will stand for y — z € PY, where PY stands for the
interior of P. If P? # () then P is called a solid cone (see [20]).

There exist two kinds of cones-normal (with the normal constant M) and
non-normal ones (see [8]).

Let E be a real Banach space, P C E a cone and ‘<’ partial ordering defined
by P. Then P is called normal if there is a number M > 0 such that for all
z,y € P,

0<e<y imply |lzf <My, (11)
or equivalently, if (Vn) z, <y, < z, and
lim z, = lim 2, =2 imply lim y, = . (1.2)
n—oo n—oo n—oo

The least positive number M satisfying (1.1) is called the normal constant of
P.

Example 1.2. ([20]) Let E = C}[0,1] with [|2|| = [|z]joc +[|2/]|cc on P = {x €
E : z(t) > 0}. This cone is not normal. Consider, for example, z,,(t) = £ and
Yn(t) = 2. Then 0 < 25 < Yy, and limy, 00 Yn = 0, but |2, || = max,o 1) 12|+
max;e|o,1] [t = % + 1> 1. Hence x,, does not converge to zero. It follows

by (1.2) that P is a non-normal cone.

Definition 1.3. ([12, 22]) Let X be a nonempty set. Suppose that the map-
ping d: X x X — F satisfies:

(d1) 0 <d(zx,y) for all z,y € X with x # y and d(z,y) =0 & x =y;

(d2) d(z,y) = d(y, ) for all 7,y € X;
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(d3) d(z,y) < d(z,z)+d(z,y) z,y,z € X.

Then d is called a cone metric [12] on X and (X,d) is called a cone metric
space [12].

The concept of a cone metric space is more general than that of a metric
space, because each metric space is a cone metric space where £ = R and
P =0, +00).

Example 1.4. ([12]) Let E =R? P = {(z,y) e R? : 2 >0,y > 0}, X =R
and d: X x X — E defined by d(z,y) = (| — y|,a|z — y|), where a > 0 is
a constant. Then (X,d) is a cone metric space with normal cone P where
M =1.

Example 1.5. ([17]) Let E = 2, P = {{z,}n>1 € E : 7, > 0 for all n},

(X, p) be a metric space and d: X x X — E defined by d(z,y) = {p(”"’y b1
Then (X, d) is a cone metric space.

Clearly, the above examples show that class of cone metric spaces contains
the class of metric spaces.

Definition 1.6. ([13]) Let X be a nonempty set and s > 1 be a given real
number. A mapping d: X x X — FE is said to be cone b-metric if and only if,
for all x, y, z € X, the following conditions are satisfies:

1) 0 <d(z,y) with z #y and d(z,y) =0 & x =y;

(b
(ba) d(z,y) = d(y,z);
(bs) d(z.y) < sld(z.2) + d(z.)].

y) =
y) <
The pair (X, d) is called a cone b-metric space.

Remark 1.7. The class of cone b-metric spaces is larger than the class of
cone metric space since any cone metric space must be a cone b-metric space.
Therefore, it is obvious that cone b-metric spaces generalize b-metric spaces
and cone metric spaces.

We give some examples, which show that introducing a cone b-metric space
instead of a cone metric space is meaningful since there exist cone b-metric
space which are not cone metric space.

Example 1.8. ([11]) Let £ = R?, P = {(z,y) € B : z > 0,y > 0} C E,
X =R and d: X x X — E defined by d(z,y) = (Jz — y|?, o]z — yP), where
a > 0and p > 1 are two constants. Then (X, d) is a cone b-metric space with
the coefficient s = 2P > 1, but not a cone metric space.



186 G. S. Saluja

Example 1.9. ([11]) Let X = (7 with 0 < p < 1, where ¥ = {{z,} C R :
Yool |anlP < oo}, Let d: X x X — Ry defined by d(z,y) = (ZZO:1 |y, —
1

yn|p) 5’ where x = {x,}, y = {yn} € P. Then (X,d) is a cone b-metric space

with the coefficient s = 21/7 > 1, but not a cone metric space.

Example 1.10. ([11]) Let X = {1,2,3,4}, E =R? P = {(z,y) € E : x >
0,y > 0}. Define d: X x X — E by

z—y| Lz -yl ifx ,
d(x,w_{u I

Then (X, d) is a cone b-metric space with the coefficient s = £ > 1. But it is

not a cone metric space since the triangle inequality is not satisfied,

d(1,2) > d(1,4) + d(4,2), d(3,4) > d(3,1) +d(1,4).

Definition 1.11. ([13]) Let (X, d) be a cone b-metric space, x € X and {z,}
be a sequence in X. Then

e {z,} is a Cauchy sequence whenever, if for every ¢ € E with 0 <
¢, then there is a natural number N such that for all n,m > N,
d(xp, Tm) < ¢

e {x,} converges to x whenever, for every ¢ € E with 0 < ¢, then there
is a natural number N such that for all n > N, d(x,,x) < c¢. We
denote this by limy,, o T, = T or , — T as n — 0.

e (X,d) is a complete cone b-metric space if every Cauchy sequence is
convergent.

Let us recall ([12]) that if P is a normal solid cone, then z, € X is a
Cauchy sequence if and only if ||d(xn,zn)|| — 0 as n,m — oo. Further,
x, € X converges to x € X if and only if ||d(z,,x)|| — 0 as n — oo.

In the following (X, d) will stands for a cone b-metric space with respect to
a cone P with P? # () in a real Banach space E and ‘<’ is partial ordering in
FE with respect to P.

Definition 1.12. (]2]) Let (X, d) be a complete partially ordered metric space.
A self mapping T: X — X is called an almost Dass and Gupta contraction
(Arshad et al. contraction) if it satisfies the following condition:

ad(y, Ty)[1 + d(z, Tz))
T+ dz.y) + Bd(z,y)

+L min{d(z,Tz),d(z,Ty),d(y, Tx)}, (1.3)

d(Tz,Ty) <
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for all x,y € X, where L > 0 and «, f € [0,1) with a + 8 < 1.

Definition 1.13. ([7]) Let (X, d) be a metric space. A self mapping 7': X —
X is called Dass and Gupta contraction if it satisfies the following condition:

ad(y, Ty)[1 + d(z,Tz)]
1+d(z,y)

for all z,y € X and «, 8 € [0,1) with a4+ 5 < 1.

d(Tz, Ty)

IN

+ Bd(z,y), (1.4)

2. MAIN RESULTS

In this section, we shall prove some fixed point theorems for rational ex-
pressions in the framework of cone b-metric spaces.

Theorem 2.1. Let (X,d) be a complete cone b-metric space with the coeffi-
cient s > 1 and P be a normal cone with normal constant M. Suppose that the
mapping T: X — X satisfies the rational contraction (1.3) for all x,y € X,
where L > 0 and o, f € [0,1) with s+ sf < 1. Then T has a unique fized
point in X.

Proof. Choose 9 € X. We construct the iterative sequence {z,}, where
Tp =Tz, 1, n > 1, that is, £,41 = Tz, = T" 2y, From (1.3), we have
d(xn, tpnt1) = d(Txp—1,Txy)
ad(xn, Tay)[1 4+ d(xp—1,TTn-1)]
1+ d(xp—1,2n)
+L min{d(zp—1,Txn-1),d(xn-1,Txy),d(xn, TTn_1)}
a d($n, xn+1)[1 + d(xn—ly xn)]
= d n—ls<n
1+ d(xp—1,zn) + A d(zn1, )
+L min{d(xn—ly xn)a d('fUn—h xn-i—l)a d($7h xn)}
< ad(zn, Tpe1) + Bd(xn—1,x). (2.1)

This implies that

<

+ 5 d(xn—la xn)

d(xp, xpy1) < (1 f a> d(Tp-1,Tn)

= kd(zp_1,zy), (2.2)

where k = %, since sa + sf < 1, it is clear that 0 < k < 1/s. By induction,
we have

kd(xnfla -'En) < K d(l'nf%xnfl) <

k" d(x(),l'l). (2.3)

d(mn+1a $n) <
<
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Let m,n > 1 and m > n, we have

IN

sld(@n, Tns1) + d(Tni1, Tm)]

sd(xp, Tpy1) + sd(Tni1, Tm)

d(Tn, Tnt1) + [d(xn—&-la Tni2) + d(Tnt2, Tm)
A(xp, Tri1) + 82d(Tng1, Tnyo) + S2d(Tnio, Tm)
sd(xp, Tni1) + $2d(Tpi1, Tnio) + SSd(Tpi2, Tnis)
4 ST A 1, )

sk™d(z1, o) + 2k (21, z) + 3k 2d (21, 20)
o SR (2, w0)

= sk"[1 4 sk + s?k* + K3 + - + (sk)™ ) d(21, x0)

[1%;] d(@1, o).

d(Xp, Tm)

(VAN | VAN
» »

IN

Since P is a normal cone with normal constant M, so we get ||d(zy, Zm)| <
M 5 sk™ P lld(w1, z0)|]. This implies || d(zy, )| — 0 as n,m — oo, since 0 <
sk < 1. Hence {z,} is a Cauchy sequence. Since (X,d) is a complete cone
b-metric space, there exists p € X such that x,, — p as n — oo. Now, since

d(Tp,p) < sld(Tp, Txy) + d(Tap,p)]
sd(Tp, Txy) + sd(Tan,p)
ravd(azn, Tx,)[1 4 d(p, Tp)]

°| 1+d(p,zn) A dlp, zn)

+L min{d(p, Tp), d(p, Tvn), d(wn, Tp)}| + sd(Tn, p)

. e d(l‘n,l'nJrl)[l +d(pa Tp)]
= S_ ]_—}—d(p,f]}'n) +,8d(p,l'n)

+L min{d(p, Tp), d(p, 2s1), d(wn, TD)}| + sd(@ns1,p).

IN

As x, — pand z,11 — p as n — 0o, we get

1d(Tp,p)l < M |splld(p,xn) + Slld($n+17p)H] — 0asn — oo.

Hence ||d(T'p,p)|| = 0. Thus we get T'p = p, that is, p is a fixed point of T'.

Uniqueness. Let p’ be another fixed point of T, that is, Tp' = p’ such that
p # p'. Then from (1.3), we have

d(p,p") = d(Tp,Tp')
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ad(p',Tp')[1 + d(p, Tp)]

< 7] + Bd(p,p)
+L min{d(p, Tp),d(p,Tp),d(p’, Tp)}
O[d / / d

S (pla ]j_)c[ltp+p,)(p,p)] + ﬂd(p, p/)
+L min{d(p,p),d(p,p"),d(p’, p)}

< Bd(p,p)

< d(p,p"),

since 0 < 8 < 1, which is a contradiction. Hence ||d(p,p’)|| = 0 and so p = p'.
Thus p is a unique fixed point of T'. This completes the proof. O

From Theorem 2.1, we obtain the following result as corollary.

Corollary 2.2. Let (X,d) be a complete cone b-metric space with the coeffi-
cient s > 1 and P be a normal cone with normal constant M. Suppose that the
mapping T: X — X satisfies the Dass and Gupta rational contraction (1.4)
forallz,y € X and o, f € [0,1) with sa+ s < 1. Then T has a unique fized
point in X.

Proof. The proof of Corollary 2.2 immediately follows from Theorem 2.1 by
taking L. = 0. This completes the proof. O

Theorem 2.3. Let (X,d) be a complete cone b-metric space with the coeffi-
cient s > 1 and P be a normal cone with normal constant M. Suppose that
the mapping T: X — X satisfies the rational contraction:

Bd(y, Ty)[1 + d(x, Tz)]
1+d(z,y)
vld(y, Ty) + d(y, Tr)]
1+d(y, Ty)d(y,Tx) ’

d(Tx, Ty) < ad(z,y)+

(2.4)

forallz,y € X and o, B, v € [0,1) with s+ 5+~ < 1. Then T has a unique
fixed point in X.

Proof. Choose zp € X. We construct the iterative sequence {z,}, where
Tp =Txn_1,n > 1, that is, z,41 = Tz, = T 2y, From (2.4), we have
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d(zp, xnt1) = d(Txp-1,Tzy)
Bd(xy, Txy)[1 + d(xp—1,Txn_1)]
1+ d(xp-1,2n)
vd(zn, Try) + d(zn, Trp—1)]
1+ d(zy, Tep)d(xn, Trp—1)
Bd(n, Tny1)[1 + d(wn—1,74)]
1+ d(xp-1,2n)
yld(wn, Tpy1) + d(Tn, 0]
1+ d(zn, Tnt1)d(xn, )
ad(zp_1,2,) + (B +7)d(Tn, Tni1). (2.5)

IN

ad(rp—1,Ty) +

= ad(xp—1,2,) +

_|_

IN

This implies that

d(l'na xn+1) <

(== ) tenroa)
= fd(wn,m0), (2.6)

where f = (ﬁ), since s + B+ v < 1, it is clear that 0 < f < 1/s. By
induction, we have

d(wn—&—l;xn) < fd(xn—laxn) < f2 d(-rn—%xn—l) <...
< f"d(xg,x1). (2.7)

Let m,n > 1 and m > n, we have

d(xn, m) < sld(@n, Tnt1) + d(Tnt1, Tm)]
sd(xn, Tnt1) + sd(Tp41, Tm)
< sd(zn, Tpg) + [d($n+1axn+2) + d(Tn42, 2m)]
= s5d(xp, Tni1) + 2d(Tni1, Tnyo) + $2A(Trio, Tm)
d(Tp, Tni1) + 8 d(mn+1, Tni2) + 8 d(:vn+2, Tnt3)
o ST A 1, )
sfhd(xy,x0) + 82 f" T d(zy, o) 4+ 83 7 2d (21, 20)
e S (2 )
= sfMl+sf+ 2+ 4+ ()" d(w, 20)
< [ dwr,a0).
- L1 —sf
Since P is a normal cone with normal constant M, so we get ||d(xn, zm)|| <
M L5 ||d(2y, 20)||. This implies [|d(2p, 2m)| — 0 as n,m — oo, since 0 <

IN
»

IN
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sf < 1. Hence {z,} is a Cauchy sequence. Since (X,d) is a complete cone
b-metric space, there exists u € X such that z,, = v as n — co. Now, since

d(Tu,u) < sld(Tu,Txy) + d(Txn,u)]

= sd(Tu,Tzy) + sd(Txy,u)

Bd(xn, Txy)[1 + d(u, Tu)]
1+ d(u, xy)

v [d(xn, Txy) + d(zn, Tu)]
1+ d(zp, Tey)d(xn, Tu)
B d(xna $n+1)[1 + d(uv Tu)]
1+ d(u, xy)

7 [d(@n; Tny1) + d(@p, Tu)]
1+ d(zp, Tnt1)d(xn, Tu)

As z,, = u and x,41 — u as n — o0, we get

< s [a d(u, x,) +

} + sd(Txy, u)

= s [oz d(u, x,) +

} + sd(zpt1,u).

(1 =Nd(Tu,u)|]| < M|sa|d(u,z,)| + s|]d(a:n+1,u)||} — 0asn — oo.

Hence (1 —7)||[d(Tu,u)|| =0 = ||d(Tu,u)| =0, since (1 —~v) > 0. Thus we
get T'u = u, that is, u is a fixed point of 7T'.

Uniqueness. Let v be another fixed point of T', that is, Tv = v such that
u # v. Then from (2.4), we have

d(u,v) = d(Tu,Tv)
Bd(v, Tv)[1 + d(u, Tu)]
1+ d(u,v)
v [d(v, Tv) + d(v, Tu)]
1+ d(v, Tv)d(v, Tu)
Bd(v,v)[1+ d(u,u)]
1+ d(u,v)
7 [d(v, v) + d(v, u)]
1+ d(v,v)d(v,u)
< (a+7)d(u,v)

< ad(u,v) +

IN

ad(u,v) +

< d(u,v),
since 0 < (a+ ) < 1, which is a contradiction. Hence ||d(u,v)|| = 0 and so
u = v. Thus u is a unique fixed point of T. This completes the proof. O

From Theorem 2.1 and 2.3, we obtain the following result as corollary.
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Corollary 2.4. Let (X,d) be a complete cone b-metric space with the coeffi-
cient s > 1 and P be a normal cone with normal constant M. Suppose that
the mapping T: X — X satisfies the contraction contraction

d(Tz, Ty) < ad(z,y),

forall z,y € X and a € [0,1) with sa < 1. Then T has a unique fized point
mn X.

Remark 2.5. (i) Our results extend and generalize the corresponding re-
sults of Arshad et al. [2], Dass and Gupta [7] and Uthayakumar and Arockia
prabakar [19] from complete partially ordered metric space, complete metric
space and cone metric space to that setting of cone b-metric space considered
in this paper.

(ii) Theorem 2.3 extends Theorem 3.3 of Sarwar and Rahman [16] from b-
metric space to that setting of cone b-metric space considered in this paper.
(iii) Corollary 2.4 extends well known Banach contraction principle from com-
plete metric space to that setting of complete cone b-metric space considered
in this paper.

(iv) Our results also extends and generalizes several known results from the
existing literature.

Example 2.6. Let £ = Cg[0,1], P={f € E: f>0} C E, X =]0,00) and
d(z,y) = |v — y|?e’. Then (X,d) is a cone b-metric space with the coefficient
s = 2. But it is not a cone metric space. We consider the mappings T: X — X
defined by T'(z) = . Hence

1 12 1
d(Tz,Ty) = ‘555—521‘ 6t:z’$—y|2€t
1 1
< §’$—y’2€t:§d($,y)-

Clearly 0 € X is the unique fixed point of 7.

3. CONCLUSION

In this paper, we establish some unique fixed point theorems for rational
contractions in the setting of cone b-metric spaces. Our results extend and
generalize several results from the existing literature (see, e.g., [2, 7, 16, 19]
and many others).
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