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1. Introduction

Set-valued analysis [1] which was studied by Jean-Pierre Aubin and Hèlène
Frankowska, is a useful extension of the mathematics analysis, have wide appli-
cations to many fields including, for example, control, differential games, game
theory, variational inclusions, optimization, nonlinear programming, econom-
ics, and engineering sciences [2]-[7]. Specially, various variational inclusions
which have been intensively developed by Bella [8], Huang-Tang-Liu [9] and
Jeong [10] and studied by Ding [11], Verma [12], Huang [13], Fang and Huang
[14], Lan-Cho-Verma [15], Fang-Huang-Thompson [16], Zhang et al. [17] and
the authors [18]-[32] in recent years, is an important context in the set-valued
inclusions problem, and is an important application of set-valued analysis.

On the other hand, the influence and function of Hausdorff metric spaces
theory is extensive and profound in many fields such as topology, geometric,
topology, set-valued analysis, variational inclusions, optimization, game the-
ory, nonlinear programming and economics [33]-[42]. Further, to develop a
theory of supper Hausdorff metric spaces for expressing the distance between
the two set classes, set classes convergence and fixed point, is inevitable and
useful in mathematics theory and application because of needing to solve the
practical something.

For example, in the age of big data, that how to intelligently and efficiently
discover domain users knowledge has been becoming a key problem in current
research in the today, the age of big data. Since big data always is huge,
heterogeneous, sparse, high dimensional, dynamic and real-time so that aim-
ing at the above features of big data, some noes propose a multi-granularity
data mining model for processing big data based on both data feature, users
requirements and the multi-granularity cognitive mechanism of human being.
Aiming at the above features of big data, this project will propose a multi-
granularity data mining model for processing big data based on both data
feature, users requirements and the multi-granularity cognitive mechanism of
human being. The main contents of this research project include [43]-[47]. A
multi-granularity automatic preliminary classification model be established for
multi-source heterogeneous data is important. The preliminary classification
process for big data can be expressed as follows:

Let < be real, and E = {xi|xi ∈ <, 1 ≤ i ≤ n} be a big data set(the n is a
enough big natural number).

1. To make class of subset of E, F̂1 ={α(1) ⊆ E|α(1) be family of nonempty
closed subset of E} for founding domain users knowledge, where according to

a metric of multi-granularity framework in big data, every set α(1) is produced
by the element x1, x2, · · ·, xn.
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2. Further, to make set class of some subsets of F̂1,

F̂2 =
⋃
α(1)⊆E{{α(2)|α(2) ⊆ α(1)}, α(2) be family of nonempty closed subset of

α(1) } for mining knowledge in big data, where according to a supper Hausdorff

metric of set class in F̂2, every set α(2) is produced by the element in α(1).

3. To discover domain users knowledge by analyzing a element βk in every
set class {α(2)|α(2) ⊆ α(1)}k where some metric h(βk, {α(2)|α(2) ⊆ α(1)}k) < δk
and δk > 0 is a granularity valued.

It is meaningful to deal with the above process and to change one into a
mathematical model.

Let (X, d) be a metric space as d metric, 2X = {α|α ⊆ X,α 6= ∅} be the
family of all nonempty subset of X, CB(X) ⊂ 2X be family of all nonempty
bounded closed subset of X, p(2X) = {A|A ⊆ 2X , A 6= ∅} be family of all
nonempty class of subset of X, Ω(X) = {A|A ⊆ CB(X)} ⊆ p(2X) be the
family of nonempty bounded closed subset of X and (CB(X), H) be a Haus-
dorff metric space induced by (X, d) as H Hausdorff metric, then it is very
necessary and interesting to establish and study super Hausdorff metric spaces
(Ω(X), ~) on the Hausdorff metric space (CB(X), H).

Therefore, we introduce super Hausdorff metric spaces (Ω(X), ~) and study
basic properties of the (Ω(X), ~) in this work, and refer to [1]-[49] and refer-
ences contained therein.

Inspired and motivated by recent research work in this field, in this paper,
a super Hausdorff metric is introduced and constructed, and the completeness
of super Hausdorff metric space is studied. a new concept, the trajectory of
set valued mapping is introduced, and by using the trajectory condition, the
existence theorems for the set-valued fixed point and the fixed point of a new
class of set valued mappings is proved. The obtained results seem to be general
in nature.

2. Super Hausdorff metric spaces and completeness of ones

Let (X, d) be a metric space, 2X = {α|α ⊆ X,α 6= ∅} be the family of
all nonempty subset of X, CB(X) ⊂ 2X be family of all nonempty bounded
closed subset of X, C(X) ⊂ CB(X) be family of all nonempty compact subsets
of X, p(2X) = {A|A ⊆ 2X , A 6= ∅} be family of all nonempty class of subset
of X and denote the closure of a set α(⊆ X) as α. For x ∈ X and α ∈ 2X ,
let d(x, α) = inf

y∈α
d(x, y). We denoted by H a Hausdorff metric induced by the
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metric d of X:

H(α, β) = max

{
sup
x∈α

d(x, β), sup
y∈β

d(y, α)

}
(2.1)

for α, β ∈ 2X and α, β ∈ CB(X).

Through this paper we will use the following concepts and notations.

Definition 2.1. Let (CB(X), H) be a Hausdorff metric space induced by
(X, d). Let αn ∈ CB(X)(n = 1, 2, ...), α ∈ CB(X). If lim

n→∞
H(αn, α) = 0,

then the {αn}∞1 , the subset sequence of X is side to be convergence to α in
Hausdorff metric H(., .).

Let {αn}∞1 ⊆ 2X , that’s αn ⊆ X(n = 1, 2, . . .) or {αn}∞1 ∈ p(2X), then we
write the following concepts introduced by Kuratowski:

Definition 2.2. Let the P be a cone of X. P is said to be a normal cone
if and only if there exists a constant N > 0 such that for θ ≤ x ≤ y, holds
‖x‖ ≤ N‖y‖, where the N is called normal constant of P.

Definition 2.3. ([33]) Let {αn}∞1 ⊆ 2X , then

(i) The Kuratowski limit superior of {αn}∞1 is

Kls(αn) =

{
x

∣∣∣∣ x ∈ X, lim inf
n→∞

d(x, αn) = 0

}
;

(ii) The Kuratowski limit inferior of {αn}∞1 is

Kli(αn) =

{
x

∣∣∣∣ x ∈ X, lim sup
n→∞

d(x, αn) = 0

}
;

(iii) The Kuratowski limit of {αn}∞1 is
Kl(αn) = Kls(αn) if and only if Kls(αn) = Kli(αn).

Lemma 2.4. ([34]) Let {αn}∞1 ⊆ 2X , then

(i) Kls(αn) =
⋂

1≤i≤∞

( ⋃
i≤k<∞

αk

)
= {x|x ∈ X, ∀ open neighbourhoods U of x, exist infinitely many
natural numbers n such that U ∩ αn 6= ∅};

(ii) Kli(αn) = {x|x ∈ X, x = lim
n→∞

xn, xn ∈ αn(n = 1, 2, ...)}
= {x|x ∈ X,∀ open neighbourhoods U of x, exists a natural number N
such that U ∩ αn 6= ∅ for n ≥ N}.

We mention that for sequence of closed sets, convergence in Hausdorff metric
implies convergence in the sense of Kuratoski. But for sequence of bounded
closed sets, both types of convergence are equivalent provided the limit set is
nonempty. Therefore, the following result holds:
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Lemma 2.5. ([38]) Let (X, d) is complete metric space, αn ∈ C(X)(n =
1, 2, ...) and α ∈ C(X). lim

n→∞
αn = α if and only if Kli(αn) = Kls(αn) =

Kl(αn) = α.

Lemma 2.6. ([38]) The metric space (CB(X), H) is complete provided (X, d)
is complete.

Now, we will introduce some new concepts for p(2X), the nonempty set class
of X.

Definition 2.7. Let (X, d) be a metric space, 2X = {α|α ⊆ X,α 6= ∅} be the
family of all nonempty subset of X, CB(X) ⊂ 2X be family of all nonempty
bounded closed subset of X, C(X) ⊂ CB(X) be family of all nonempty com-
pact subsets of X, p(2X) = {A|A ⊆ 2X , A 6= ∅} be family of all nonempty
class of subset of X. Let A ∈ p(2X), then

(i) Let A,B ∈ p(2X), then

A ∪B = {α|α ∈ A or α ∈ B},
A ∩B = {α|α ∈ A and α ∈ B}, and
A−B = {α|α to belong to A and α not to belong to B},

is said to be union, intersection and difference for A and B, respec-
tively;

(ii) the set A′ is said to be a set-valued limit point set of A, if A′ ={
α

∣∣∣∣ if α = lim
k→∞

αk exists, ∀ {αk}∞1 ⊆ A

}
, where the subset α

of X is called a set-valued limit point of A;
(iii) the set A is said to be the closure of A, if A = A

⋃
A′;

(iv) A is said to be a closed subset class of X, or a closed subset of 2X , if
A = A;

(v) A is said to be a open subset class of X, or a open subset of 2X , if
A = X −B for B = B to be a closed subset class of X;

(vi) A is said to be a bounded subset class of X, or a bounded subset of
2X , if

a = sup
α∈A

{
b

∣∣∣∣ b = sup
x∈α

d(0, x) < +∞, 0 is zero element in X}

and a < +∞;
(vii) A is said to be a nonempty bounded closed subset class of X, or a

bounded closed subset of 2X , if A is bounded and closed;
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(viii) Ω(X) = {A|A ⊆ CB(X)} ⊆ p(2X) is said to be the family of nonempty
bounded closed subset class of X, if A is a nonempty bounded closed
subset of 2X for any A ∈ Ω(X);

(ix) A is said to be a compact subset class of X, or a compact subset of
2X , if A ⊆ C(X) and for any {αn}∞1 ⊆ A, there exists subsequence
{αnk

}∞1 ⊆ {αn}∞1 such that α = limαnk
and α ∈ A;

(x) Σ(X) = {A|A ⊆ C(X)} ⊆ p(2X) is said to be the family of nonempty
compact subset class of X, if A is a nonempty compact subset of 2X

for any A ∈ Σ(X);
(xi) Let B ∈ Ω(X), {Ak}∞1 ⊆ Ω(X) be a sequence, α ∈ CB(X) and

h(α,B) = inf
β∈B

H(α, β). Then

the Kuratowski Li limit superior of {Ak}∞1 is

KLls(Ak) =

{
α

∣∣∣∣ α ∈ CB(X), lim inf
k→∞

h(α,Ak) = 0

}
; (2.2)

the Kuratowski Li limit inferior of {Ak}∞1 is

KLli(Ak) =

{
α

∣∣∣∣ α ∈ CB(X), lim sup
n→∞

h(α,Ak) = 0

}
; (2.3)

the Kuratowski Li limit of {Ak}∞1 is

KLl(Ak) = KLli(Ak) = KLls(Ak), (2.4)

if and only if
KLls(Ak) = KLli(Ak). (2.5)

The following conclusions are obvious.

Lemma 2.8. Let (X, d) be a metric space, CB(X) ⊂ 2X be family of all
nonempty bounded closed subset of X, C(X) ⊂ CB(X) be family of all nonempty
compact subsets of X, {Ak}∞1 ⊆ Ω(X), then

(i) C(X) ⊆ CB(X) and Σ(X) ⊆ Ω(X);

(ii) KLls(Ak) =
⋂

1≤i≤∞

( ⋃
i≤k<∞

Ak

)
= {α|α ∈ CB(X), ∀ open neighbourhoods U of x, exist infinitely
many natural numbers n such that U ∩Ak 6= ∅};

(iii) KLli(Ak) = {α|α ∈ CB(X), α = lim
k→∞

αk, αk ∈ Ak (k = 1, 2, ...)}
= {α|α ∈ CB(X), ∀ open neighbourhoods U of CB(X), exists
a natural number N such that U ∩Ak 6= ∅ for k ≥ N};

(iv) KLli(Ak) ⊆ KLls(Ak).

Proof. The proof directly follows from Definition 2.2, Lemma 2.2 and Defini-
tion 2.6 (xi). �
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In the future, we will introduce super Hausdorff metric and study the com-
pleteness of super Hausdorff metric space.

Definition 2.9. Let (X, d) be a metric space, 2X = {α|α ⊆ X,α 6= ∅} be the
family of all nonempty subset of X, CB(X) ⊂ 2X be family of all nonempty
bounded closed subset of X, p(2X) = {A|A ⊆ 2X , A 6= ∅} be family of all
nonempty class of subset of X, Ω(X) = {A|A ⊆ CB(X)} ⊆ p(2X) is said to be
the family of nonempty bounded closed subset of X. If h(α,B) = inf

β∈B
H(α, β)

for α ∈ CB(X) and B ∈ p(2X), denote super Hausdorff metric induced by h
as ~(., .):

~(A,B) = max

{
sup
α∈A

h(α,B), sup
β∈B

h(A, β)

}
(2.6)

for A,B ∈ Ω(X). Then (Ω(X), ~) is side to be a super Hausdorff metric space
induced by CB(X).

Obviously, h(α,B) ≤ ~(A,B) for any α ∈ A and A,B ∈ Ω(X).

Definition 2.10. Let (Ω(X), ~) be a super Hausdorff metric space induced
by CB(X). Let An ∈ Ω(X)(n = 1, 2, ...), A ∈ Ω(X). If lim

n→∞
~(An, A) = 0,

that’s ∀ε > 0, ∃N such that ~(An, A) < ε for any n > N , then the subset
class sequence {An}∞1 of X is side to be convergence to A in super Hausdorff
metric ~(., .).

Lemma 2.11. Let (X, d) be a metric space, Ω(X) be the family of nonempty
bounded closed subset class of X. For any α ∈ CB(X) and any B ∈ Ω(X),
then h(α,B)=0 if and only if α ∈ B.

Proof. For any B ∈ Ω(X) and any α ∈ CB(X), if α ∈ B, then H(α, α) = 0
for (2.1), and so h(α,B) = inf

β∈B
H(α, β)=0.

On the other hand, since h(α,B) = inf
β∈B

H(α, β) = 0 for B ∈ Ω(X) so that

for n = 1, 2, ..., exists a βn ∈ B, respectively, such that

0 < H(α, βn) <
1

n
+ h(α,B) <

1

n
.

Therefor, lim
n→∞

H(α, βn) = 0 and lim
n→∞

βn = α in H(., .) metric. It follows that

α ∈ B ∈ Ω(X) from Definition 2.6 (ii)-(iv). �

Theorem 2.12. Let (X, d) be a metric space, Ω(X) be the family of nonempty
bounded closed subset of X, H be a Hausdorff metric induced by the metric d
of X. If ~ is a super Hausdorff metric of X induced by (2.5), then for any
A,B,C ∈ Ω(X), the following propositions hold:
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(i) ~(A,B) ≥ 0;
(ii) ~(A,B) = ~(B,A);

(iii) ~(A,B) = 0, if and only if A = B;
(iv) ~(A,B) ≤ ~(A,C) + ~(C,B);
(v) |h(A, β)− h(β,B)| ≤ ~(A,B), ∀ β ∈ CB(X).

Therefore, (Ω(X), ~), super Hausdorff metric space induced by CB(X) is a
metric space.

Proof. (i) and (ii) are clear. For (iii), ~(A,B) = 0 if and only if sup
α∈A

h(α,B) = 0

and sup
β∈B

h(β,B) = 0, and if and only if A ⊆ B and B ⊆ A hold for Lemma

2.8. Therefore, A = B.
Let A,B,C ∈ Ω(X). For any α ∈ A, β ∈ B, γ ∈ C, by H Hausdorff metric

of X, we have H(α, β) ≤ H(α, γ) +H(γ, β) and

inf
β∈B
{H(α, β)} ≤ inf

β∈B
{H(α, γ) +H(γ, β)} ≤ inf

β∈B
{H(γ, β)}+H(α, γ).

It follows that h(α,B)− h(γ,B) ≤ H(α, γ) and

inf
γ∈C
{h(α,B)− h(γ,B)} ≤ inf

γ∈C
{H(α, γ)},

and
inf
γ∈C
{h(α,B)} − sup

γ∈C
{h(γ,B)} ≤ inf

γ∈C
{H(α, γ)}.

Therefore,
h(α,B) ≤ sup

γ∈C
{h(γ,B)}+ h(α,C).

Then holds
sup
α∈A

h(α,B) ≤ sup
γ∈C
{h(γ,B)}+ sup

α∈A
h(α,C). (2.7)

In as same,
sup
β∈B

h(A, β) ≤ sup
γ∈C
{h(A, γ)}+ sup

β∈B
h(C, β). (2.8)

It follows from (2.5)-(2.8) that (iv) holds. Therefore, ~ is a metric in Ω(X)
and (Ω(X), ~), super Hausdorff metric space induced by CB(X) is a metric
space for (i)-(iv).

For any β ∈ CB(X), since

h(β,A) = inf
α∈A
{H(β, α)} ≤ H(β, α) ≤ H(β, γ) +H(α, γ)

for any γ ∈ B, so that

h(β,A)−H(β, γ) = H(α, γ),

and hence
h(β,A)−H(β, γ) ≤ h(A, γ)
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or

h(β,A) ≤ h(A, γ) +H(β, γ).

Then

h(β,A) ≤ h(A, γ) +H(β, γ) ≤ ~(A,B) +H(β, γ).

We can have

h(β,A) ≤ ~(A,B) + h(β, γ)

for β ∈ B, that is

h(β,A) ≤ ~(A,B) + h(β,B).

In same way,

h(β,B) ≤ (A,B) + h(β,A)

holds. It follows that

|h(β,A)− h(β,B)| ≤ ~(A,B)

for any β ∈ B. �

Corollary 2.13. Let (X, d) be a metric space, C(X) be the family of nonempty
compact subset of X, then (

∑
(X), ~), super Hausdorff metric space induced

by C(X) is a metric space.

The following result holds obviously.

Lemma 2.14. Let A ∈ p(2X), then A is a bounded set class if and only if
exists a constant r > 0 such that ~(A, {{0}}) < r, where 0 is zero element in
X.

Theorem 2.15. Let An ∈ Ω(X)(n = 1, 2, ...) and A ∈ Ω(X), if lim
n→∞

An = A

exists, then the limit A of the sequence {An}∞1 is unique.

Proof. Let lim
n→∞

An = A and lim
n→∞

An = B are limits of the sequence {An}∞1 ,

by Theorem 2.9 (i)-(iv) and Definition 2.7, we have

0 ≤ ~(A,B) ≤ ~(An, A) + ~(An, B)→ 0(n→∞).

Then A = B. �

Theorem 2.16. Let An ∈ Ω(X)(n = 1, 2, ...) and lim
n→∞

An = A ∈ Ω(X), let

Bn ∈ Ω(X)(n = 1, 2, ...) and lim
n→∞

Bn = B ∈ Ω(X). Then lim
n→∞

~(An, Bn) =

~(A,B), that is ~(·, ·) is continuous in the Ω(X)× Ω(X).
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Proof. By using Theorem 2.9, we have

~(An, Bn) ≤ ~(An, A) + ~(A,B) + ~(Bn, B)

and
~(A,B) ≤ ~(A,An) + ~(An, Bn) + ~(Bn, B).

Therefore,
|~(An, Bn)− ~(A,B)| ≤ ~(A,An) + ~(Bn, B).

Then lim
n→∞

~(An, Bn) = ~(A,B) holds, that is, ~(·, ·) is continuous in the

Ω(X)× Ω(X). �

Lemma 2.17. If lim
n→∞

An = A, then {Ak}∞1 ⊆ Ω(X) is a bounded set class
sequence.

Proof. The proof directly follows from Definition 2.6. �

Definition 2.18. Let (Ω(X), ~) be a super Hausdorff metric space induced by
CB(X). If for every ε > 0, there exists an open covering of Ω(X) by finitely
many ε-balls, then the space Ω(X) is called totally bounded.

Lemma 2.19. If (CB(X), H) is totally bounded, then Ω(X), super Hausdorff
metric space induced by CB(X) is totally bounded.

Proof. Select ε > 0. Take a finite open cover Ĉ of CB(X) by ε-balls Ck =
Ck(αk, ε) ⊆ CB(X) which center is {α1, α2, · · ·, αn}, respectively, for k =
1, 2, · · ·, n. Then

Ĉ = {Ck(αk, ε)}nk=1

and ⋃
Ĉ =

⋃
{Ck(αk, ε)}nk=1 = CB(X).

Note, Ck = Ck(αk, ε) ∈ Ω(X) for k = 1, 2, · · ·, n. For any element A ∈
Ω(X), ∅ 6= A ⊆ CB(X), then there exist some Ckj such that A ⊆ ∪{Ckj}Nj=1

and Ckj ∩ A 6= ∅ for j = 1, 2, · · ·, N ≤ n. Let DA = {Ckj}Nj=1 ∈ Ω(X),

then A ∈ B(DA, ε) which B(DA, ε) is a ε-ball of Ω(X) and Ω(X) is covered
by set class of X, open ε-ball class {B(DA, ε)|A ∈ Ω(X)}. Since DA =
{Ckj}Nj=1 ⊆ {Ck(αk, ε)}nk=1 so that the number of different DA is not more

than 2n. Therefore, {B(DA, ε)|A ∈ Ω(X)} is a finite open cover of Ω(X), and
obviously, ~(A,B(DA, ε)) < ε. �

It follows that the following theorem from Lemma 2.18.

Theorem 2.20. If (X, d) is totally bounded, then Ω(X), super Hausdorff met-
ric space induced by CB(X) is totally bounded.
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Proof. Since if X is totally bounded, then the induced Hausdorff space CB(X)
is totally bounded [34], and Lemma 2.18 so that the result holds. �

Theorem 2.21. Let (X, d) be a complete metric space, then Ω(X) is a com-
plete space for the super Hausdorff metric ~(·, ·).
Proof. Let (X, d) be a complete metric space, then (CB(X), H) is a complete
metric space by Lemma 2.5.

Let {An}∞n=1 ⊆ Ω(X) be a Caushy sequence in ~(·, ·), that is ∀ε > 0,
∃N > 0, ~(An, Am) < ε holds as n,m > N , where

~(An, Am) = max

{
sup

βm∈Am

h(An, βm), sup
βn∈An

h(βn, Am)

}
.

Obviously, Caushy sequence {An}∞n=1 be bounded, and then h(An, βm) =
infαn∈An{H(αn, βm)} < ε and ∃ α̃n ∈ An such that H(α̃n, βm) < 2ε for

n,m > N and any βm ∈ Am. In the same theory, ∃ β̃m ∈ Am such that
H(β̃m, αn) < 2ε for n,m > N and any αn ∈ An, then H(β̃m, α̃n) < 2ε holds

for α̃n ∈ An and β̃m ∈ Am. {α̃n}∞n=1 selected from the sequence {An}∞n=1 is a
Caushy sequence for the Hausdorff metric H(·, ·) in CB(X), and there exists a
α̃ = lim

n→∞
α̃n ∈ C(X), because CB(X) is the complete space for the Hausdorff

metric H(·, ·). Therefore,

A = KLli(An) = {α|α = lim
n→∞

α̃n|α̃n ∈ An} 6= ∅

and A ∈ Ω(X).

Next, we show that lim
n→∞

~(A,An) = 0.

Let ~(An, A) = max{supα∈A h(An, α), supαn∈An
h(αn, A)}, andA = KLli(An).

Then ∀ε > 0 and ∀α ∈ A, ∃ α̃n ∈ An such that α = lim
n→∞

α̃n, and so that there

exists a N > 0, H(α̃n, α) < ε holds as n > N . Then h(An, α) < ε and

h(αn, ~(An, A)) = max

{
sup
α∈A

h(An, α), sup
αn∈An

h(αn, A)

}
< ε

as n > N . Therefore, lim
n→∞

~(An, A) = 0. �

It follows that the following corollaries from the proof process of Theorem
2.20.

Corollary 2.22. Let X be a complete metric space, let {An}∞n=1 ⊆ Ω(X) be a
Cauchy sequence for super Hausdorff metric ~(·, ·), then {An}∞n=1 is bounded.

Corollary 2.23. Let X be a complete space and lim
n→∞

An = A ∈ Ω(X), then

{An}∞n=1 is a Cauchy sequence in ~(·, ·).
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Theorem 2.24. Let (Ω(X), ~) be a complete space, An ∈ Ω(X)(n = 1, 2, ...)
and A ∈ Ω(X), then lim

n→∞
An = A in ~ if and only if KLli(An) = KLls(An) =

A.

Proof. Let An ∈ Ω(X)(n = 1, 2, ...) and A = lim
n→∞

An in ~, then {An}∞n=1

is a Cauchy sequence in (Ω(X), ~) for Corollary 2.22, and lim
n→∞

An = A =

KLli(An) ⊆ KLls(An), because of Theorem 2.19 and Lemma 2.7 (iv). Let

B = KLls(An) =
⋂

1≤k≤∞

 ⋃
k≤n<∞

An

 .

We will show that B = A. Since {An}∞n=1 ⊆ Ω(X) in ~(·, ·), so that ∀ε > 0,
∃N > 0, ~(An, Am) < ε holds as n,m > N , where

~(An, Am) = max

{
sup

βm∈Am

h(An, βm), sup
βn∈An

h(βn, Am)

}
.

Then ∀ε > 0, ∃N1 > 0, supαn∈An
h(αn, Am) < ε holds as n,m > N1, and

∀αn ∈ An, h(αn, Am) = infαm∈Am{H(αn, αm)} < ε holds as n,m > N . It fol-
lows that ∀αn ∈ An, ∃α̃m ∈ Am such that H(αn, α̃m) < ε holds as n,m > N1

and {α̃m}∞m>N1
is a Caushy sequence in H on CB(X) if which is complete.

Setting α = lim
m→∞

α̃m, then α ∈ KLli(An) ⊆ B and lim
m→∞

H(α̃m, α) = 0,

and ∀αn ∈ An, H(αn, α) < ε holds as n > N1. Therefore, ∀αn ∈ An,
inf
α∈B
{H(αn, α)} = h(αn, B) < ε, and supαn∈An

h(αn, B) < ε holds as n > N1.

On the other hand, for any α ∈ B, then exists a sequence {αp}∞p≥k ⊆⋃
k≤n<∞

An for k ≥ 1 such that α = lim
p→∞

αp, where αp ∈ Anp . For any ε > 0

and any αp ∈ Anp , exists N2 > 0, and exists αn ∈ An such that H(αn, αp) < ε
and H(αn, α) < H(αn, αp) + H(αp, α) < 2ε holds as n, p > N2. Therefore,
for any ε > 0 and any α ∈ B, exists N2 > 0, and exists αn ∈ An such that
H(αn, α) < ε holds as n > N2, then supα∈B h(An, α) < ε holds as n > N2.
We have prove that for any ε > 0, exists N > 0 such that ~(An, B) < ε holds
as n > N = max{N1, N2}, that is B = lim

n→∞
An. Therefore, if A = lim

n→∞
An in

~, then KLli(An) = KLls(An) = A.
If KLli(An) = KLls(An), Kuratoski Li limit of sequence {Ak}∞k=1 exists,

then let A = KLli(An), and belong to Ω(X) for KLls(An) ∈ Ω(X). For
any α ∈ A, there exists αn ∈ An such that α = lim

n→∞
αn, it follows that

lim
n→∞

~(An, A) = 0. �
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Corollary 2.25. If X is a complete space, then nonempty compact subset
space C(X) of X is a complete space, and hence, nonempty compact subset
class space Σ(X) of X is a complete space.

3. Set-valued fixed point theorem
based on the super-trajectory in Σ(X)

Definition 3.1. Let (X, d) be a metric space, (C(X), H) be a nonempty
compact subset metric space of X, Σ(X) = {A|A ⊆ C(X)} ⊆ p(2X) be the
super Hausdorff metric space of X in ~, and 0 be zero element in X. Let
P : 2X → p(2X) defined by P (x) = α ∈ 2X(∀x ∈ X) be a set-valued mapping.
Then

(i) A set class sequence {An}∞n=1 in X is bounded, if

a = sup
An∈{An}∞n=1

{
an

∣∣∣∣ an = sup
αn∈An

H({0}, αn) < +∞, n = 1, 2, · · ·
}

and a < +∞;
(ii) P is said to be a α-compact mapping, if Pα = {P (y)|y ∈ α} ∈ Σ(X)

for α ∈ C(X);
(iii) P is said to be a class compact mapping, if Pα = {P (y)|y ∈ α} ∈ Σ(X)

for any α ∈ C(X);
(iv) x is said to be a fixed point of the set valued mapping P in X, if

x ∈ P (x) for x ∈ X;
(v) α is said to be a set valued fixed point of the set valued mapping P in

X if α ∈ P (α) for α ∈ 2X ;
(vi) {αn}∞n=1 is side to be supper-trajectory of set valued mapping P at

α0 in 2X if αn+1 ∈ P (αn) and H(αn+1, αn) = h(P (αn), αn) for n =
1, 2, · · ·, denote by OP (α0, 0,∞);

(vii) P is side to be continuous at α in 2X if lim
n→∞

~(P (αn), P (α)) = 0, or

lim
n→∞

P (αn) = P (α) in ~;

(viii) α is side to be set-valued limit point of {αn}∞n=1 if there exists a sub-
sequence {αnk

}∞k=1 such that lim
k→∞

~(αnk
, α) = 0, or lim

k→∞
αnk

= α in

H.

Lemma 3.2. Let (C(X), H) be a complete metric space. If a sequence {αn}∞n=1

is bounded, then there exists a set-valued limit point of {αn}∞n=1 at last.

Proof. Let a set sequence {αn}∞n=1 be bounded for the Hausdorff metric H,
then

⋃
k≤n<∞

αn is bounded, and {xn}∞n=1(xn ∈ αn, n = 1, 2, · · ·) is bounded.
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Therefore, there exists a limit(cluster) point y of {xn}∞n=1 at last, that is there
is a subsequence {xnk

}∞k=1 of the sequence {xn}∞n=1 such that lim
k→∞

xnk
= y.

Let

α =

{
y

∣∣∣∣ y = lim
k→∞

xnk
, xnk

∈ αnk
, k = 1, 2, · · ·

}
,

then α 6= ∅ and α ∈ C(X). Then α is a set-valued limit point of {αn}∞n=1. �

Lemma 3.3. Let (Σ(X), ~) be a complete metric space. If a set class se-
quence {An}∞n=1 in Σ(X) is bounded, then there exists a set class limit point
of {An}∞n=1 at last.

Proof. Let a sequence {An}∞n=1 be bounded for the Hausdorff metric H, then⋃
k≤n<∞

An is bounded by the Definition 3.1, and {αn}∞n=1(αn ∈ An, n = 1, 2, ···)

is bounded. Therefore, there exists a cluster point β of {αn}∞n=1 at last,
that is there is a subsequence {αnk

}∞k=1 of the sequence {αn}∞n=1 such that
lim
k→∞

xnk
= y. Let

A =

{
β

∣∣∣∣ β = lim
k→∞

αnk
, αnk

∈ Ank
, k = 1, 2, · · ·

}
,

then A 6= ∅ and A ∈ C(X). Then A is a set-valued limit point of {An}∞n=1. �

It follows easily that the result from the conditions for C(X) made up by
compact subset of X and completeness of (C(X), H).

Theorem 3.4. Let (C(X), H) be a complete metric space, (Σ(X), ~) be a
super Hausdorff metric space induced by (C(X), H). Let P : C(X) → Σ(X)
induced by P : X → C(X) be a continuous set-valued mapping at any α ∈
C(X). For any α, β ∈ C(X), let

~(P (α), P (β))

<max

{
H(α, β),h(α, P (α)),h(β, P (β)),

1

2
[h(α, P (β))+h(β, P (α))]

}
.

(3.1)

hold as α 6= β. If there exists a α0 ∈ C(X) such that the supper-trajectory
OP (α0, 0,∞) has a set-valued limit point α, then α is a set-valued fixed point
of set-valued mapping P .

Proof. Let {αn}∞n=1 be super-trajectory of set-valued mapping P at α0 in 2X .
If for k0, αk0 = αk0+1, then αk0 = αk0+1 ∈ P (αk0), that is αk0 is a set-valued
fixed point of the mapping P .

Without loss of generality, let αn 6= αn+1 for n 6= 0, 1, 2, ···, by the conditions
of super-trajectory of set-valued mapping P at α0, and (3.1), then by using
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the Definition 2.8 and the Definition 3.1 (vi), we can have for n ≥ 1,

H(αn, αn+1) = h(P (αn), αn)

≤ ~(P (αn−1), P (αn))

< max{H(αn−1, αn),h(αn−1, P (αn−1)),h(αn, P (αn)),

1

2
[h(αn−1, P (αn)) + h(αn, P (αn−1))]}

≤ max{H(αn−1, αn), H(αn, αn+1)}.
Since αn+1 ∈ P (αn) and H(αn+1, αn) = h(P (αn), αn) for n = 1, 2, · · ·, so that
H(αn+1, αn) ≤ H(αn, αn−1). Therefore, lim

n→∞
H(αn+1, αn) = a ≥ 0 exists.

Because the super-trajectory sequence {αn}∞n=1 has a set-valued limit point
for the Lemma 3.2, denote by α, then there exists subsequence {αnk

}∞k=1 ⊆
{αn}∞n=1 such that lim

k→∞
αnk

= α. We need to prove α ∈ P (α). By using

Theorem 2.11 (vi), we have

|H(αnk
, αnk+1)− h(α, P (α))|

≤ |H(αnk
, αnk+1)− h(αnk

, P (α))|+ |h(αnk
, P (α))− h(αn, P (αn))|

= |~(αnk
, P (αnk

))− h(αnk
, P (α))|+ |h(αnk

, P (α))− h(α, P (α))|
≤ h(P (αnk

, P (α)) + |h(αnk
, P (α))− h(α, P (α))|,

that is
|H(αnk

, αnk+1)− h(α, P (α))|
≤ h(P (αnk

, P (α)) + |h(αnk
, P (α))− h(α, P (α))|,

(3.2)

lim
k→∞

h(P (αnk
, P (α)) = 0 for the continuousness of P and lim

k→∞
|h(αnk

, P (α))−
h(α, P (α))| = 0, then

lim
k→∞

H(αnk
, αnk+1) = h(α, P (α)) = a (3.3)

holds.
On the other hand, lim

k→∞
h(P (α), αnk+1) ≤ lim

k→∞
~(P (α), P (αnk

)) = 0 and

P (α) ∈ Σ(X) is compact, must be hounded and clouded for completeness of
Σ(X), then exists a subsequence {γnk

}∞k=1 ⊆ P (α) ∈ Σ(X) such that for each
k = 1, 2, · · ·, exists a γnk

,

H(αnk
, γnk

) ≤ 1

k
+ h(P (α), αnk+1)

holds for h(P (α), αnk+1) = inf
γ∈P (α)

{H(αnk
, γ)}, then lim

k→∞
H(αnk+1, γnk

) = 0

and {γnk
}∞k=1 is hounded, and then there exists a subsequence {γnkj

}∞k=1 ⊆
{γnk
}∞k=1 such that lim

j→∞
γnkj

= ξ ∈ P (α) for compactness of P . Therefore,

lim
j→∞

H(αnkj
+1, ξ) = 0.
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Redoing (3.2) and (3.3), we have

lim
j→∞

H(αnkj
+1, αnkj

+2) = h(ξ, P (ξ)) = a (3.4)

and it follows that

a = h(ξ, P (ξ)) = h(α, P (α)) = H(ξ, α) (3.5)

from (3.3)-(3.5), and lim
n→∞

H(αn+1, αn) = a and lim
j→∞

H(αnkj
+1, αnkj

+2) =

H(ξ, α) = a.
Further, for ξ ∈ P (α), if α = ξ ∈ P (α), then it is all right, but it is not, by

using (3.1), we consider

h(P (ξ), ξ) ≤ ~(P (ξ), P (α))

< max

{
H(α, ξ),h(α, P (α)),h(ξ, P (ξ)),

1

2
[h(α, P (ξ)) + h(ξ, P (α))]

}
≤ max{H(αn−1, αn), H(αn, αn+1)}.

Since α 6= ξ ∈ P (α) so that h(P (ξ), ξ) ≤ h(α, P (α)), and a = h(P (ξ), ξ) <
h(α, P (α)) = a. This is a contradiction. Hence, α ∈ P (α). �

Lemma 3.5. Let (CB(X), H) be a metric space, (Ω(X), ~) be a super Haus-
dorff metric space induced by (CB(X), H). Let P : CB(X) → Ω(X) induced
by P : X → CB(X) be a continuous set-valued mapping. Then α ∈ P (α) if
and only if exists a x0 ∈ α such that α = P (x0) for α ∈ Ω(X).

Proof. The proof directly follows from Definition 3.1, so it is omitted. �

Theorem 3.6. Let (X, d) be a complete metric space, (Σ(X), ~) be a super
Hausdorff metric space induced by (C(X), H) which is induced by (X, d). Let
P : C(X) → Σ(X) induced by P : X → C(X) be a continuous set-valued
mapping at any α ∈ C(X). For any α, β ∈ C(X), let

~(P (α), P (β))

<max

{
H(α, β),h(α, P (α)), ~(β, P (β)),

1

2
[h(α, P (β)) + h(β, P (α))]

}
(3.6)

hold as α 6= β. If there exists a α0 ∈ C(X) such that the super-trajectory
OP (α0, 0,∞) has a set-valued limit point α, then there is a fixed point of set-
valued mapping P in X. And there is a fixed point of set-valued mapping P
in the set-valued limit point set of the super-trajectory OP (α0, 0,∞) at lest.

Proof. It follows directly that the result from Theorem 3.3 and Lemma 3.4. �
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