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Abstract. We study the existence of solutions for a fractional integro-differential inclusion

with non-separated local and non-separated integral-flux boundary conditions. We establish

Filippov type existence results in the case of nonconvex set-valued maps.

1. Introduction

In this paper, we study the following fractional integro-differential inclusion

Dα
Cx(t) ∈ F (t, x(t), V (x)(t)) a.e. ([0, 1]) (1.1)

subject to the following boundary conditions

x(0) + x(1) = a

∫ 1

0
x(s)ds, x′(0) = bDβ

Cx(1), (1.2)

x(0) + x(1) = aIγx(η), x′(0) = bDβ
Cx(1), (1.3)

where α ∈ (1, 2], Dα
C is the Caputo fractional derivative of order α, F : [0, 1]×

R×R→ P(R) is a set-valued map, V : C([0, 1],R)→ C([0, 1],R) is a nonlinear

Volterra integral operator defined by V (x)(t) =
∫ t

0 k(t, s, x(s))ds with k(., ., .) :
[0, 1]×R×R→ R a given function, a, b ∈ R, β, γ ∈ (0, 1], η ∈ (0, 1) and Iγx(.)
is the fractional integral of order γ > 0.

If F does not depend on the last variable, inclusion (1.1) reduces to

Dα
Cx(t) ∈ F (t, x(t)) a.e. ([0, 1]). (1.4)
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The present paper is motivated by a recent paper of Ahmad and Ntouyas
([1]) where existence results for problems (1.2)-(1.4) and (1.3)-(1.4) are estab-
lished for convex as well as nonconvex set-valued maps. The existence results
in [1] are based on a nonlinear alternative of Leray-Schauder type and some
suitable theorems of fixed point theory.

Our aim is to extend the study in [1] to the more general problem (1.1)
and to show that Filippov’s ideas ([8]) can be suitably adapted in order to
obtain the existence of solutions for problems (1.1)-(1.2) and (1.1)-(1.3). Recall
that for a differential inclusion defined by a lipschitzian set-valued map with
nonconvex values, Filippov’s theorem ([8]) consists in proving the existence of
a solution starting from a given “quasi” solution. Moreover, the result provides
an estimate between the “quasi” solution and the solution obtained.

Finally, we note that differential equations with fractional order have re-
cently proved to be strong tools in the modelling of many physical phenomena.
As a consequence there was an intensive development of the theory of differ-
ential equations and inclusions of fractional order ([9, 10, 11] etc.). Applied
problems require definitions of fractional derivative allowing the utilization of
physically interpretable initial conditions. Caputo’s fractional derivative, orig-
inally introduced in [3] and afterwards adopted in the theory of linear visco
elasticity, satisfies this demand.

The paper is organized as follows: in Section 2 we recall some preliminary
results that we need in the sequel and in Section 3 we prove our main results.

2. Preliminaries

Let (X, d) be a metric space. Recall that the Pompeiu-Hausdorff distance
of the closed subsets A,B ⊂ X is defined by

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A},

where d(x,B) = infy∈B d(x, y).

Let I = [0, 1], we denote by C(I,R) the Banach space of all continuous
functions from I to R with the norm ||x(.)||C = supt∈I |x(t)| and L1(I,R) is
the Banach space of integrable functions u(.) : I → R endowed with the norm

||u(.)||1 =
∫ T

0 |u(t)|dt.

Definition 2.1. (a) The fractional integral of order α > 0 of a Lebesgue
integrable function f : (0,∞)→ R is defined by

Iαf(t) =

∫ t

0

(t− s)α−1

Γ(α)
f(s)ds,
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provided the right-hand side is pointwise defined on (0,∞) and Γ(.) is the
(Euler’s) Gamma function defined by Γ(α) =

∫∞
0 tα−1e−tdt.

(b) The Caputo fractional derivative of order α > 0 of a function f : [0,∞)→
R is defined by

Dα
c f(t) =

1

Γ(n− α)

∫ t

0
(t− s)−α+n−1f (n)(s)ds,

where n = [α] + 1. It is assumed implicitly that f is n times differentiable
whose n-th derivative is absolutely continuous.

We recall (e.g., [9]) that if α > 0 and f ∈ C(I,R) or f ∈ L∞(I,R) then
(Dα

c I
αf)(t) ≡ f(t).

The next two technical lemmas are proved in [1].

Lemma 2.2. Assume that a 6= 2, b 6= Γ(2 − β) and consider f(.) ∈ C(I,R).
The unique solution x(.) ∈ C(I,R) of problem

Dα
Cx(t) = f(t) a.e. ([0, T ]), (2.1)

with boundary conditions (1.2) is given by

x(t) =

∫ t

0

(t−s)α−1

Γ(α)
f(s)ds+

b(2t−1)Γ(2−β)

2(Γ(2−β)−b)

∫ 1

0

(1−s)α−β−1

Γ(α−β)
f(s)ds

− 1

2− a

∫ 1

0

(1− s)α−1

Γ(α)
f(s)ds+

a

2− a

∫ 1

0

(1− s)α

Γ(α+ 1)
f(s)ds.

(2.2)

Remark 2.3. If we denote

G1(t, s) :=
(t− s)α−1

Γ(α)
χ[0,t](s) +

b(2t− 1)Γ(2− β)

2(Γ(2− β)− b)
(1− s)α−β−1

Γ(α− β)

− 1

2− a
(1− s)α−1

Γ(α)
+

a

2− a
(1− s)α

Γ(α+ 1)
,

where χS(·) is the characteristic function of the set S, then the solution x(.) in

Lemma 2.2 may be written as x(t) =
∫ 1

0 G1(t, s)f(s)ds. Moreover, if α−β ≥ 1,
then for every t, s ∈ I, we have

|G1(t, s)| ≤ 1

Γ(α)
+

|b|Γ(2− β)

2|Γ(2− β)− b|Γ(α− β)

+
1

|2− a|Γ(α)
+

|a|
|2− a|Γ(α+ 1)

=: M1.
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Definition 2.4. A function x(.) ∈ C2(I,R) is called a solution of problem
(1.1)-(1.2) if there exists a function f(.) ∈ L1(I,R) that satisfies f(t) ∈
F (t, x(t), V (x)(t)) a.e. (I) and x(.) is given by (2.2).

Lemma 2.5. Assume that 2Γ(γ + 1) − aηγ 6= 0, b 6= Γ(2 − β) and consider
f(.) ∈ C(I,R). The unique solution x(.) ∈ C(I,R) of problem (1.3)-(2.1) is
given by

x(t) =
∫ t

0
(t−s)α−1

Γ(α) f(s)ds

+ Γ(γ+1)
2Γ(γ+1)−aηγ

[
a
∫ η

0
(η−s)α+γ−1

Γ(α+γ) f(s)ds−
∫ 1

0
(1−s)α−1

Γ(α) f(s)ds
]

+
(
t− Γ(γ+2)−aηγ+1

(γ+1)(2Γ(γ+1)−aηγ)

)
bΓ(2−β)

Γ(2−β)−b
∫ 1

0
(1−s)α−β−1

Γ(α−β) f(s)ds.

(2.3)

Remark 2.6. If we denote

G2(t, s) := (t−s)α−1

Γ(α) χ[0,t](s)

+ aΓ(γ+1)
2Γ(γ+1)−aηγ

(η−s)α+γ−1

Γ(α+γ) χ[0,η](s)−
aΓ(γ+1)

2Γ(γ+1)−aηγ
(1−s)α−1

Γ(α)

+
(
t− Γ(γ+2)−aηγ+1

(γ+1)(2Γ(γ+1)−aηγ)

)
bΓ(2−β)

Γ(2−β)−b
(1−s)α−β−1

Γ(α−β)

then the solution x(.) in Lemma 2.5 may be written as

x(t) =

∫ 1

0
G2(t, s)f(s)ds.

Moreover, if α− β ≥ 1, then for every t, s ∈ I, we have

|G2(t, s)| ≤ 1
Γ(α) + |a|Γ(γ+1)

|2Γ(γ+1)−aηγ |
ηα+γ−1

Γ(α+γ) + |a|Γ(γ+1)
|2Γ(γ+1)−aηγ |

1
Γ(α)

+(1 + | Γ(γ+2)−aηγ+1

(γ+1)(2Γ(γ+1)−aηγ) |)
|b|Γ(2−β)
|Γ(2−β)−b|

1
Γ(α−β) =: M2.

Definition 2.7. A function x(.) ∈ C2(I,R) is called a solution of problem
(1.1)-(1.3) if there exists a function f(.) ∈ L1(I,R) that satisfies f(t) ∈
F (t, x(t), V (x)(t)) a.e. (I) and x(.) is given by (2.3).

3. Main results

First we recall a selection result ([2]) which is a version of the celebrated
Kuratowski and Ryll-Nardzewski selection theorem.

Lemma 3.1. Consider X a separable Banach space, B is the closed unit ball
in X, H : I → P(X) is a set-valued map with nonempty closed values and
g : I → X,L : I → R+ are measurable functions. If

H(t) ∩ (g(t) + L(t)B) 6= ∅ a.e. (I),

then the set-valued map t→ H(t)∩ (g(t) +L(t)B) has a measurable selection.
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In order to prove our results we need the following hypotheses.

Hypothesis H1. (i) F (., .) : I × R× R → P(R) has nonempty closed values
and is L(I)⊗ B(R× R) measurable.
(ii) There exists L(.) ∈ L1(I, (0,∞)) such that, for almost all t ∈ I, F (t, ., .) is
L(t)-Lipschitz in the sense that

dH(F (t, x1, y1), F (t, x2, y2)) ≤ L(t)(|x1 − x2|+ |y1 − y2|), ∀ x1, x2, y1, y2 ∈ R.
(iii) k(., ., .) : I ×R×R→ R is a function such that ∀x ∈ R, (t, s)→ k(t, s, x)
is measurable.
(iv) |k(t, s, x)− k(t, s, y)| ≤ L(t)|x− y| a.e. (t, s) ∈ I × I, ∀x, y ∈ R.

We use next the following notations

M(t) := L(t)(1 +

∫ t

0
L(u)du), t ∈ I, M0 =

∫ T

0
M(t)dt.

Theorem 3.2. Assume that Hypothesis H1 is satisfied, a 6= 2, b 6= Γ(2− β),
α − β ≥ 1 and M1M0 < 1. Let y(.) ∈ C(I,R) be such that y(0) + y(1) =

a
∫ 1

0 y(s)ds, y′(0) = bDβ
Cy(1) and there exists p(.) ∈ L1(I,R+) with

d(Dq
cy(t), F (t, y(t), V (y)(t))) ≤ p(t) a.e. (I).

Then there exists x(.) ∈ C(I,R) a solution of problem (1.1)-(1.2) satisfying
for all t ∈ I,

|x(t)− y(t)| ≤ M1

1−M1M0

∫ 1

0
p(t)dt. (3.1)

Proof. The set-valued map t → F (t, y(t), V (y)(t)) is measurable with closed
values and

F (t, y(t), V (y)(t)) ∩ {Dq
Cy(t) + p(t)[−1, 1]} 6= ∅ a.e. (I).

It follows from Lemma 3.1 that there exists a measurable selection f1(t) ∈
F (t, y(t), V (y)(t)) a.e. (I) such that

|f1(t)−Dq
Cy(t)| ≤ p(t) a.e. (I). (3.2)

Define x1(t) =
∫ 1

0 G1(t, s)f1(s)ds and one has

|x1(t)− y(t)| ≤M1

∫ 1

0
p(t)dt.

We claim that it is enough to construct the sequences xn(.) ∈ C(I,R), fn(.) ∈
L1(I,R), n ≥ 1 with the following properties

xn(t) =

∫ 1

0
G1(t, s)fn(s)ds, t ∈ I, (3.3)

fn(t) ∈ F (t, xn−1(t), V (xn−1)(t)) a.e. (I), (3.4)
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|fn+1(t)− fn(t)|

≤ L(t)

(
|xn(t)− xn−1(t)|+

∫ t

0
L(s)|xn(s)− xn−1(s)|ds

)
a.e. (I).

(3.5)

If this construction is realized then from (3.2)-(3.5) we have for almost all t ∈ I

|xn+1(t)− xn(t)| ≤M1(M1M0)n
∫ 1

0
p(t)dt, ∀ n ∈ N.

Indeed, assume that the last inequality is true for n− 1 and we prove it for n.
One has

|xn+1(t)− xn(t)| ≤
∫ 1

0
|G1(t, t1)|.|fn+1(t1)− fn(t1)|dt1

≤M1

∫ 1

0
L(t1)

[
|xn(t1)− xn−1(t1)|+

∫ t1

0
L(s)|xn(s)− xn−1(s)|ds

]
dt1

≤M1

∫ 1

0
L(t1)

(
1 +

∫ t1

0
L(s)ds

)
dt1.M

n
1 M

n−1
0

∫ 1

0
p(t)dt

= M1(M1M0)n
∫ 1

0
p(t)dt.

Therefore {xn(.)} is a Cauchy sequence in the Banach space C(I,R), hence
converging uniformly to some x(.) ∈ C(I,R). Therefore, by (3.5), for almost
all t ∈ I, the sequence {fn(t)} is Cauchy in R. Let f(.) be the pointwise limit
of fn(.). Moreover, one has

|xn(t)− y(t)| ≤ |x1(t)− y(t)|+
n−1∑
i=1

|xi+1(t)− xi(t)|

≤M1

∫ 1

0
p(t)dt+

n−1∑
i=1

(
M1

∫ 1

0
p(t)dt

)
(M1M0)i

=
M1

∫ 1
0 p(t)dt

1−M1M0
.

(3.6)

On the other hand, from (3.2), (3.5) and (3.6) we obtain for almost all t ∈ I
|fn(t)−Dq

Cy(t)|

≤
n−1∑
i=1

|fi+1(t)− fi(t)|+ |f1(t)−Dq
Cy(t)|

≤ L(t)
M1

∫ 1
0 p(t)dt

1−M1M0
+ p(t).

Hence the sequence fn(.) is integrably bounded and therefore f(.) ∈ L1(I,R).
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Using Lebesgue’s dominated convergence theorem and taking the limit in
(3.3), (3.4) we deduce that x(.) is a solution of (1.1)-(1.2). Finally, passing to
the limit in (3.6) we obtained the desired estimate on x(.).

It remains to construct the sequences xn(.), fn(.) with the properties in
(3.3)-(3.5). The construction will be done by induction.

Since the first step is already realized, assume that for some N ≥ 1 we
already constructed xn(.) ∈ C(I,R) and fn(.) ∈ L1(I,R), n = 1, 2, ..., N
satisfying (3.3), (3.5) for n = 1, 2, ..., N and (3.4) for n = 1, 2, ..., N − 1. The
set-valued map t → F (t, xN (t), V (xN )(t)) is measurable. Moreover, the map

t → L(t)(|xN (t) − xN−1(t)| +
∫ t

0 L(s)|xN (s) − xN−1(s)|ds) is measurable. By
the Lipschitzianity of F (t, .) we have that for almost all t ∈ I

F (t, xN (t)) ∩ {fN (t) + L(t)(|xN (t)− xN−1(t)|+∫ t
0 L(s)|xN (s)− xN−1(s)|ds)[−1, 1]} 6= ∅.

Lemma 3.1 yields that there exist a measurable selection fN+1(.) of F (., xN (.),
V (xN )(.)) such that for almost all t ∈ I

|fN+1(t)− fN (t)|

≤ L(t)

(
|xN (t)− xN−1(t)|+

∫ t

0
L(s)|xN (s)− xN−1(s)|ds

)
.

We define xN+1(.) as in (3.3) with n = N +1. Thus fN+1(.) satisfies (3.4) and
(3.5) and the proof is complete. �

The assumptions in Theorem 3.3 are satisfied, in particular, for y(.) = 0 and
therefore with p(.) = L(.). We obtain the following consequence of Theorem
3.3.

Corollary 3.3. Assume that Hypothesis 3.2 is satisfied, a 6= 2, b 6= Γ(2− β),
α − β ≥ 1, M1M0 < 1 and d(0, F (t, 0, V (0)(t)) ≤ L(t) a.e. (I). Then there
exists x(.) a solution of problem (1.1)-(1.2) satisfying for all t ∈ I

|x(t)| ≤ M1

1−M1M0

∫ 1

0
L(t)dt.

If F does not depend on the last variable, Hypothesis H1 became

Hypothesis H2. (i) F (., .) : I × R → P(R) has nonempty closed values and
is L(I)⊗ B(R) measurable.
(ii) There exists L(.) ∈ L1(I, (0,∞)) such that, for almost all t ∈ I, F (t, .) is
L(t)-Lipschitz in the sense that

dH(F (t, x1), F (t, x2)) ≤ L(t)|x1 − x2|, ∀ x1, x2 ∈ R.

Denote L0 =
∫ 1

0 L(t)dt.
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Corollary 3.4. Assume that Hypothesis H2 is satisfied, a 6= 2, b 6= Γ(2− β),
α− β ≥ 1, M1M0 < 1 and d(0, F (t, 0) ≤ L(t) a.e. (I). Then there exists x(.)
a solution of problem (1.2)-(1.4) satisfying for all t ∈ I

|x(t)| ≤ M1L0

1−M1L0
.

Remark 3.5. A similar result to the one in Corollary 3.4 may be found in
[1], namely Theorem 3.7. Assuming that L(.) ∈ C(I,R) the result in [1]
provides the existence of solutions of problem (1.2)-(1.4) under the condition
||L(.)||CΛ < 1, where

Λ =
1 + |2− a|

|2− a|Γ(α+ 1)
+

|b|Γ(2− β)

2|Γ(2− β)− b|Γ(α− β + 1)
+

|a|
|2− a|Γ(α+ 2)

.

In our approach we assume only that L(.) ∈ L1(I,R). The price we pay is that
we suppose that α−β ≥ 1 and our contraction qualification is ||L(.)||1M1 < 1.

On the other hand, the approach in [1], apart from the requirement that
the values of F (., .) are compact, does not provides a priori bounds as in (3.7).

In the case when we consider nonlocal integral-flux boundary conditions,
namely problem (1.1)-(1.3), with a similar proof as the one of Theorem 3.3 we
obtain the following existence result.

Theorem 3.6. Assume that Hypothesis H1 is satisfied, 2Γ(γ + 1)− aηγ 6= 0,
b 6= Γ(2 − β), α − β ≥ 1 and M2M0 < 1. Let y(.) ∈ C(I,R) be such that

y(0) + y(1) = aIγy(η), y′(0) = bDβ
Cy(1) and there exists p(.) ∈ L1(I,R+) with

d(Dq
cy(t), F (t, y(t), V (y)(t))) ≤ p(t) a.e. (I). Then there exists x(.) ∈ C(I,R)

a solution of problem (1.1)-(1.3) satisfying for all t ∈ I

|x(t)− y(t)| ≤ M2

1−M2M0

∫ 1

0
p(t)dt.

References

[1] B. Ahmad and S.K. Ntouyas, Fractional-order multivalued problems with non-separated
integral-flux boundary conditions, Electronic J. Qual. Th. Differ. Equations, 2015(26)
(2015), 1–17.

[2] J.P. Aubin and H. Frankowska, Set-valued Analysis, Birkhauser, Basel (1990).
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