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Abstract. We study the existence of solutions for a fractional integro-differential inclusion
with non-separated local and non-separated integral-flux boundary conditions. We establish

Filippov type existence results in the case of nonconvex set-valued maps.

1. INTRODUCTION

In this paper, we study the following fractional integro-differential inclusion

Dgx(t) € F(t,x(t),V(x)(t)) a-e. ([0,1]) (1.1)
subject to the following boundary conditions
1
z(0) +z(1) = a/o z(s)ds, 2'(0) = ngx(l), (1.2)
2(0) + 2(1) = al'z(n), 2'(0) = bDLx(1), (1.3)

where a € (1,2], Dg is the Caputo fractional derivative of order «, F': [0, 1] x
RxR — P(R) is a set-valued map, V : C’([O 1] ) — ([0, ] R) is a nonlinear

Volterra integral operator defined by V' (x fo (t,s,2z(s))ds with k(.,.,.) :
[0,1] x R xR — R a given function, a, b € ]R B,v € (0, 1] € (0,1) and I'Ya:(.)
is the fractional integral of order v > 0.

If F does not depend on the last variable, inclusion (1.1) reduces to
Dgx(t) € F(t,z(t)) a.e. ([0,1]). (1.4)
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The present paper is motivated by a recent paper of Ahmad and Ntouyas
([1]) where existence results for problems (1.2)-(1.4) and (1.3)-(1.4) are estab-
lished for convex as well as nonconvex set-valued maps. The existence results
in [1] are based on a nonlinear alternative of Leray-Schauder type and some
suitable theorems of fixed point theory.

Our aim is to extend the study in [1] to the more general problem (1.1)
and to show that Filippov’s ideas ([8]) can be suitably adapted in order to
obtain the existence of solutions for problems (1.1)-(1.2) and (1.1)-(1.3). Recall
that for a differential inclusion defined by a lipschitzian set-valued map with
nonconvex values, Filippov’s theorem ([8]) consists in proving the existence of
a solution starting from a given “quasi” solution. Moreover, the result provides
an estimate between the “quasi” solution and the solution obtained.

Finally, we note that differential equations with fractional order have re-
cently proved to be strong tools in the modelling of many physical phenomena.
As a consequence there was an intensive development of the theory of differ-
ential equations and inclusions of fractional order ([9, 10, 11] etc.). Applied
problems require definitions of fractional derivative allowing the utilization of
physically interpretable initial conditions. Caputo’s fractional derivative, orig-
inally introduced in [3] and afterwards adopted in the theory of linear visco
elasticity, satisfies this demand.

The paper is organized as follows: in Section 2 we recall some preliminary
results that we need in the sequel and in Section 3 we prove our main results.

2. PRELIMINARIES
Let (X,d) be a metric space. Recall that the Pompeiu-Hausdorff distance
of the closed subsets A, B C X is defined by
du(A, B) = max{d"(A, B),d"(B, A)}, d*(A,B)=sup{d(a,B);a € A},

where d(x, B) = inf cp d(z,y).

Let I = [0,1], we denote by C(I,R) the Banach space of all continuous
functions from I to R with the norm ||z(.)||c = sup;c; |z(t)| and L*(I,R) is
the Banach space of integrable functions u(.) : I — R endowed with the norm

Nu()[e = [ Ju(t)|dt.

Definition 2.1. (a) The fractional integral of order @ > 0 of a Lebesgue
integrable function f : (0,00) — R is defined by

t — s a—1
o) = [ peas
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provided the right-hand side is pointwise defined on (0,00) and I'(.) is the
(Euler’s) Gamma function defined by I'(a) = [;° t* e !dt.

(b) The Caputo fractional derivative of order a > 0 of a function f : [0,00) —
R is defined by

Yy p— ) /0 (= )+ 0 ()ds,

I'n—a
where n = [a] + 1. Tt is assumed implicitly that f is n times differentiable
whose n-th derivative is absolutely continuous.

We recall (e.g., [9]) that if « > 0 and f € C(I,R) or f € L>®(I,R) then
(DEIf)(t) = f(1).

The next two technical lemmas are proved in [1].

Lemma 2.2. Assume that a # 2, b # I'(2 — B) and consider f(.) € C(I,R).
The unique solution z(.) € C(I,R) of problem

D¢gax(t) = f(t) ae. ([0,T)), (2.1)

with boundary conditions (1.2) is given by

t _s a—1 _ _ 1 —s a—p—1
x@yzé(t>f@mﬁb@tlﬁg 6{4(1 ST ps)ds

(o) 202-5)-b) Jo Ta=p) 22
Lofta=s)t o [t-s9 '
_2—a/0 I'(«) /() S+2—a/o F(a—i—l)f(s) >

Remark 2.3. If we denote
(t—s)*! b(2t — T2 — B) (1 — s)aA~1
T X T STE o8 e Ta—5)
1 (1—s)! a (1—s)©
2—a TI(a) 2—al(a+1)’

Gi(t,s) :==

where xg(+) is the characteristic function of the set S, then the solution z(.) in
Lemma 2.2 may be written as z(t) = fol Gi(t,s)f(s)ds. Moreover, if a— 3 > 1,
then for every t,s € I, we have

b|T(2 — B)
|G1(t,s)] < () + 2|T0(2 — B) = b|T(a — )
N 1 i |al =: M.

|2—all(a) [2—a|l'(a+1)
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Definition 2.4. A function z(.) € C%(I,R) is called a solution of problem
(1.1)-(1.2) if there exists a function f(.) € L!(I,R) that satisfies f(t) €
F(t,z(t),V(z)(t)) a.e. (I) and z(.) is given by (2.2).

Lemma 2.5. Assume that 2I'(y + 1) —an? # 0, b # I'(2 — ) and consider
f(.) € C(I,R). The unique solution x(.) € C(I,R) of problem (1.3)-(2.1) is
given by

S a—1
2(t) = fo Yk F(s)ds

a+ 1
+2F 'y—i:‘/;)»l an” |: f() OH_A: f( )dS - 0 1 () f(S)dS (23)
y+2)—an? ! bI( 2 ﬂ —p-
+ (t* (7+1()(2F()w+?) an7)> 25 Jo & 5 “f(s)ds.

Remark 2.6. If we denote

—s a—1
Ga(t,s) == %X[o,t}(s)
Lol (@t ald))  (—ge!
M+ D) —a’  T(aty) X[0.7] M+ —an’  T(a)
+(t— I(y+2)—an¥*?! >b1“(2—6) (1—s)@—B8-1
(y+1) @I (y+1)—an?) ) T'(2-B)—b TI'(a—p)

then the solution z(.) in Lemma 2.5 may be written as

1
t):/o Ga(t,s)f(s)ds

Moreover, if a« — 8 > 1, then for every t,s € I, we have

1 la|T(v+1) oty-1 la|T(v+1) 1
|Ga(t, 8)| < pay + P o] o) T @I —an] Ta)

L(y+2)—ap +! [b|T(2—5) 1 )
+A+ [gmeErarn—am ) TE8) -5 te-p) = M-

Definition 2.7. A function z(.) € C?(I,R) is called a solution of problem
(1.1)-(1.3) if there exists a function f(.) € LY(I,R) that satisfies f(t) €
F(t,z(t),V(z)(t)) a.e. (I) and z(.) is given by (2.3).

3. MAIN RESULTS

First we recall a selection result ([2]) which is a version of the celebrated
Kuratowski and Ryll-Nardzewski selection theorem.

Lemma 3.1. Consider X a separable Banach space, B is the closed unit ball
in X, H:I — P(X) is a set-valued map with nonempty closed values and
g: 1 — X, L:I— R, are measurable functions. If

Ht)Nn(gt)+ LEt)B) #0 a.e. (I),
then the set-valued map t — H(t) N (g(t) + L(t)B) has a measurable selection.
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In order to prove our results we need the following hypotheses.

Hypothesis H1. (i) F(.,.) : I x R x R — P(R) has nonempty closed values
and is L(I) ® B(R x R) measurable.

(ii) There exists L(.) € L'(I,(0,00)) such that, for almost allt € I, F(t,.,.) is
L(t)-Lipschitz in the sense that

dp(F(t,x1,y1), F(t,22,y2)) < L(t)(|z1 — 22| + [y1 — 42]), Y 21,22,91,52 € R.

(iii) k(.,.,.) : I x Rx R — R is a function such that Vx € R, (t,s) — k(t, s, x)
s measurable.
(iv) |k(t,s,x) — k(t,s,y)| < L(t)|z —y| a.e. (t,s) €l x1I, Y,y R.

We use next the following notations

M(t) = L(t)(1 —1—/0tL(u)du), tel, M= /OT M(¢)dt.

Theorem 3.2. Assume that Hypothesis H1 is satisfied, a # 2, b # I'(2 — ),
a—pf>1and MiMy < 1. Let y(.) € C(I,R) be such that y(0) + y(1) =
afol y(s)ds, y'(0) = ngy(l) and there exists p(.) € LY(I,Ry) with

d(Dey(t), F(t,y(t),V(y)(t)) < p(t) ae. (I).
Then there exists x(.) € C(I,R) a solution of problem (1.1)-(1.2) satisfying
forallt e,

1
o) =9(0)| < 13137 [, P (3.1

Proof. The set-valued map t — F(t,y(t),V(y)(t)) is measurable with closed
values and

F(t,y(6), V(y)(©) n{DEy(t) + p()[-1,1]} #0  a.e. (I).
It follows from Lemma 3.1 that there exists a measurable selection fi(t) €
F(t,y(t),V(y)(t)) a.e. (I) such that

[f1(t) = DEy()] < p(t)  a.e. (I). (3.2)
Define z1(t) = fol G1(t, s)fi(s)ds and one has
1
21(6) = (0] < 3y [ p(o).

We claim that it is enough to construct the sequences x,(.) € C(I,R), fn(.) €
LY(I,R), n > 1 with the following properties

nlt) = /0 Gr(t, ) fu(s)ds, tel, (3.3)

fu(t) € F(t,zp_1(t), V(zpn-1)(t)) a.e. (1), (3.4)
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| fr1(t) — fn(?)]
70 <\xn(t) - +/O L(s)|n(s) —xn_l(s)\ds> ae. (D).

If this construction is realized then from (3.2)-(3.5) we have for almost all ¢ € T

(3.5)

1
i1 (t) — 2o (t)| < My (M Mo)" / p(t)dt, ¥neN.
0

Indeed, assume that the last inequality is true for n — 1 and we prove it for n.
One has

1
1 () — 2a(t)] < /0 Gt t0)| | fo (£1) — fultr)dEy

t1

1
< Ml/o L(t1) [ll‘n(tl) — Zn—1(t1)| +/O L(s)|zn(s) — xn—l(S)ldS] dty

1 t1 1
< Ml/ L(t) <1+/ L(s)ds> dtl.M{LM{)‘_l/ p(t)dt
0 0 0

= Ml(MlM())n /Olp(t)dt.

Therefore {z,(.)} is a Cauchy sequence in the Banach space C(I,R), hence
converging uniformly to some z(.) € C(I,R). Therefore, by (3.5), for almost
all t € I, the sequence {f,(t)} is Cauchy in R. Let f(.) be the pointwise limit
of fn(.). Moreover, one has

|z (t) — y(t)] < [x1(2) |+lez+1 i(t)]
1
< M /O p(t)dt—i—; <M1 /0 p(t)dt) (M My)? (3.6)
My [y p(t)dt
1 — MMy

On the other hand, from (3.2), (3.5) and (3.6) we obtain for almost all ¢t € I

|fn(t) = Déy(t)]

<2 fowa ) — H0) + L) ~ DEat)
i=1
gL(t)% 1)

Hence the sequence f,,(.) is integrably bounded and therefore f(.) € L'(I,R).
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Using Lebesgue’s dominated convergence theorem and taking the limit in
(3.3), (3.4) we deduce that z(.) is a solution of (1.1)-(1.2). Finally, passing to
the limit in (3.6) we obtained the desired estimate on x(.).

It remains to construct the sequences z,(.), fn(.) with the properties in
(3.3)-(3.5). The construction will be done by induction.

Since the first step is already realized, assume that for some N > 1 we
already constructed z,(.) € C(I,R) and f,(.) € LY(I,R), n = 1,2,..,N
satisfying (3.3), (3.5) for n =1,2,..., N and (3.4) for n =1,2,..., N — 1. The
set-valued map t — F'(t,zn(t),V(xn)(t)) is measurable. Moreover, the map
t— L(t)(lxn(t) — on_1(t)| + fg L(s)|xn(s) — zn—1(s)|ds) is measurable. By
the Lipschitzianity of F'(¢,.) we have that for almost all ¢t € T

Btz (®) N {fn(t) + L) (Jx (1) = 2nv-1(H)]+
Jo L(s)lzn(s) —an-1(s)lds)[—1,1]} # 0.

Lemma 3.1 yields that there exist a measurable selection fn41(.) of F/(.,zn(.),
V(xzn)(.)) such that for almost all t € I

[fn41(t) = f(t)]
< L(t) <|xN(t) —xn—1(t)] —i—/o L(s)|zn(s) — :UN_l(s)\ds> :

We define zy41(.) as in (3.3) with n = N +1. Thus fy41(.) satisfies (3.4) and
(3.5) and the proof is complete. O

The assumptions in Theorem 3.3 are satisfied, in particular, for y(.) = 0 and
therefore with p(.) = L(.). We obtain the following consequence of Theorem
3.3.

Corollary 3.3. Assume that Hypothesis 3.2 is satisfied, a # 2, b # I'(2 — j3),
a—pF>1, MiMy < 1 and d(0, F(t,0,V(0)(t)) < L(t) a.e. (I). Then there
exists x(.) a solution of problem (1.1)-(1.2) satisfying for all t € I

M !
[z(t)] < 1_]\41]\40/0 L(t)dt.

If F does not depend on the last variable, Hypothesis H1 became

Hypothesis H2. (i) F'(.,.) : I x R — P(R) has nonempty closed values and
is L(I) ® B(R) measurable.

(i) There exists L(.) € L*(I,(0,00)) such that, for almost all t € I, F(t,.) is
L(t)-Lipschitz in the sense that

dH(F(t,xl),F(t,$2)) < L(t)\xl — .1‘2|, W x1,T9 € R.
Denote Lo = fol L(t)dt.
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Corollary 3.4. Assume that Hypothesis H2 is satisfied, a # 2, b #T'(2 — f3),
a—p>1, MiMy <1 and d(0, F(t,0) < L(t) a.e. (I). Then there exists x(.)
a solution of problem (1.2)-(1.4) satisfying for allt € 1

MLy
) < —.
o0 < T

Remark 3.5. A similar result to the one in Corollary 3.4 may be found in
[1], namely Theorem 3.7. Assuming that L(.) € C(I,R) the result in [1]
provides the existence of solutions of problem (1.2)-(1.4) under the condition
I|1L(.)||cA < 1, where
Ao 1tI2—d bIC(2 — B) N |al
2 —all'(a+1) 2[02-08)-bl(a—pF+1) [2—all(a+2)
In our approach we assume only that L(.) € L'(I,R). The price we pay is that
we suppose that o — > 1 and our contraction qualification is ||L(.)|[1 M7 < 1.
On the other hand, the approach in [1], apart from the requirement that
the values of F'(.,.) are compact, does not provides a priori bounds as in (3.7).

In the case when we consider nonlocal integral-flux boundary conditions,
namely problem (1.1)-(1.3), with a similar proof as the one of Theorem 3.3 we
obtain the following existence result.

Theorem 3.6. Assume that Hypothesis H1 is satisfied, 2I'(y + 1) — an? # 0,
b#T2-p), a—p >1and MaMy < 1. Let y(.) € C(I,R) be such that
y(0)+y(1) = alVy(n), ¥'(0) = ngy(l) and there exists p(.) € L*(I,Ry) with
d(Dly(t), F(t,y(t),V(y)(t))) < p(t) a.e. (I). Then there exists x(.) € C(I,R)
a solution of problem (1.1)-(1.3) satisfying for allt € 1

1
o) =) < =557 | PO
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