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Abstract. In this work, we introduce the notion of ρ-(η, θ)-invex function between Banach

spaces. By using these functions, we obtain the Karush-Kuhn-Tucker (KKT) sufficient con-

ditions for an optimization problem in a Banach space. A pair of duality results are also

studied under the generalized ρ-(η, θ)-invexity assumptions on the functions involved.

1. Introduction and formulation of the problem

In the classical theory of optimization, the theorems on sufficient optimality
conditions and duality are based on convexity assumptions, which are rather
restrictive in applications. Many attempts have been made to weaken these
assumptions by introducing generalized convexity. In 1965, Mangasarian [4]
proved that if the objective function is pseudo-convex and the constraint func-
tions are quasi-convex, then Karush Kuhn Tucker conditions are sufficient for
a global solution. Sixteen years later, Hanson [2] introduced the invex func-
tion and showed that the Karush Kuhn Tucker conditions are sufficient for
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global solution if the objective function and constraint functions are invex
with respect to same η for detail (see, [6, 7, 8] etc).

Consider the following problem of optimization

(P ) min
x∈C

f(x) (1.1)

subject to g(x) ≤ 0, (1.2)

C is a convex subset of a Banach space X, f is a real-valued Frechet differ-
entiable function on C, g is a Frechet differentiable function from C into a
Banach space Y having a positive cone P .

According to generalized Karush-Kuhn-Tucker theorem [3] it is necessary,
under certain constraint qualification, that for x0 to be minimal in the problem,
there is a y∗0 ∈ Y ∗, y∗0 ≥ 0 such that the Lagrangian

f(x) + 〈y∗0, g(x)〉

is satisfied at x0 i.e.,

f ′(x0) + y∗0 g
′(x0) = 0, (1.3)

〈y∗0, g(x0)〉 = 0, (1.4)

y∗0 ≥ 0. (1.5)

We also write the Lagrangian in functional notation

L(x, y∗0) = f(x) + y∗0g(x),

since this is similar to the convenient for the finite dimensional theory.
We denote X∗, be the space of continuous linear functionals on X. For

x∗ ∈ X∗, define

〈x∗, x〉 = x∗(x) = x∗x.

2. Generalized ρ-(η, θ)-invexity

ForX = Rn and Y = Rm,Hanson [2] proved that if all functions f, f1, f2, · · · ,
fm are invex with respect to same η, then conditions (1.3)-(1.5) are also suf-
ficient. It will be shown that these conditions are sufficient for another wider
classes of functions (generalized ρ-(η, θ)-invex).

Definition 2.1. Let P be a convex cone with nonempty interior in a vector
space X. For x, y ∈ X, we write x ≥ y (with respect to P) if x− y ∈ P . This
cone P defining this relation is called a positive cone in X. The cone N = −P
is called the negative cone in X and we write y ≤ x for y − x ∈ N .
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Definition 2.2. A Frechet differentiable function f : X → R is said to be ρ-
(η, θ)-invex with respect to η, θ, if there exist η : X×X → X, θ : X×X → X
and ρ ∈ R such that

f(x0)− f(x1) ≥ 〈f ′(x1), η(x0, x1)〉+ ρ ‖ θ(x0, x1) ‖2, (2.1)

for all x0, x1 ∈ X.

Definition 2.3. A Frechet differentiable function f : X → R is said to be
ρ-(η, θ)-pseudo-invex with respect to η, θ, if there exist η : X × X → X,
θ : X ×X → X and ρ ∈ R such that

〈f ′(x1), η(x0, x1)〉 ≥ −ρ ‖ θ(x0, x1) ‖2 ⇒ f(x0) ≥ f(x1), (2.2)

for all x0, x1 ∈ X.

Definition 2.4. A Frechet differentiable function f : X → R is said to be
ρ-(η, θ)-quasi-invex with respect to η, θ, if there exist η : X × X → X and
θ : X ×X → X and ρ ∈ R such that

f(x0) ≤ f(x1) ⇒ 〈f ′(x1), η(x0, x1)〉 ≤ −ρ ‖ θ(x0, x1) ‖2, (2.3)

for all x0, x1 ∈ X.

Definition 2.5. Let X and Y be two Banach spaces. A Frechet differentiable
function g : X → Y is said to be ρ1-(η, θ)-invex if for all y∗ ∈ Y ∗, there exist
η : X ×X → X, θ : X ×X → X and ρ1 ∈ R such that

y∗ ◦ g(x)− y∗ ◦ g(y) ≥ y∗〈g′(y), η(x, y)〉+ ρ1 ‖ θ(x, y) ‖2, (2.4)

for all x, y ∈ X.

Definition 2.6. A Frechet differentiable function g : X → Y is said to be ρ1-
(η, θ)-pseudo-invex if for all y∗ ∈ Y ∗, there exist η : X×X → X, θ : X×X →
X and ρ1 ∈ R such that

y∗〈g′(y), η(x, y)〉 ≥ −ρ1 ‖ θ(x, y) ‖2 ⇒ y∗ ◦ g(x) ≥ y∗ ◦ g(y), (2.5)

for all x, y ∈ X.

Definition 2.7. A Frechet differentiable function g : X → Y is said to be ρ1-
(η, θ)-quasi-invex if for all y∗ ∈ Y ∗, there exist η : X×X → X, θ : X×X → X
and ρ1 ∈ R such that

y∗ ◦ g(x) ≤ y∗ ◦ g(y) ⇒ y∗〈g′(y), η(x, y)〉 ≤ −ρ1 ‖ θ(x, y) ‖2, (2.6)

for all x, y ∈ X.
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Lemma 2.8. Every Frechet differentiable invex function f is ρ-(η, θ)-invex
for ρ ≤ 0. The converse is true ρ ≥ 0, but for ρ < 0, this is false.

Proof. It is clear that every invex function f is ρ-(η, θ)-invex. The converse is
not true, which follows from the following counter example. �

Example 2.1. Let f : (0, 12)→ R be a mapping defined by

f(x) = −x3.
Let the maps η and θ be defined by

η(y, x) =

{
y − x, if y > x,
0, if y ≤ x,

and

θ(y, x) =

{ √
y − x, if y > x,

0, if y ≤ x.
Taking ρ = −1, we have to show

f(y)− f(x) ≥ 〈f ′(x), η(y, x)〉+ ρ ‖ θ(y, x) ‖2,
i.e.,

f(y)− f(x)−
[
〈f ′(x), η(y, x)〉+ ρ ‖ θ(y, x) ‖2

]
≥ 0, (2.7)

the LHS of the expression (2.7) becomes

x3 − y3 −
[
− 3x2(y − x)− (y − x)

]
,

then
(x− y)(x2 + xy + y2) + 3x2(y − x) + (y − x) ≥ 0.

If x ≥ y we obtain
(x− y)(x2 + xy + y2) ≥ 0

and if x < y we get

(y − x)

[
(3x2 + 1)− (y2 + xy + x2)

]
> 0.

Thus f is ρ-(η, θ)-invex but not invex at x = 1
4 , y = 1

3 because

f(y)− f(x) < 〈f ′(x), η(y, x)〉.

Lemma 2.9. Every Frechet differentiable quasi-invex function f is ρ-(η, θ)-
quasi-invex for ρ ≤ 0 but the converse is not true.

Proof. It is clear that every quasi-invex function f is ρ-(η, θ)-quasi-invex. The
converse is not true, which follows from the following counter example. �
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Example 2.2. Let f : (0, π2 )→ R be a mapping defined by

f(x) = sinx.

Let the maps η and θ be defined by

η(y, x) = x− y
and

θ(y, x) =

{ √
x− y, if y ≤ x,

0, if y > x.

Taking ρ = −1, we have to prove

f(y) ≤ f(x) ⇒ 〈f ′(x), η(y, x)〉+ ρ ‖ θ(y, x) ‖2≤ 0.

Now
f(y)− f(x) = sin y − sinx ≤ 0 if y ≤ x.

It follows that

〈f ′(x), η(y, x)〉+ ρ ‖ θ(y, x) ‖2 = cosx(x− y)− (x− y)

= (cosx− 1)(x− y)

≤ 0

if y ≤ x. For y > x, it is true vacuously. But f is not quasi-invex at x1 = π
3

and y1 = π
6 , as

f(y1)− f(x1) = sin y1 − sinx1 =
(1−

√
3)

2
< 0

and
〈f ′(x1), η(y1, x1)〉 = cosx1(x1 − y1) =

π

12
> 0.

Lemma 2.10. Every pseudo-invex function f is ρ-(η, θ)-pseudo-invex but the
converse is not true.

Proof. It is clear that every pseudo-invex function f is ρ-(η, θ)-pseudo-invex.
The converse is not true, which follows from the following counter example. �

Example 2.3. Let f : (0, π2 )→ R be a mapping defined by

f(x) = sinx− 1.

Let the maps η and θ be defined by

η(y, x) =

{
sin y − sinx, if y > x,
0, if y ≤ x,

and

θ(y, x) =

{ √
sinx− sin y, if x > y,

0, if x ≤ y.
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Taking ρ = −1, we have to show

〈f ′(x), η(y, x)〉+ ρ ‖ θ(y, x) ‖2≥ 0 ⇒ f(y) ≥ f(x).

Now

〈f ′(x), η(y, x)〉+ ρ ‖ θ(y, x) ‖2 = cosx(sin y − sinx)

≥ 0

if y ≥ x. It follows that

f(y)− f(x) = sin y − sinx ≥ 0

if y ≥ x. For y < x, it is true vacuously. But f is not pseudo-invex at x1 = π
4

and y1 = π
6 , as

〈f ′(x1), η(y1, x1)〉 = 0

and

f(y1)− f(x1) = sin y1 − sinx1 =
1

2
− 1√

2
< 0.

3. Optimality in the presence of ρ-(η, θ)-invexity

In this section, we show that in problem (1.1), (1.2), if f is ρ-(η, θ)-invex and
g(x) is satisfying (2.4), the Karush Kuhn-Tucker conditions are also sufficient
conditions for optimality.

Theorem 3.1. Let f and g be Frechet differentiable functions on C ⊂ X,
X is a Banach space and C is a closed convex cone with nonempty interior
satisfying (2.1) and (2.4) on C × C. If there exists x0 ∈ C and v∗0 ∈ Y ∗

satisfying the Karush-Kuhn-Tucker conditions (1.3)-(1.5) and ρ+ ρ1 ≥ 0 then

f(x0) = min
x∈C
{f(x) : g(x) ≤ 0}.

Proof. For x ∈ C satisfying g(x) ≤ 0, we have

f(x)− f(x0) ≥ 〈f ′(x0), η(x, x0)〉+ ρ ‖ θ(x, x0) ‖2 .
By (1.3), it follows that

f(x)− f(x0) ≥ −v∗0〈g′(x0), η(x, x0)〉+ ρ ‖ θ(x, x0) ‖2 . (3.1)

As
v∗0g(x)− v∗0g(x0) ≥ v∗0〈g′(x0), η(x, x0)〉+ ρ1 ‖ θ(x, x0) ‖2,

we have

−v∗0〈g′(x0), η(x, x0)〉 ≥ −v∗0g(x) + v∗0g(x0) + ρ1 ‖ θ(x, x0) ‖2 .
Hence (3.1) becomes

f(x)− f(x0) ≥ −v∗0g(x) + v∗0g(x0) + (ρ+ ρ1) ‖ θ(x, x0) ‖2 .
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Since v∗0g(x0) = 0 and ρ+ ρ1 ≥ 0, we have

f(x)− f(x0) ≥ 0,

that is

f(x0) ≤ f(x), ∀ x ∈ C.
Hence x0 is minimal, which proves the theorem. �

4. Duality

We consider the following pair of problems defined on C ⊂ X (Banach
space), C is a closed convex cone with nonempty interior.

Primal Problem(P) min
x∈C

f(x) (4.1)

subject to: g(x) ≤ 0. (4.2)

Dual Problem(D) max
(u,v∗)

f(u) + 〈v∗, g(u)〉 (4.3)

subject to: f ′(u) + 〈v∗, g′(u)〉 = 0, (4.4)

v∗ ≥ 0. (4.5)

Theorem 4.1. Under the conditions of the Karush-Kuhn-Tucker theorem, if
x0 is minimal in primal problem (P ), then (x0, v

∗
0) is maximal in the dual

problem (D), where v∗0 is given by the Karush-Kuhn-Tucker conditions and f
and g are satisfying (2.1) and (2.4) with ρ + ρ1 ≥ 0, then the extreme values
are equal in the two problems.

Proof. Let (u, v∗) be any point satisfying constraints (4.4) and (4.5) of the
dual problem (D), then using (2.1) and (4.4), we get[

f(x0) + 〈v∗0, g(x0)〉
]
−
[
f(u) + 〈v∗, g(u)〉

]
= f(x0)− f(u)− 〈v∗, g(u)〉 (as 〈v∗0, g(x0)〉 = 0)

≥ 〈f ′(u), η(x0, u)〉+ ρ ‖ θ(x0, u) ‖2 −〈v∗, g(u)〉
= 〈−v∗g′(u), η(x0, u)〉+ ρ ‖ θ(x0, u) ‖2 −〈v∗, g(u)〉. (4.6)

But

v∗g(x0)− v∗g(u) ≥ 〈v∗g′(u), η(x0, u)〉+ ρ1 ‖ θ(x0, u) ‖2 .
That is

−〈v∗g′(u), η(x0, u〉 ≥ −v∗g(x0) + v∗g(u) + ρ1 ‖ θ(x0, u) ‖2 .



232 N. Behera, C. Nahak and S. Nanda

So the RHS of (4.6) becomes[
f(x0) + 〈v∗0, g(x0)〉

]
−
[
f(u) + 〈v∗, g(u)〉

]
≥ −v∗g(x0) + v∗g(u) + (ρ+ ρ1) ‖ θ(x0, u) ‖2 −v∗g(u)

≥ −v∗g(x0) + (ρ+ ρ1) ‖ θ(x0, u) ‖2

≥ 0.

So (x0, v
∗
0) is maximal in the dual problem (D), and since 〈v∗0, f(x0)〉 = 0, the

extrema of the two problems are equal. This completes the proof. �

5. Optimality in the presence of ρ-(η, θ)-pseudo-invexity

In this section, we show that in problem (1.1), (1.2), if f(x) is ρ-(η, θ)-
pseudo-invex and g(x) is satisfying (2.6), the Karush Kuhn-Tucker conditions
are also sufficient conditions for optimality.

Theorem 5.1. Let f and g satisfy (2.2) and (2.6) respectively. If there exists
x0 ∈ C and v∗0 ∈ Y ∗ satisfy the Karush Kuhn-Tucker conditions (1.3)-(1.5)
and (ρ+ ρ1) ≥ 0, then

f(x0) = min
x∈C
{f(x) : g(x) ≤ 0}.

Proof. For x ∈ C satisfying g(x) ≤ 0, we have,

〈f ′(x0), η(x, x0)〉+ ρ ‖ θ(x, x0) ‖2

= f ′(x0)η(x, x0) + ρ ‖ θ(x, x0) ‖2

= −v∗0g′(x0)η(x, x0) + ρ ‖ θ(x, x0) ‖2 ( by (1.3)). (5.1)

Since v∗0g(x)−v∗0g(x0) ≤ 0 (as v∗0g(x0) = 0 and v∗0g(x) ≤ 0)), by ρ-(η, θ)-quasi-
invexity of g, we have

〈v∗0g′(x0), η(x, x0)〉 ≤ −ρ1 ‖ θ(x, x0) ‖2,
i.e.,

−〈v∗0g′(x0), η(x, x0)〉 ≥ ρ1 ‖ θ(x, x0) ‖2 .
So from (5.1), we obtain

〈f ′(x0), η(x, x0)〉+ ρ ‖ θ(x, x0) ‖2 ≥ (ρ+ ρ1) ‖ θ(x, x0) ‖2

≥ 0

as (ρ+ ρ1) ≥ 0. Hence

〈f ′(x0), η(x, x0)〉 ≥ −ρ ‖ θ(x, x0) ‖2 .
By ρ-(η, θ)-pseudo-invexity of f , we have

f(x)− f(x0) ≥ 0,
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hence
f(x) ≥ f(x0).

This completes the proof. �

6. Concluding remarks

We have demonstrated sufficient optimality conditions and duality for opti-
mization problems in Banach space involving generalized ρ-(η, θ)-invex func-
tions. Most of the corresponding results for the invex case have been ex-
tended to these problems under several types of generalized ρ-(η, θ)-invexity
assumptions. So our results contain many known ones. As generalized ρ-
(η, θ)-invexity is a generalization of invexity, variational problem and control
problems in Banach space under generalized ρ-(η, θ)-invexity will orient future
research of the authors.

Further note that ρ-(η, θ)-invexity is useful if all the needed functions are
ρ-(η, θ)-invex with respect to the same functions η, θ. If one of them does not
satisfy this condition, then it is hard to assert something even if it is convex.
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