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Abstract. The aim of this paper is to derive existence and uniqueness coupled fixed point

results under generalized contractive condition without monotone mappings. Our results

extend, generalize, unify and improve the existing results; in particular, results of Radenovi.

1. Introduction

In recent years, many results appeared related to fixed point theorem in
complete metric spaces endowed with a partial ordering � in the literature.
The contraction mapping theorem and the abstract monotone iterative tech-
nique are well known and are applicable to a variety of situations. Recently,
there is a trend to weaken the requirement on the contraction by considering
metric spaces endowed with partial order. In the context of ordered metric
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spaces, the usual contraction is weakened but at the expense that the opera-
tor is monotone. It is of interest to determine if it is still possible to establish
the existence of a unique fixed point assuming that the operator considered
is monotone in such a setting. The first result in this direction was given by
Ran and Rearing [13, Theorem 3.1] who presented an analogue of Banach’s
fixed point theorem in partially ordered sets. It was applied to the resolution
of matrix equations. Subsequently many works have been done in this line.

On the other hand, Guo and Laksmikantham [2] introduced the notion of
coupled fixed point. In 2006 Bhaskar and Lakshmikantham [1] reconsidered
the concept of a coupled fixed point of the mapping F : X × X → X and
investigated some coupled fixed point theorems in partially ordered complete
metric spaces. Bhaskar and Lakshmikantham [1] also proved mixed monotone
property for the first time and gave their classical coupled fixed point theorem
for mapping which satisfy the mixed monotone property. As, an application,
they studied the existence and uniqueness of the solution for a periodic bound-
ary value problem associated with first order differential equation. For detail
one can refer [4]-[12], [15]-[17]. Recently, Radenovic [13] introduced a notion
of monotone mappings and derived coupled fixed point results without use
of mixed monotone property. In this paper, we use the concept of monotone
property [3, 13] and prove coupled fixed point results for relational type con-
traction conditions. Our result generalizes the result of Radenovic [13] and
many similar types of results.

2. Preliminaries

We start out with listing some notations and preliminaries that we shall
need to express our results. In this paper (X, d,�) denotes a partially ordered
metric space where (X,�) is a partially ordered set and (X, d) is a metric
space.

Definition 2.1. ([2]) An element (x, y) ∈ X ×X is said to be coupled fixed
point of the mapping F if F (x, y) = x and F (x, y) = y. It is clear that (x, y)
is a coupled fixed point of F if and only if (y, x) is a coupled fixed point of F .

Definition 2.2. ([13]) Let (X, d,�) be a partial order set and F : X×X → X
be a mapping. Then a map F is said to have the monotone property if F (x, y)
is monotone nondecreasing in both variables x and y, that is for any x, y ∈ X,

x1, x2 ∈ X, x1 � x2 ⇒ F (x1, y) � F (x2, y)

and

y1, y2 ∈ X, y1 � y2 ⇒ F (x, y1) � F (x, y2).
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Definition 2.3. ([13]) Let (X,�) be an ordered set and d be a metric space
on X. We say that (X, d,�) is regular if it has the following properties:

(1) If a non-decreasing sequence {xn} holds d(xn, x)→ 0, then xn � x for
all n.

(2) If a non-increasing sequence {yn} holds d(yn, y) → 0, then yn � y for
all n.

Lemma 2.4. ([13])

(1) Let (X, d,�) be a partially ordered metric space. If relation v is defined
on X2 = X ×X by,

Y v V ⇔ x � u ∧ y � v, Y = (x, y), V = (u, v) ∈ X2

and d+ : X2 ×X2 → R2 is given by

d+(Y, V ) = d(x, u) + d(y, v), Y = (x, y), V = (u, v) ∈ X2.

Then (X2,v, d+) is an ordered metric space. The space (X2, d+) is a
complete if and only if (X, d) is a complete. Also, the space (X2,v, d+)
is a regular if and only if (X, d,�) is a regular.

(2) If F : X ×X → X then the mapping TF : X ×X → X ×X given by

TF (Y ) = (F (x, y), F (y, x)), Y = (x, y) ∈ X2,

is non-decreasing with respect to v, that is

Y v V ⇒ TF (Y ) v TF (V ).

(3) The mapping F is continuous if and only if TF is continuous.
(4) Mapping F : X2 → X has a coupled fixed point if and only if mapping

TF has a fixed point in X2.

Lemma 2.5. ([13]) Let (X, d) be a metric space and let {yn} be a sequence in
X such that

lim
n→∞

d(yn, yn+1) = 0.

If {yn} is not a Cauchy sequence in (X, d), then there exist ε > 0 and two
sequences m{k} and n{k} of positive integers such that m(k) > n(k) > k and
the following four sequences tend to ε+ when k →∞:

d(ym(k), yn(k)), d(ym(k), yn(k)+1), d(ym(k)−1, yn(k)), d(ym(k)−1, yn(k)+1).



238 H. K. Nashine, J. K. Kim, A. K. Sharma and G. S. Saluja

3. Main results

Our first result is the following :

Theorem 3.1. Let (X, d,�) be a partially ordered metric space. Let F :
X × X → X be a continuous mapping having the monotone property on X
and satisfying

d(F (x, y), F (u, v)) ≤ α

2
[d(x, u) + d(y, v)] + βN((x, y), (u, v)) (3.1)

+
γ

2
[d(x, F (x, y)) + d(u, F (u, v))

+ d(y, F (y, x)) + d(v, F (v, u))]

for all (x, y), (u, v) ∈ X ×X with x � u and y � v, when

D1 = d(x, F (u, v)) + d(u, F (x, y)) 6= 0

and

D2 = d(y, F (v, u)) + d(v, F (y, x)) 6= 0,

where

N((x, y), (u, v))

= min

{
d2(x, F (u, v))+d2(u, F (x, y))

d(x, F (u, v))+d(u, F (x, y))
,
d2(y, F (v, u))+d2(v, F (y, x))

d(y, F (u, v))+d(v, F (y, x))

}
,

(3.2)

and α, β, γ ≥ 0 with α+ 2β + 2γ < 1. Further,

d(F (x, y), F (u, v)) = 0 if D1 = 0 and D2 = 0. (3.3)

We assume that there exist x0, y0 ∈ X such that

x0 � F (x0, y0) and y0 � F (y0, x0). (3.4)

Then, F has a coupled fixed point (x, y) ∈ X ×X.

Proof. Let x0, y0 ∈ X such that x0 � F (x0, y0) and y0 � F (y0, x0). Since
F : X × X → X, we can choose x1, y1 ∈ X such that x1 = F (x0, y0) and
y1 = F (y0, x0). Again from F : X × X → X we can choose x2, y2 ∈ X
such that x2 = F (x1, y1) and y2 = F (y1, x1). Continuing this process we can
construct sequences {xn} and {yn} in X such that

xn+1 = F (xn, yn) and yn+1 = F (yn, xn), for all n ≥ 0.

We shall show that,

xn � xn+1 and yn � yn+1, for all n ≥ 0. (3.5)

We will use the mathematical induction. For n = 0, since x0 � F (x0, y0)
and y0 � F (y0, x0), and as x1 = F (x0, y0) and y1 = F (y0, x0), we have that
x0 � x1 and y0 � y1. Thus (3.5) holds for n = 0.



Some coupled fixed point without mixed monotone mappings 239

Suppose now that (3.5) holds for n ≥ 0. Then, since xn � xn+1 and
yn � yn+1 and so by the monotone property of F , we have

xn+1 = F (xn, yn) � F (xn+1, yn) � F (xn+1, yn+1) = xn+2 (3.6)

and

yn+1 = F (yn, xn) � F (yn+1, xn) � F (yn+1, xn+1) = yn+2.

That is (3.5) holds for all n ≥ 0. If xn+1 = xn+2 and yn+1 = yn+2 for some n,
then F (xn+1, yn+1) = xn+1 and F (yn+1, xn+1) = yn+1, hence (xn+1, yn+1) is a
coupled fixed point of F . Suppose further that xn+1 6= xn+2 or yn+1 6= yn+1

for each n ∈ N0. Now, we claim that, for n ∈ N0,

d(xn+1, xn)+d(yn+1, yn) ≤ ((α+β+γ)/(1−β−γ))n[d(x1, x0)+d(y1, y0)] (3.7)

Indeed, for n = 1, consider the following possibilities.

Case I. Suppose x0 6= x2 and y0 6= y2. Then

d(x1, F (x0, y0)) + d(x0, F (x1, y1)) 6= 0

and

d(y1, F (y0, x0)) + d(y0, F (y1, x1)) 6= 0.

Hence using x1 � x0, y1 � y0 and (3.1), we get

d(x2, x1)

= d(F (x1, y1), F (x0, y0))

≤ α

2
[d(x1, x0) + d(y1, y0)] + βN(x1, y1), (x0, y0)

+
γ

2
[d(x1, F (x1, y1)) + d(x0, F (x0, y0)) + d(y1, F (y1, x1)) + d(y0, F (y0, x0))]

or,

d(x2, x1) ≤
α

2
[d(x0, x1) + d(y0, y1)] + β

d2(x1, F (x0, y0)) + d2(x1, F (x1, y1))

d(x1, F (x0, y0)) + d(x0, F (x1, y1))

+
γ

2
[d(x1, x2) + d(x0, x1) + d(y1, y2) + d(y0, y1)]

i.e.,

d(x2, x1) ≤
α

2
[d(x0, x1) + d(y0, y1)] + β[d(x0, x1) + d(x1, x2)] (3.8)

+
γ

2
[d(x0, x1) + d(y0, y1) + d(x1, x2) + d(y1, y2)].

Similarly, using that

d(y2, y1) = d(F (y1, x1), F (y0, x0)) = d(F (y0, x0), F (y1, x1))
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and

N((y1, x1), (y0, x0)) ≤
d2(y1, F (y0, x0)) + d2(y0, F (y1, x1))

d(y1, F (y0, x0)) + d(y0, F (y1, x1))

= d(y0, y2) ≤ d(y0, y1) + d(y1, y2),

we get,

d(y2, y1) ≤
α

2
[d(x0, x1) + d(y0, y1)] + β[d(y0, y1) + d(y1, y2)] (3.9)

+
γ

2
[d(x0, x1) + d(y0, y1) + d(x1, x2) + d(y1, y2)].

Adding (3.8) and (3.9) we have,

d(x2, x1) + d(y2, y1) ≤
α+ β + γ

1− β − γ
[d(x0, x1) + d(y0, y1)]. (3.10)

Case II. Suppose x0 = x2 and y0 6= y2. The first equality implies that
d(x1, F (x0, y0)) + d(x0, F (x1, y1)) 6= 0, and hence

d(x1, x2) = d(F (x0, y0), F (x1, y1)) = 0,

by (3.3). This means that x0 = x1 = x2. From y0 6= y2, as in the first case,
we get that (3.7) holds true. As a consequence

d(y1, y2) ≤
( α

2 + β + γ
2

1− β − γ
2

)
d(y0, y1)

≤ α+ β + γ

1− β − γ
d(y0, y1),

since
( α

2
+β+ γ

2

1−β− γ
2

)
< α+β+γ

1−β−γ . But then d(x0, x1) = d(x1, x2) = 0 implies that

(3.8) holds. The case x0 6= x2 and y0 = y2 is treated analogously.

Case III. Suppose x0 = x2 and y0 = y2. Then

d(x1, F (x0, y0)) + d(x0, F (x1, y1)) = 0

and

d(y1, F (y0, x0)) + d(y0, F (y1, x1)) = 0.

Hence, (3.3) implies that x1 = x2 = x3 and y1 = y2 = y3, and so (3.7) holds
trivially. Thus (3.7) holds for n = 1. In a similar way, proceeding by induction,
if we assume that (3.6) holds, we get that

d(xn+2, xn+1) + d(yn+2, yn+1) ≤
(
α+ β + γ

1− β − γ

)
[d(xn+1, xn) + d(yn+1, yn)]

≤
(
α+ β + γ

1− β − γ

)n
[d(x0, x1) + d(y0, y1)].
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Hence, by induction, (3.7) is proved. Set, hn = d(xn, xn+1)+d(yn, yn+1), n ∈ N
and ρ =

(
α+β+γ
1−β−γ

)
< 1. Then, the sequence {hn} is decreasing and, hn ≤ ρnh0.

Now we prove that {xn} and {yn} are Cauchy sequences. Suppose, to the
contrary, that at least one of {xn} and {yn} is not a Cauchy sequence. Then
(by Lemma 2.6) there exists ε > 0 and two sequences {m(k)} and {n(k)} of
positive integers such that m(k) > n(k) > k and the following four sequences
tend to ε+ when k →∞:

d+(zm(k), zn(k)), d+(zm(k), zn(k)+1), d+(zm(k)−1, zn(k)), d+(zm(k)−1, zn(k)+1),

where zn = (xn, yn) is a sequence in (X2, d+). Putting

(x, y) = (xm(k)−1, ym(k)−1))

and

(u, v) = (xn(k), yn(k))

in (3.1), we have

d(F (xm(k)−1, ym(k)−1), F (xn(k), yn(k)))

≤ α

2
[d(xm(k)−1, xn(k)) + d(ym(k)−1, yn(k))]

+ βN((xm(k)−1, ym(k)−1)), (xn(k), yn(k)))

+
γ

2
[d(xm(k)−1, F (xm(k)−1, ym(k)−1)) + d(xn(k), F (x(k), yn(k)))

+ d(ym(k)−1, F (ym(k)−1, xm(k)−1)) + d(yn(k), F (yn(k), xn(k)))

i.e.,

d(xm(k), xn(k+1)) (3.11)

≤ α

2
[d(xm(k)−1, xn(k)) + d(ym(k)−1, yn(k))]

+ βN((xm(k)−1, ym(k)−1), (xn(k), yn(k)))

+
γ

2
[d(xm(k)−1, F (xm(k)−1, ym(k)−1)) + d(xn(k), F (xn(k)), yn(k))))

+ d(ym(k)−1, F (ym(k)−1, xm(k)−1)) + d(yn(k)), F (yn(k)), xn(k))))].

Similarly, putting (y, x) = (ym(k)−1, xm(k)−1) and (v, u) = (yn(k)), xn(k))) in
(3.1), we obtain

d(F (ym(k)−1, xm(k)−1, F (yn(k), xn(k)))

≤ α

2
[d(ym(k)−1, yn(k)) + d(xm(k)−1, xn(k))]

+
γ

2
[d(ym(k)−1, F (ym(k)−1, xm(k)−1)) + d(yn(k), F (yn(k), xn(k)))

+ d(xm(k)−1, F (xm(k)−1, ym(k)−1)) + d(xm(k), F (xm(k), yn(k)))],
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i.e.,

d(ym(k), yn(k)+1) (3.12)

≤ α

2
[d(ym(k)−1, yn(k)) + d(xm(k)−1, xn(k))]

+ βN((xn(k), yn(k)), (xm(k)−1, ym(k)−1))

+
γ

2
[d(ym(k)−1, F (ym(k)−1, xm(k)−1)) + d(yn(k), F (yn(k), xn(k)))

+ d(xm(k)−1, F (xm(k)−1, ym(k)−1)) + d(xm(k), F (xm(k), yn(k)))].

Adding (3.11) and (3.12), we get

d(xm(k), xn(k)+1) + d(y(m(k), yn(k)+1)

≤
(
α+ β + γ

1− β − γ

)
[d(xm(k)−1, xn(k)) + d(ym(k)−1, yn(k))],

or equivalently,

d(zm(k), zn(k)+1) ≤
(
α+ β + γ

1− β − γ

)
d+(zm(k)−1, zn(k)). (3.13)

Passing to the limit as k → ∞ in (3.12) we obtain that ε ≤ ερ < ε, a
contradiction. Hence, both sequences {xn} and {yn} are Cauchy sequences in
complete metric space (X, d). Since (X, d) is complete, there exist x, y ∈ X
such that

lim
n→∞

xn = lim
n→∞

F (xn−1, yn−1) = x

and
lim
n→∞

yn = lim
n→∞

F (yn−1, xn−1) = y.

Further, from the continuity of mapping F we have that F (x, y) = x and
F (y, x) = y. Thus, the proof is complete. �

We note that previous result is still valid for F not necessarily continuous.
We have the following result.

Theorem 3.2. Let (X, d,�) be a partially ordered metric space. Let F :
X ×X → X be a mapping having the monotone property. Assume that there
exist α, β, γ ≥ 0 with α + 2β + 2γ < 1 such that (3.1)-(3.4) satisfy for all
(x, y), (u, v) ∈ X × X with x � u and y � v. Finally assume that X has
following properties:

(1) If a non-decreasing sequence {xn} ∈ X converges to x ∈ X, then
xn � x for all n.

(2) If a non-decreasing sequence {yn} ∈ X converges to y ∈ X, then yn � y
for all n.

Then, F has a coupled fixed point (x, y) ∈ X ×X.
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Proof. Following the proof of Theorem 3.1, we only have to show that (x, y)
is a coupled fixed point of F . Suppose this is not the case, i.e., F (x̄, ȳ) 6= x̄ or
F (ȳ, x̄) 6= ȳ (e.g., let the first one of these holds). We have

d(F (x̄, ȳ), x̄) ≤ d(F (x̄, ȳ), xn+1) + d(xn+1, x̄)

= d(F (x̄, ȳ), F (xn, yn)) + d(xn+1, x̄).
(3.14)

Since the nondecreasing sequence {xn} converges to X and the nondecreasing
sequence {yn} converges to Y , by (i)-(ii), we have

xn � x̄ and yn � ȳ, ∀ n.
Now, from the contractive condition, we have

d(F (x̄, ȳ), F (xn, yn))

≤ α

2
[d(x̄, xn) + d(ȳ, yn)] + βN((x̄, ȳ), (xn, yn))

+
γ

2
[d(x̄, F (x̄, ȳ)) + d(xn, F (xn, yn)) + d(ȳ, F (x̄, ȳ)) + d(yn, F (yn, xn))]

≤ α

2
[d(x̄, xn) + d(ȳ, yn)] + β

d2(x̄, xn+1) + d2(xn, F (x̄, ȳ))

d(x̄, xn+1) + d(xn, F (x̄, ȳ))

+
γ

2
[d(x̄, F (x̄, ȳ)) + d(xn, xn+1) + d(ȳ, F (x̄, ȳ)) + d(yn, yn+1)].

We note that case d(x̄, xn+1)+d(xn, F (x̄, ȳ)) = 0 is impossible, since otherwise
the condition (3.3) would imply x̄ = F (x̄, ȳ), which is excluded. Then, from
(3.13), we get

d(F (x̄, ȳ), x̄) ≤ d(x̄, xn+1) +
α

2
[d(x̄, xn) + d((ȳ, yn)]

+ β
d2(x̄, xn+1) + d2(xn, F (x̄, ȳ))

d(x̄, xn+1) + d(xn, F (x̄, ȳ))

+
γ

2
[d(x̄, F (x̄, ȳ)) + d(xn, xn+1) + d(ȳ, F (x̄, ȳ)) + d(yn, yn+1)].

Taking limit as n→∞ (and again using that F (x̄, ȳ) 6= x̄), we have

d(F (x̄, ȳ) ≤ βd(x̄, F (x̄, ȳ)) +
γ

2
[d(x̄, F (x̄, ȳ), d(ȳ, F (ȳ, x̄))]. (3.15)

Now, if ȳ = F (ȳ, x̄), using that β + γ
2 < 1, it follows immediately that x̄ =

F (x̄, ȳ), a contradiction, if this is not the case, we similarly get

d(ȳ, F (ȳ, x̄)) ≤ βd(ȳ, F (ȳ, x̄)) +
γ

2
[d(x̄, F (x̄, ȳ)) + d(ȳ, F (ȳ, x̄))]. (3.16)

Adding (3.14) and (3.15), we have

d(x̄, F (x̄, ȳ) + d(ȳ, F (ȳ, x̄)) ≤ (β + γ)[d(x̄, F (x̄, ȳ), d(ȳ, F (ȳ, x̄))]

≤ (α+ 2β + 2γ)[d(x̄, F (x̄, ȳ), d(ȳ, F (ȳ, x̄))].
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Since 0 ≤ (α+2β+2γ) < 1, we obtain d(F (x̄, ȳ), x̄) = 0 and d(ȳ, F (ȳ, x̄)) = 0,
i.e., F (x̄, ȳ) = x̄ and F (x̄, ȳ) = ȳ, again a contradiction. This completes the
proof of the theorem. �

4. Uniqueness Theorem

Now we shall prove a uniqueness theorem for the coupled fixed point.

Theorem 4.1. Assume that for all (x, y), (x∗, y∗) ∈ X × X, there exists
(z1, z2) ∈ X × X that is comparable to (x, y) and (x∗, y∗). Adding above
hypotheses with Theorem 3.1, we obtain the uniqueness of the coupled fixed
point of F .

Proof. From Theorem 3.1 we know that there exists a coupled fixed point (x̄, ȳ)
of F , which is obtained as x = limn→∞ F

n(x0, y0) and ȳ = limn→∞ F
n(y0, x0).

Suppose that (x∗, y∗) is another coupled fixed point, that is, F (x∗, y∗) = x∗

and F (y∗, x∗) = y∗. Let us prove that

d+((x, y), (x∗, y∗)) = d(x̄, x∗) + d(ȳ, y∗) = 0. (4.1)

Considering two cases:

Case I. (x̄, ȳ) is comparable with (x∗, y∗) with respect to ordering in X ×X.
Let (x̄) � x∗ and (ȳ) � y∗. Then we can apply the contractive condition (2.1)
to obtain

d(x̄, x∗) = d(F (x̄, ȳ), F (x∗, y∗))

≤ α

2
[d(x̄, x∗) + d(ȳ, y∗)] + βd(x̄, x∗)

and

d(ȳ, y∗) = d(F (ȳ, x̄), F (y∗, x∗)) = d(F (y∗, x∗), F (ȳ, x̄))

≤ α

2
[d(x̄, x∗) + d(ȳ, y∗)] + βd(ȳ, y∗).

By adding, we get

d(x̄, x∗) + d(ȳ, y∗) ≤ (α+ β)[d(x̄, x∗) + d(ȳ, y∗)],

that is,

d+((x, y), (x∗, y∗)) ≤ (α+ β)d+((x, y), (x∗, y∗)).

Since 0 ≤ α+ β < 1, (4.1) holds.

Case II. (x̄, ȳ) is not comparable with (x∗, y∗). In this case, there exists
(z1, z2) ∈ X ×X that is comparable both to (x̄, ȳ) and (x∗, y∗). Then for all
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n ∈ N , (Fn(z1, z2), F
n(z2, z1)) is comparable both to (Fn(x̄, ȳ), Fn(ȳ, x̄)) =

(x̄, ȳ) and (Fn(x∗, y∗), Fn(y∗, x∗)) = (x∗, y∗). We have

d(x̄, x∗) + d(ȳ, y∗) ≤ d(Fn(x̄, ȳ), Fn(x∗, y∗)) + d(Fn(ȳ, x̄), Fn(y∗, x∗))

≤ d(Fn(x̄, ȳ), Fn(z1, z2)) + d(Fn(z1, z2), F
n(x∗, y∗))

+ d(Fn(ȳ, x̄), Fn(z2, z1)) + d(Fn(z2, z1), F
n(y∗, x∗))

≤ (αn + βn)[d(x̄, z1) + d(ȳ, z2) + d(x∗, z1) + d(y∗, z2)].

That is

d+((x, y), (x∗, y∗)) = (αn + βn)[d+((x, y), (z1, z2)) + d+((z1, z2), (x
∗, y∗))].

Since 0 < α, β < 1, (4.1) holds. We deduce that in all cases (4.1) holds. This
implies that (x̄, ȳ) = (x∗, y∗) and the uniqueness of the coupled fixed point of
F is proved. �

Assuming that every pair of elements of X have either an upper bound or
a lower bound in X, one can in fact show that even the components of the
coupled fixed points are equal. The following theorem establishes this fact.

Theorem 4.2. In addition to the hypotheses of Theorem 3.1 (resp. Theorem
3.2), suppose that x0, y0 in X are comparable. Then x̄ = ȳ.

Proof. It is clear that (y, x) is a coupled fixed point of F if and only if (x, y) is
coupled fixed point. Therefore, by previous Theorem we obtain that (x, y) =
(y, x), that is x = y. �

Example 4.3. Let X = R, d(x, y) = |x − y|, x � y if and only if x ≤ y and

a mapping F : X × X → X, defined by F (x, y) = 2x+3y
15 with the standard

metric and ordered by the relation �. Suppose that x � u and y � v.
Let α, β, γ be nonnegative numbers satisfying α, β, γ ≥ 0 with α+2β+2γ <

1, and denote by L and R, respectively, the left-hand and right-hand side
of contraction condition (3.1). It is easy to check that all the condition of
Theorem 3.1 and 3.2 are satisfied for α, β, γ ≥ 0 with α+2β+2γ < 1 and that
(0, 0) is a unique coupled fixed point of F . We note that function F has not
mixed monotone property, but F is a monotone, that is, F (x, y) is monotone
nondecreasing in x and y.

Consider the example

L ≤ 2x+ 3y

15
≤ α

2
[d(x, u) + d(y, v)] ≤ R.
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For example, if (x, y) = (1, 2), (u, v) = (2, 3) for all (x, y), (u, v) ∈ X ×X and
x � u, y � v then,

L = d(F (x, y), F (u, v)) = d

(
2x+ 3y

15
,
2u+ 3v

15

)
= d

(
8

15
,
13

15

)
=

1

3
;

R =
α

2
[d(x, u) + d(y, v)] + βN((x, y), (u, v)

+
γ

2
[d(x, F (x, y)) + d(u, F (u, v)) + d(y, F (y, x)) + (v, F (v, u))].

Suppose α = 1
15 , β = 0, γ = 15

36 , then α, β, γ ≥ 0 with α + 2β + 2γ < 1, we

get R = 9
10 . This implies that L ≤ R and the given contraction condition is

satisfied.
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