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Abstract. In this paper, we study the existence and local attractivity of solutions for a

nonlinear functional integral equation by using measures of noncompactness and Schauder

fixed point theorem. The equation is considered in the Banach space consisting of real

functions which are continuous and bounded on R+.

1. Introduction

Nonlinear functional integral equations have wide applications in solving
problems such as in vehicular traffic, biology, optimal control and economic,
etc., see [2, 6, 8, 9].

Let R denote a real line and R+ the set of nonnegative real numbers. Hu and
Yan [1] studied the existence of solutions for the following nonlinear integral
equations

x(t) = f

(
t, x(t),

∫ t

0
u(t, s, x(s))ds

)
, t ∈ R+,

and

x(t) = g(t, x(t)) + x(t)

∫ t

0
u(t, s, x(s))ds, t ∈ R+.
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Maleknejad [3] considered the existence of solutions of the nonlinear integral
equation

x(t) = g(t, x(t)) + f

(
t,

∫ t

0
u(t, s, x(s))ds, x(γ(t))

)
, t ∈ [0, a].

Motivated by the above work, the aim of this paper is to discuss the ex-
istence of solutions for the following generalized nonlinear functional integral
equation

x(t) = g(t, x(α(t))) + f

(
t,

∫ η(t)

0
u(t, s, x(β(s)))ds, x(γ(t))

)
, t ∈ R+. (1.1)

where g:R+×R→R,f :R+×R×R→R,u:R+×R+×R →R, α, β, γ, η :R+→R+.
Other special cases of equation (1.1) have been studied in [2, 6, 7, 8].

By using the measures of noncompactness and Schauder fixed point theo-
rem, we obtain the existence of solutions of equation (1.1) which are uniformly
locally attractive.

The result obtained in this paper generalizes the results obtained in [1, 2,
3, 7, 8].

2. Preliminaries

Suppose E is a real Banach space with the zero element θ. We write B(x, r)
to denote the closed ball centered at x with radius r and Br to denote the
ball B(θ, r). If X is a subset of E, we write X̄ and ConvX in order to denote
the closure and convex closure of X, respectively. Moreover, the family of all
nonempty bounded subsets of E is denoted by ME and its subfamily consisting
of all relatively compact sets is denoted by NE .

Definition 2.1. ([4]) A mapping µ :ME→R+ is said to be a measure of
noncompactness in E if it satisfies the following conditions:
(1) The family kerµ={X∈ME : µ(X) = 0} is nonempty and kerµ⊂NE .
(2) X⊂Y ⇒µ(X) ≤ µ(Y ).
(3) µ(X̄) = µ(X).
(4) µ(ConvX) = µ(X).
(5) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1].
(6) If {Xn} is a sequence of closed sets from ME such that Xn+1⊂Xn (n=
1, 2, · · ·) and if lim

n→∞
µ(Xn)=0, then the intersection X∞=∩∞n=1Xn is nonempty.

Remark 2.2. The family kerµ described in (1) of Definition 2.1 is said to be
the kernel of the measure of noncompactness µ. The intersection X∞ in (6)
is a member of kerµ. In fact, since µ(X∞) ≤ µ(Xn) for any n then we infer
that µ(X∞) = 0.
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Other facts concerning measures of noncompactness and their properties
may be found in [4].

Theorem 2.3. ([5], Schauder fixed point theorem) If S is a compact convex
subset of Banach space E and H :S→ S is a continuous mapping, then H has
a fixed point in the set S.

In what follows, we will work in the Banach space BC(R+) consisting of all
real functions which are continuous and bounded on R+ and furnished with
the standard norm ‖x‖ = sup{|x(t)| : t ∈ R+}.

Further, we recall the construction of the measure of noncompactness which
was introduced in [4]. Let X be a nonempty bounded subset of BC(R+) and
T be a positive number. For x∈X and ε≥0 denote by wT (x, ε) the modulus
of continuity of the function x on the interval [0, T ], i.e.
wT (x, ε) = sup{|x(t)− x(s)| : t, s ∈ [0, T ], |t− s| ≤ ε}.

Further, let us put
wT(X, ε)=sup{wT (x, ε):x∈X}, wT0 (X)=lim

ε→0
wT (X, ε), w0(X)= lim

T→∞
wT0 (X).

If t∈R+ is a fixed number, let us denote
X(t) ={x(t) : x ∈X} and diamX(t) = sup{|x(t)− y(t)| : x, y ∈ X}.

Finally, consider the function µ defined on the family MBC(R+) by

µ(X) = w0(X) + lim sup
t→∞

diamX(t). (2.1)

It can be shown that the function µ is a measure of noncompactness in the
space BC(R+) [4] . The kernel kerµ of this measure consists of nonempty and
bounded sets X such that functions from X are locally equicontinuous on R+

and the thickness of the bundle formed by functions belonging to X tends to
zero at infinity. This property will permit us to characterize solutions of the
integral equation (1.1) in next section.

Now, let Ω be a nonempty subset of the space BC(R+). LetQ :Ω→BC(R+)
be an operator and consider the following operator equation

x(t) = (Qx)(t), t ∈ R+. (2.2)

Definition 2.4. ([6, 8]) We say that the solutions of equation (2.2) are locally
attractive if there exists a closed ball B(x0, r) in the space BC(R+) for some
x0∈BC(R+) such that for arbitrary solutions x(t) and y(t) of equation (2.2)
belonging to B(x0, r)

⋂
Ω, we have that

lim
t→∞

(x(t)− y(t)) = 0. (2.3)

In the case, when the limit (2.3) is uniform with respect to the set B(x0, r)
⋂

Ω,
i.e., when for each ε > 0 there existsT >0 such that

|x(t)− y(t)| ≤ ε
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for all x(t), y(t) ∈ B(x0, r)
⋂

Ω being solutions of equation (2.2) and for t ≥ T ,
we say that solutions of (2.2) are uniformly locally attractive.

3. Main result

In this section, the functional integral equation (1.1) will be investigated in
the Banach space BC(R+) described previously.

We will consider equation (1.1) under the following hypotheses.

(H1) The function g :R+×R→R is continuous and there exists a constant
P ≥ 0 such that

|g(t, x)−g(t, y)| ≤ P |x− y|

for all t ∈R+ and x, y ∈R.
(H2) f :R+×R×R→ R is a continuous function and there exist nonnegative

constants Mi(i = 1, 2) such that

|f(t, y1, x1)− f(t, y2, x2)| ≤M1|y1 − y2|+M2|x1 − x2|

for all t ∈R+ and xi, yi ∈R(i = 1, 2).
(H3) There exist nonnegative constants a and b such that

|f(t, 0, x)| ≤ a+ b|x|

for all t ∈R+ and x∈R.
(H4) The function u :R+×R+×R→R is continuous. There exist a continuous

function v : R+×R+→ R+ and a continuous nondecreasing function
ψ :R+→R+ such that

|u(t, s, x)| ≤ v(t, s)ψ(|x|)

for all t, s ∈R+ and x ∈R. Moreover, we assume that

lim
t→∞

∫ η(t)

0
v(t, s)ds = 0.

(H5) The functions α, β, γ, η : R+→R+ are continuous.
(H6) There exists a positive solution r0 of the inequality

(P + b)r +M1 ·Q · ψ(r) +G0 + a ≤ r

such that

P + b < 1.

(H7) P +M2 < 1.
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Remark 3.1. We denote G0 by

G0= sup{|g(t, 0)| : t ∈R+}. (3.1)

Obviously, G0 < ∞ in view of hypothesis (H1). Note that the function q :
R+→R+ defined by

q(t) =

∫ η(t)

0
v(t, s)ds

is continuous on R+. This together with hypothesis (H4) imply that Q=
sup{q(t) : t∈R+} is finite.

Theorem 3.2. Under the hypotheses (H1)-(H7), equation (1.1) has at least
one solution x=x(t) which belongs to the space BC(R+). Moreover, solutions
of equation (1.1) are uniformly locally attractive.

Proof. Define the operator F on the space BC(R+) by

(Fx)(t)

= g(t, x(α(t))) + f

(
t,

∫ η(t)

0
u(t, s, x(β(s)))ds, x(γ(t))

)
, t ∈ R+.

(3.2)

First we show that F is continuous. As all the functions on the right hand
side of equation (3.2) are continuous, the function Fx is continuous on R+ for
each x∈BC(R+). Moreover, in view of hypotheses (H1)-(H5) and Remark 3.1,
for fixed t ∈R+, we get

|(Fx)| ≤ |g(t, x(α(t)))|+

∣∣∣∣∣f
(
t,

∫ η(t)

0
u(t, s, x(β(s)))ds, x(γ(t)

)∣∣∣∣∣
≤|g(t, x(α(t)))− g(t, 0)|+ |g(t, 0)|

+

∣∣∣∣∣f
(
t,

∫ η(t)

0
u(t, s, x(β(s)))ds, x(γ(t))

)
− f(t, 0, x(γ(t)))

∣∣∣∣∣+ |f(t, 0, x(γ(t)))|

≤P |x(α(t))|+G0 +M1

∫ η(t)

0
v(t, s)ψ(|x(β(s))|)ds+ a+ b|x(γ(t))|

≤(P + b)‖x‖+M1 ·Q · ψ(‖x‖) +G0 + a.

This shows Fx is bounded on R+. Then Fx∈BC(R+) which means that the
operator F transforms the space BC(R+) into itself.

On the other hand, from the above estimate and hypothesis (H6), we deduce
that there exists a number r0>0 such that the operator F transforms the ball
Br0 into itself.

In the following, let us take a nonempty subset X⊂Br0 . Then, for arbitrarily
x, y∈X and a fixed t∈R+, in view of hypotheses (H1), (H2), (H4) and (H5)
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we obtain

|(Fx)(t)− (Fy)(t)|
≤ P |x(α(t))− y(α(t))|+M2|x(γ(t))− y(γ(t))|

+M1

∣∣∣∣∣
∫ η(t)

0
u(t, s, x(β(s)))ds−

∫ η(t)

0
u(t, s, y(β(s)))ds

∣∣∣∣∣
≤ PdiamX(α(t))+M2diamX(γ(t))+2M1ψ(r0)

∫ η(t)

0
v(t, s)ds.

(3.3)

From estimate (3.3), we derive

diam(FX)(t) ≤ PdiamX(t) +M2diamX(t) + 2M1ψ(r0)

∫ η(t)

0
v(t, s)ds.

Then, by hypothesis (H4) we get

lim sup
t→∞

diam(FX)(t) ≤ (P +M2) lim sup
t→∞

diamX(t). (3.4)

Further, let us take arbitrary numbers T >0 and ε>0. Next, fix a function
x ∈ X and t1, t2 ∈ [0, T ] such that |t1 − t2| ≤ ε. Without loss of generality, we
can assume that t1 < t2. Then, taking into account our hypotheses (H1),(H2),
(H4) and (H5)we obtain

|(Fx)(t2)− (Fx)(t1)|
≤|g(t2, x(α(t2)))− g(t2, x(α(t1)))|+ |g(t2, x(α(t1)))− g(t1, x(α(t1)))|

+

∣∣∣∣∣f
(
t2,

∫ η(t2)

0
u(t2, s, x(β(s)))ds, x(γ(t2))

)
−f

(
t2,

∫ η(t1)

0
u(t1, s, x(β(s)))ds, x(γ(t2))

)∣∣∣∣∣
+

∣∣∣∣∣f
(
t2,

∫ η(t1)

0
u(t1, s, x(β(s)))ds, x(γ(t2))

)
−f

(
t1,

∫ η(t1)

0
u(t1, s, x(β(s)))ds, x(γ(t2))

)∣∣∣∣∣
+

∣∣∣∣∣f
(
t1,

∫ η(t1)

0
u(t1, s, x(β(s)))ds, x(γ(t2))

)
−f

(
t1,

∫ η(t1)

0
u(t1, s, x(β(s)))ds, x(γ(t1))

)∣∣∣∣∣
≤P |x(α(t2))−x(α(t1))|+wT(g, ε)+M1

∣∣∣∣∣
∫ η(t2)

0
u(t2, s, x(β(s)))ds−

∫ η(t1)

0
u(t1, s, x(β(s)))ds

∣∣∣∣∣
+ wT (f, ε) +M2|x(γ(t2))− x(γ(t1))|

≤P |x(α(t2))− x(α(t1))|+ wT (g, ε) +M1w
T (u, ε)η(T ) +M1ψ(r0)w

T (η, ε)VT

+ wT (f, ε) +M2|x(γ(t2))− x(γ(t1))|,
(3.5)

where
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wT (g, ε) = sup{|g(t2, x)− g(t1, x)| : t1, t2∈ [0, T ], |t1 − t2| ≤ ε, x∈ [−r0, r0]},

wT (u, ε)=sup{|u(t2, s, x)− u(t1, s, x)| : t1, t2 ∈ [0, T ], s ∈ [0, η(T )],

|t1 − t2| ≤ ε, x∈ [−r0, r0]},

η(T ) = sup{η(t) : t∈ [0, T ]},

wT (η, ε) = sup{|η(t2)− η(t1)| : t1, t2 ∈ [0, T ], |t1 − t2| ≤ ε},

VT = sup{v(t, s) : t∈ [0, T ], s∈ [0, η(T )]},

wT(f, ε)=sup{|f(t2, y, x)−f(t1, y, x)| : t1, t2 ∈ [0, T ], y∈ [−Qψ(r0), Qψ(r0)],

|t1 − t2| ≤ ε, x ∈ [−r0, r0]}.

Since the function g(t, x) is uniformly continuous on the set [0, T ]×[−r0, r0],
the function u(t, s, x) is uniformly continuous on the set [0, T ] × [0, η(T )] ×
[−r0, r0], the function η(t) is uniformly continuous on the set [0, T ] and the
function f(t, y, x) is uniformly continuous on the set [0, T ]×[−Qψ(r0), Qψ(r0)]
× [−r0, r0], we have wT(g, ε)→0, wT(u, ε)→0, wT(η, ε)→0 and wT(f, ε)→0 as
ε→0. Then, by estimate (3.5), we derive the following inequality

wT0 (FX) ≤ (P +M2)w
T
0 (X).

This yields

w0(FX) ≤ (P +M2)w0(X). (3.6)

Now, using formula (2.1), linking the estimates (3.4) and (3.6) we get

µ(FX) ≤ (P +M2)µ(X). (3.7)

In the following, let us consider the sequence {Bn
r0}, whereB1

r0=ConvF (Br0),

B2
r0 =ConvF (B1

r0), · · · . Then Bn+1
r0 ⊂B

n
r0⊂Br0 for all n = 1, 2, · · · . Moreover,

all sets of this sequence are nonempty, bounded, convex and closed. Apart
from this, in view of (3.7) we get

µ(Bn
r0) ≤ (P +M2)

nµ(Br0)

for n = 1, 2, · · · . Then by hypothesis (H7), we deduce that

lim
n→∞

µ(Bn
r0) = 0.
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Hence, by Definition 2.1, we infer that the set Y = ∩∞n=1B
n
r0 is nonempty,

bounded, convex and closed. Moreover, the set Y is a member of the ker-
nel kerµ (Remark 2.2) and relatively compact. In particular, we have that

lim sup
t→∞

diamY (t)= lim
t→∞

diamY (t)=0. (3.8)

Let us also observe that the operator F maps the set Y into itself.
Next, we show that F is continuous on the set Y .
Let us fix a number ε > 0 and take arbitrary functions x, y ∈ Y such that

‖x−y‖ ≤ ε. Taking into account the fact that FY ⊂Y and using the estimate
(3.8), we can infer that there exists T >0 such that for arbitrary t≥T we have
that

|(Fx)(t)− (Fy)(t)| ≤ ε. (3.9)

Further, take t∈ [0, T ]. Then, keeping in mind our hypotheses (H1), (H2),
(H5) and (H7), we obtain

|(Fx)(t)− (Fy)(t)|
≤ P |x(α(t))− y(α(t))|+M2|x(γ(t))− y(γ(t))|

+M1

∣∣∣∣∣
∫ η(t)

0
u(t, s, x(β(s)))ds−

∫ η(t)

0
u(t, s, y(β(s)))ds

∣∣∣∣∣
≤ (P +M2)ε+M1

∫ η(T )

0
wu(·, ·, ε)ds

< ε+M1η(T )wu(·, ·, ε),

(3.10)

where, η(T ) was introduced earlier and wu(·, ·, ε)=sup{|u(t, s, x)− u(t, s, y)| :
t∈[0, T ], s∈[0, η(T )], |x|, |y|≤r0 and ‖x−y‖≤ε}. Then the estimates (3.9) and
(3.10) enable us to conclude that the operator F is continuous on the set Y .

Finally, taking into account all the facts of the set Y and the operator
F : Y→Y established above, by Theorem 2.3 we infer that the operator F
has at least one fixed point x in the set Y . Obviously, the function x = x(t)
is a solution of equation (1.1). Moreover, keeping in mind the fact that Y ∈
kerµ, the characterization of sets belonging to kerµ (see descriptions made
after (2.1)) and Definition 2.4, we deduce that solutions of equation (1.1) are
uniformly locally attractive. This assertion is the consequence of the fact that
if x and y are solutions of equation (1.1) belonging to Br0 , then x, y∈Y . The
proof is now completed. �

4. An example

In this section, we present an example to demonstrate the applications of
our main result obtained in Section 3.
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Example 4.1. Consider the following functional integral equation

x(t) =
t+ t sin(x( t2))

2 + 3t2
+

1

3 + t

∫ √
t

0
sin(

s4

3 + t3
) arctan(1 + x2(

s

4
))ds

+
arctan t

4
sin(x(

t

4
)),

(4.1)

where t ∈ R+.

Notice that the above equation is a special case of equation (1.1), if we put

α(t) =
t

2
, β(t) =

t

4
, γ(t) =

t

4
, η(t) =

√
t.

g(t, x) =
t+ t sinx

2 + 3t2
, f(t, y, x)=

1

3 + t
y +

arctan t

4
sinx. (4.2)

In what follows, we show that the hypotheses of Theorem 3.2 are satisfied.

First, it easy to check that |g(t, x) − g(t, y)| ≤ P |x − y| with P =
√
6

12 , then
hypothesis (H1) is satisfied.

Next, |f(t, y1, x1)−f(t, y2, x2)| ≤M1|y1−y2|+M2|x1−x2|, with M1= 1
3 and

M2 = π
8 . Moreover, |f(t, 0, x)| ≤ π

8 |x|, then a= 0 and b= π
8 , the hypotheses

(H2) and (H3) are satisfied.

Further, u(t, s, x) ≤ v(t, s)ψ(|x|) with v(t, s) = s4

3+t3
and ψ(|x|) = 1 + x2.

Apart from this,
∫ η(t)
0 v(t, s)ds=1

5
t2
√
t

3+t3
. This implies lim

t→∞

∫ η(t)

0
v(t, s)ds=0. Then

the hypothesis (H4) holds.

On the other hand, Q= sup{q(t) : t ≥ 0}= 15
5
6

90 .

Obviously the functions α(t), β(t), γ(t) and η(t) satisfy hypothesis (H5).

Next, by (3.1) and (4.2), G0 =
√
6

12 , then in view of the above obtained
estimates of P,M1, a, b and Q, the inequality from hypothesis (H6) has the
form

(

√
6

12
+
π

8
)r +

1

3
· 15

5
6

90
(1 + r2) +

√
6

12
≤ r. (4.3)

It is easy to check that r0 = 1 is a solution of inequality (4.3). Obviously, the
second inequality of hypothesis (H6) holds in our situation. Then hypothesis
(H6) is satisfied.

Finally, P +M2 < 1, then hypothesis (H7) holds. Thus by Theorem 3.2,
equation (4.1) has at least one solution x(t) in BC(R+). Moreover, solutions
of this equation are uniformly locally attractive.
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