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Abstract. Xiang, Xia and Chen in 2013 [12] introduced an abstract convexity structure via

an upper semicontinuous multi-valued map and established some generalized versions of the

KKM lemma. By employing these general KKM lemmas, they derived some generalizations

of minimax inequalities. Our aim in the present article is, as in our previous one [4], to show

that most results in [12] are either consequences of known ones or can be stated in more

general forms in the frame of abstract convex spaces in the sense of Park.

1. Introduction

Recently all of the known convexity spaces appeared in the KKM theory are
unified to the class of abstract convex spaces in 2006 by the present author;
see [5] with some corrections in [9].

Recall that, in 2007, Xiang and Yang [13] and Xiang and Xia [11] established
some relationships among the abstract convexity, the selection property, and
the fixed point property. They showed that if a convexity structure C defined
on a topological space has the selection property [resp. the weak selection
property] then C satisfies the H-condition [resp. H0-condition]. Moreover,
they showed that, in an l.c. compact metric space, the selection property
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implies the fixed point property. Note that their terminology has their own
meaning.

Moreover, in our previous work [4], we showed that all results in [11,13] are
either consequences of known ones or can be stated in more general forms in
the frame of G-convex spaces. Furthermore, Xiang, Xia and Chen in 2013 [12]
introduced an abstract convex structure via an upper semicontinuous multi-
valued map and established some generalized versions of the KKM lemma. By
employing these general KKM lemmas, they claimed to obtain some general-
izations of minimax inequalities, which contain several existing ones as special
cases.

Our aim in the present article is, as in our previous one [4], to show that
most results in [12] are either consequences of known ones or can be stated
in more general forms in the frame of abstract convex spaces in the sense of
Park.

2. Abstract convex spaces

A multimap T : X ( Y between topological spaces X, Y is said to be
lower semicontinuous if T−(B) := {x ∈ X : T (x) ∩ B 6= ∅} is open for each
open B ⊂ Y , and upper semicontinuous if T+(B) := {x ∈ X : T (x) ⊂ B} is
open for each open B ⊂ Y .

The following is the original Knaster-Kuratowski-Mazurkiewicz theorem in
1929 and its open valued version:

Theorem 2.1. (KKM) Let Fi (0 ≤ i ≤ n) be n+ 1 closed [resp. open] subsets
of an n-simplex v0v1 · · · vn. If the inclusion relation

vi0vi1 · · · vik ⊂ Fi0 ∪ Fi1 ∪ · · · ∪ Fik
holds for all faces vi0vi1 · · · vik (0 ≤ k ≤ n, 0 ≤ i0 < i1 < · · · < ik ≤ n), then⋂n
i=0 Fi 6= ∅.

Let 〈D〉 denote the set of all nonempty finite subsets of a set D. Recall the
following in [5] with some corrections in [9]:

Definition 2.1. An abstract convex space (E,D; Γ) consists of a topological
space E, a nonempty set D, and a multimap Γ : 〈D〉 ( E with nonempty
values ΓA := Γ(A) for A ∈ 〈D〉, such that the Γ-convex hull of any D′ ⊂ D is
denoted and defined by

coΓD
′ :=

⋃
{ΓA | A ∈ 〈D′〉} ⊂ E.

A subset X of E is called a Γ-convex subset of (E,D; Γ) relative to D′ if for
any N ∈ 〈D′〉, we have ΓN ⊂ X, that is, coΓD

′ ⊂ X.
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In case E = D, let (E; Γ) := (E,E; Γ).

Remark 2.1. Recently the present author noticed that an abstract convex
space was named a Γ-convex space by Zafarani [14] more early in 2004.

Definition 2.2. Let (E,D; Γ) be an abstract convex space and Z a topological
space. For a multimap F : E ( Z with nonempty values, if a multimap
G : D( Z satisfies

F (ΓA) ⊂ G(A) :=
⋃
y∈A

G(y) for all A ∈ 〈D〉,

then G is called a KKM map with respect to F . A KKM map G : D( E is
a KKM map with respect to the identity map 1E .

A multimap F : E ( Z is called a KC-map [resp. a KO-map] if, for any
closed-valued [resp. open-valued] KKM map G : D ( Z with respect to F ,
the family {G(y)}y∈D has the finite intersection property. In this case, we
denote F ∈ KC(E,Z) [resp. F ∈ KO(E,Z)].

Definition 2.3. The partial KKM principle for an abstract convex space
(E,D; Γ) is the statement 1E ∈ KC(E,E); that is, for any closed-valued KKM
map G : D ( E, the family {G(y)}y∈D has the finite intersection property.
The KKM principle is the statement 1E ∈ KC(E,E) ∩ KO(E,E); that is, the
same property also holds for any open-valued KKM map.

An abstract convex space is called a (partial) KKM space if it satisfies the
(partial) KKM principle, resp.

In our recent works [1-3], we studied elements or foundations of the KKM
theory on abstract convex spaces and noticed there that many important re-
sults therein are related to the partial KKM principle.

Example 2.1. We gave known examples of (partial) KKM spaces in [5] and
the references therein.

Definition 2.4. A φA-space (X,D; {φA}A∈〈D〉) (or simply (X,D; {φA})) con-
sists of a topological space X, a nonempty set D, and a family of continuous
functions φA : ∆n → X (that is, singular n-simplices) for A ∈ 〈D〉 with
|A| = n+ 1. By putting ΓA := φA(∆n) for each A ∈ 〈D〉, the triple (X,D; Γ)
becomes an abstract convex space.

Definition 2.5. For a φA-space (X,D; {φA}), any multimap G : D ( X
satisfying

φA(∆J) ⊂ G(J) for each A ∈ 〈D〉 and J ∈ 〈A〉
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is called a KKM map.

The following shows that every φA-space is a KKM space:

Lemma 2.1. Let (X,D; Γ) be a φA-space and G : D ( X a multimap with
nonempty closed [resp. open] values. Suppose that G is a KKM map. Then
{G(a)}a∈D has the finite intersection property.

Proof. Let A = {a0, a1, . . . , an} ∈ 〈D〉. Then there exists a continuous func-
tion φA : ∆n → ΓA such that, for any 0 ≤ i0 < i1 < · · · < ik ≤ n, we
have

φA(co{ei0 , ei1 , . . . , eik}) ⊂ Γ({ai0 , ai1 , . . . , aik}) ∩ φA(∆n).

Since G is a KKM map, it follows that

co{ei0 , ei1 , . . . , eik} ⊂ φ
−1
A (Γ({ai0 , ai1 , . . . , aik}) ∩ φA(∆n))

⊂
k⋃
j=0

φ−1
A (G(aij ) ∩ φA(∆n)).

Since G(aij ) ∩ φA(∆n) is closed [resp. open] in the compact subset φA(∆n)

of ΓA, φ−1
A (G(aij ) ∩ φA(∆n)) is closed [resp. open] in ∆n. Note that ei (

φ−1
A (G(ai)∩φA(∆n)) is a KKM map on {e0, e1, . . . , en}. Hence, by the original

KKM theorem, we have

n⋂
i=0

φ−1
A (G(ai) ∩ φA(∆n)) 6= ∅,

which readily implies
⋂n
i=0G(ai) 6= ∅. This completes the proof. �

The following diagram for triples (E,D; Γ) is well-known:

Simplex =⇒ Convex subset of a t.v.s. =⇒ Lassonde type convex space
=⇒ H-space =⇒ G-convex space =⇒ φA-space =⇒ KKM space
=⇒ Partial KKM space =⇒ Abstract convex space.

Consider the following well-known related four conditions for a map G :
D( Z with a topological space Z:

(a)
⋂
y∈DG(y) 6= ∅ implies

⋂
y∈DG(y) 6= ∅.

(b)
⋂
y∈DG(y) =

⋂
y∈DG(y) (G is intersectionally closed-valued ).

(c)
⋂
y∈DG(y) =

⋂
y∈DG(y) (G is transfer closed-valued ).

(d) G is closed-valued.

Note that (d)=⇒(c)=⇒(b)=⇒(a) due to Luc et al.
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From the partial KKM principle we have a whole intersection property of
the Fan type as follows:

Theorem 2.2. ([8]) Let (E,D; Γ) be an abstract convex space, Z a topological
space, F ∈ KC(E,D,Z), and G : D( Z a map such that

(1) G is a KKM map w.r.t. F ; and
(2) there exists a nonempty compact subset K of Z such that either

(i)
⋂
{G(y) : y ∈M} ⊂ K for some M ∈ 〈D〉; or

(ii) for each N ∈ 〈D〉, there exists a Γ-convex subset LN of E relative
to some D′ ⊂ D such that N ⊂ D′, F (LN ) is compact, and

F (LN ) ∩
⋂
y∈D′

G(y) ⊂ K.

Then we have

F (E) ∩K ∩
⋂
y∈D

G(y) 6= ∅.

Furthermore,

(α) if G is transfer closed-valued, then F (E) ∩K ∩
⋂
{G(y) | y ∈ D} 6= ∅;

and
(β) if G is intersectionally closed-valued, then

⋂
{G(y) | y ∈ D} 6= ∅.

Later we adopt a simplified case of Theorem 2.2.

3. Definitions in [12]

Throughout [12], it is assumed that Y is nonempty. In this section, we
introduce the definitions given in [12]:

Definition 3.1. A pair (Y, C), where C is a family of subsets of Y , called a
convex structure if

(1) ∅ and Y belong to C;
(2) C is closed for arbitrary intersections;

⋂
A∈D A ∈ C for each family of

subsets D ⊂ C.
Then the pair (Y, C) is called an abstract convexity space.

The convex hull coC is defined as

coC(A) =
⋂
{D ∈ C : A ⊂ D}, ∀ A ⊂ Y.

A subset C of Y is said to be convex if C ∈ C. It is clear that C is convex if
and only if coC(C) = C.
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Definition 3.2. Let (Y, C) be an abstract convexity space, let X be a sub-
set of Y , and let F : X ( X be a multimap. F is said to be weakly
convex-valued if for each x ∈ X and any finite subset {y0, y1, . . . , yn} ⊂ F (x),
coC{y0, y1, . . . , yn} ⊂ F (x), whenever x ∈ coC{y0, y1, . . . , yn}.

Remark 3.1. It is clear that F is convex-valued, then F is weakly convex-
valued.

Let (Y, C) be an abstract convexity space and X be a subset of Y .

(i) F : X ( Y is said to be a KKM mapping if for each A ∈ 〈X〉, F
satisfies

coC(A) ⊂
⋃
x∈A

F (x).

(ii) F : X ( Y is said to be a Fan-Browder mapping if F is convex-valued
and has relatively open preimages in X (i.e., F (x) is convex for each
x ∈ X and F−(y) is open in X for each y ∈ X).

(iii) F : X ( Y is said to be a weak Fan-Browder mapping if F is weakly
convex-valued and has relatively open preimages in X.

Let (Y, C) be an abstract convexity space, and let X be a subset of Y . X is
said to be of KKM property (briefly KKMP) if every KKM mapping F : X (
Y with closed values has a finite intersection property (i.e.,

⋂
x∈A F (x) 6= ∅

for each A ∈ 〈X〉).
X is said to be of Fan-Browder fixed point property (briefly FBFP) if every

Fan-Browder mapping F : X ( X with nonempty values has a fixed point.
X is said to be of a strong Fan-Browder fixed point property (briefly SF-

BFP) if every weak Fan-Browder mapping F : X ( X with nonempty values
has a fixed point.

Comments.

(1) Y should be better to assume a topological space. See the definitions
of the KKM mapping and the Fan-Browder mapping.

(2) A convexity space (Y, C) is a particular form of our abstract convex
space (E,D; Γ) with Y = E = D and ΓA:=coCA =

⋂
{B ∈ C : A ⊂ B}

for A ∈ 〈Y 〉. Then (Y, C) becomes our abstract convex space (Y ; Γ);
see [4].

(3) “X is said to be of KKM property (briefly KKMP)” is not adequate.
In this case (Y,X; Γ), where ΓA:=coCA for A ∈ 〈X〉, is a partial KKM
space in our sense; see [4].

(4) The concepts of weakly convex-valued mappings, weak Fan-Browder
mapping, and strongly Fan-Browder fixed point property (briefly SF-
BFP) are first introduced in [12] without giving any proper examples.
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(5) We define the convex hull coC as

coC(A) =
⋃
{coCN : N ∈ 〈A〉} ⊂ Y, ∀A ⊂ X.

4. KKM property and Fan-Browder fixed point property in [12]

In this section, we list several results in [12] which are simple consequences
of known ones.

For an abstract convex space (E,D; Γ), let us consider the following state-
ments in [5]:

(0) The KKM principle. For any closed-valued [resp. open-valued] KKM
map G : D( E, the family {G(z)}z∈D has the finite intersection property.

(I) The Fan matching property. Let S : D( E be a map satisfying

(1.1) S(z) is open [resp. closed] for each z ∈ D; and
(1.2) E =

⋃
z∈M S(z) for some M ∈ 〈D〉.

Then there exists an N ∈ 〈M〉 such that

ΓN ∩
⋂
z∈N

S(z) 6= ∅.

(V) The Fan-Browder fixed point property. Let S : E ( D, T : E ( E
be maps satisfying

(5.1) for each x ∈ E, coΓS(x) ⊂ T (x);
(5.2) S−(z) is open [resp. closed] for each z ∈ D; and
(5.3) E =

⋃
z∈M S−(z) for some M ∈ 〈D〉.

Then T has a fixed point x0 ∈ E; that is, x0 ∈ T (x0).

Theorem 4.1. ([5], Characterizations of the KKM spaces) For an abstract
convex space (E,D; Γ), the statements (0), (I) and (V) are mutually equivalent.

Similarly, the following enlarges [12, Theorem 3.1] and [12, Corollary 3.2]:

Theorem 4.2. Let (Y, C) be an abstract convexity space. For a compact subset
X of (Y, C), the following properties are equivalent:

(i) KKMP,
(ii) SFBFP,

(iii) FBFP.

Proof. (i) =⇒ (ii). See [12].
(ii) =⇒ (iii). Clear.
(iii) =⇒ (i). We follow our method in [5]. Let G : X ( X be a KKM map
with closed values as in [12]. Suppose that {G(x)}x∈X does not have the finite
intersection property, that is, there exists an M ∈ 〈X〉 such that

⋂
x∈M G(x) =
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∅. Define two maps S, T : X ( X by S−(y) = Gc(y) := X \ G(y) for y ∈ X
and T (x) := coCS(x) for x ∈ X. Note that S−(y) is open for each y ∈ X and
X is covered by a finite number of S−(y)s for y ∈ M . Therefore, by FBFP,
T has a fixed point x0 ∈ T (x0) = coCS(x0). By our definition of the convex
hull coC , there exists an N ∈ 〈S(x0)〉 such that x0 ∈ coCN ⊂ coCS(x0). Then
for each y ∈ N , we have y ∈ S(x0) or x0 ∈ S−(y), that is, x0 /∈ G(y). Hence
coCN 6⊂ G(N) and G is not a KKM map. This contradiction implies the
conclusion. �

5. An abstract convexity structure in [12]

Let N = {0, 1, 2, . . . , n}, ∆n = e0e1 · · · en be the standard n-simplex, and
for J ⊂ N , let ∆J = co{ej : j ∈ J} be a face of ∆n.

Lemma 5.1. Let D = {e0, e1, . . . , en}, Y be a topological space, and (∆n, D; co)
be the abstract convex space as in the original KKM theorem. Let G : D( Y
be a closed [resp. an open] valued multimap. If G is a KKM map with respect
to an upper [a lower] semicontinuous map F : ∆n( Y , then

⋂n
i=0G(ei) 6= ∅.

Proof. Since F (∆J) ⊂ G(J) for each J ⊂ D, we have ∆J ⊂ F+G(J) for each
J ⊂ D. Then F+G : D ( ∆n is a KKM map. Moreover, it is closed-valued
[resp. open-valued] since F is upper [resp. lower] semicontinuous. Therefore,
by the original KKM theorem, we have

⋂n
i=0 F

+G(ei) = F+(
⋂n
i=0G(ei)) 6= ∅.

Consequently,
⋂n
i=0G(ei)) 6= ∅. �

Note that our Lemma 5.1 subsumes Lemmas 4.2 and 4.3 in [12] as follows:

Definition 5.1. ([12], Definition 4.1.) Let Y be a compact set of a topological
space, and let q : ∆n ( Y be a multimap. If for each continuous map
p : Y → ∆n (called a simplex mapping), there exists some point x0 ∈ p · q(x0)
then we say that q has a fixed point property with respect to ∆n and simplex
mappings.

Lemma 5.2. ([12], Lemma 4.2.[4.3.]) Let Y be a metric space [resp. compact
space], and let {F0, F1, . . . , Fn} be a family of closed subsets of Y . If there
exists an upper semicontinuous mapping q : ∆n( Y such that

q(∆J) ⊂
⋃
j∈J

Fj [resp. q(∆J) ⊂ coC{yj : j ∈ J}], ∀J ⊂ N,

and q has a fixed point property with respect to ∆n and simplex mappings.
Then

⋂n
i=0 Fi 6= ∅.

From Lemma 5.1 we have the following:
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Theorem 5.1. Let (E,D; Γ) be an abstract convex space, G : D ( E be a
KKM map with closed [resp. open] values. Suppose that for each finite subset
{y0, y1, . . . , yn} ⊂ D, there exists an upper [resp. a lower] semicotinuous map
F : ∆n( E such that

F (∆J) ⊂ coΓ{yj : j ∈ J}, ∀J ⊂ N = {0, 1, . . . , n}.

Then {G(y) : y ∈ D} has the finite intersection property.

Proof. Given {y0, y1, . . . , yn} ⊂ D, we prove
⋂n
i=0G(yi) 6= ∅. Since G is a

KKM map, we have

coΓ{yj : j ∈ J} ⊂
⋃
j∈J

G(yj), ∀J ⊂ N = {0, 1, . . . , n}.

Then there exists an upper [resp. a lower] semicontinuous map F : ∆n ( E
such that

F (∆j) ⊂ coΓ{yj : j ∈ J} ⊂
⋃
j∈J

G(yj), ∀J ⊂ N = {0, 1, . . . , n}.

From Lemma 5.1, it follows that
⋂n
i=0G(yi) 6= ∅. �

In view of Theorem 5.1, we can eliminate Definition 4.4, Theorem 4.5,
Corollary 4.6, and Theorem 4.12 in [12].

A nonempty topological space is said to be acyclic whenever its reduced
homology groups over a field of coefficients vanish.

The following is well-known:

Lemma 5.3. Let Y be a compact topological space. If p : Y → ∆n is con-
tinuous and F : ∆n( Y is an upper semicontinuous map with closed acyclic
values, then there exists some e ∈ ∆n such that e ∈ p · F (e).

Recall that F ∈ Aκc (∆n, Y ) ⊂ KC(∆n, V, Y ) (see, [6,7,10]) and the references
therein. As an immediate corollary, we have the following:

Corollary 5.1. Let Y be a topological space, and {F0, F1, . . . , Fn} be a family
of closed subsets of Y . If there exists an upper semicontinuous map F : ∆n(
Y with compact acyclic values such that

F (∆J) ⊂
⋃
i∈J

Fi, ∀J ⊂ N = {0, 1, . . . , n},

then
⋂n
i=0 Fi 6= ∅.

Note that Corollary 5.1 improves [12, Corollary 4.9].
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Note also that there appears in [12] some redundant artificial definitions
like the fixed point property with respect to ∆n and simplex mappings, Hq-
property, and Hq

0 -property. These are all eliminated in our preceeding argu-
ments.

6. Minimax inequalities in [12]

Lemma 6.1. ([12], Lemma 5.1.) Let X be a subset of a linear topological
space, let Y be a compact topological space, and let s : X ( Y be an up-
per semi-continuous mapping with nonempty, closed and contractible values.
Let F : X ( Y be a closed valued mapping such that for each finite subset
{x0, x1, . . . , xn} ⊂ X,

s(co{x0, x1, . . . , xn}) ⊂
n⋃
i=1

F (xi).

Then
⋂
x∈X F (x) 6= ∅.

This Lemma can be improved as follows:

1. X should be convex.
2. s can be replaced by an acyclic map or, more generally, a map in

KC-map.
3. Instead of the compactness of Y , various coercivity conditions can be

used as in Theorem 2.2.

In view of Theorem 2.2, we can adopt the following instead of Lemma 5.1
of [12]:

Lemma 6.2. Let X be a nonempty convex subset of a linear topological space,
let Y be a compact topological space, and let F : X ( Y be an upper semicon-
tinuous mapping with nonempty, closed and acyclic values. Let G : X ( Y be
a closed valued mapping such that for each finite subset {x0, x1, . . . , xn} ⊂ X,

F (co{x0, x1, . . . , xn}) ⊂
n⋃
i=1

G(xi).

Then
⋂
x∈X G(x) 6= ∅.

From Lemma 6.2, we derive some general versions of minimax inequalities.

Theorem 6.1. Let X, Y be nonempty subsets of linear topological spaces,
ϕ : X × Y → R satisfies the following conditions:

(1) X is convex and, for any fixed x ∈ X, {y ∈ Y : ϕ(x, y) ≤ 0} is lower
semicontinuous with respect to y;
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(2) Y is compact and F : X ( Y is an upper semi-continuous mapping
with nonempty, closed and acyclic values; and

(3) for any finite subset {x0, x1, . . . , xn} ⊂ X and y ∈ F (co{x0, x1, . . . , xn}),

ϕ(xi, y) ≤ 0 for some i = 0, 1, . . . , n.

Then there exists y∗ ∈ Y such that

ϕ(x, y∗) ≤ 0, ∀ x ∈ X.

Proof. The multimap G : X ( Y is defined as

G(x) = {y ∈ Y : ϕ(x, y) ≤ 0}, ∀ x ∈ X.

Condition (1) implies that G is closed-valued. From condition (2), it is easy
to check that for each finite subset {x0, x1, . . . , xn} ⊂ X, G satisfies

F (co{x0, x1, . . . , xn}) ⊂
n⋃
i=0

G(xi).

By Lemma 6.2, we have
⋂
x∈X G(x) 6= ∅. Then there exists some y∗ ∈ Y such

that y∗ ∈
⋂
x∈X G(x), so that

ϕ(x, y∗) ≤ 0, ∀ x ∈ X.

�

This is a correct form of [12, Theorem 5.2]. Note that other results in
Section 5 of [12] can be corrected similarly, and we will stop here.

7. Historical remarks

In this section, we introduce abstracts of papers of Xiang et al. [11, 12, 13]
and Park [4], and the comments on [12] given by Park [9].

7.1. Xiang and Yang 2007 ([13])

Abstract: We establish some relationships among abstract convexity, the
selection property and the fixed point property. We show that if a convexity
structure C defined on a topological space has the selection property then C
satisfies the H-condition. Moreover, in an l.c. compact metric space, the
selection property implies the fixed point property.

7.2. Xiang and Xia 2007 ([11])

Abstract: We give a characteristic of abstract convexity structures on topo-
logical spaces with selection property. We show that if a convexity structure C
defined on a topological space has the weak selection property then C satisfies
H0-condition. Moreover, in a compact convex subset of a topological space
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with convexity structure, the weak selection property implies the fixed point
property.

7.3. Park 2010 ([4])

Abstract: All results of S.-w. Xiang and H. Yang [12] and S.-w. Xiang and
S. Xia [11] are shown to be consequences of known ones or can be stated in
more general forms.

7.4. Xiang et al. 2013 ([12])

Abstract: The purpose of this paper is to give some further results in a
type of generalized convexity spaces. First, we prove that an abstract convex
space has KKM property if and only if it has a strong Fan-Browder property.
Then we introduce an abstract convex structure via an upper semi-continuous
multi-valued mapping and establish some generalized versions of KKM lemma.
By employing our general KKM lemmas, we derive some generalizations of
minimax inequalities, which contain several existing ones as special cases.

7.5. Park 2014 ([9])

Comments on Xiang et al. [12]: The authors’ abstract convexity space is
particular to the abstract convex spaces in the sense of Park. Their weakly
convex-valued multimap has a fixed point whenever it has a nonempty value.
Hence their new definitions (without giving any proper examples) seem to be
incorrect. Moreover, the correct form of their first claim of equivalence was
already known for a long time ago.
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