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Abstract. We present a local convergence analysis for a family of cubically convergent

methods in order to approximate a locally unique solution of a nonlinear equation in a

Banach space setting. We only use hypotheses on the first Fréchet-derivative. The local

convergence analysis in [6, 15] used hypotheses up to the second Fréchet derivative. Hence,

the application of the methods is extended under less computational cost. This work also

provides computable convergence ball and computable error bounds. Numerical examples

are also provided in this study.

1. Introduction

In this study, we are concerned with the problem of approximating a locally
unique solution x∗ of the nonlinear equation

F (x) = 0, (1.1)

where F is a Fréchet-differentiable operator defined on a convex subset D of a
Banach space X with values in a Banach space Y. Using mathematical mod-
eling, many problems in computational sciences and other disciplines can be
expressed as a nonlinear equation (1.1) [2, 5, 14, 16]. Closed form solutions of
these nonlinear equations exist only for few special cases which may not be of
much practical value. Therefore solutions of these nonlinear equations (1.1)
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are approximated by iterative methods. In particular, the practice of Numer-
ical Functional Analysis for approximating solutions iteratively is essentially
connected to Newton-like methods [1]-[20]. The study about convergence mat-
ter of iterative procedures is usually based on two types: semi-local and local
convergence analysis. The semi-local convergence matter is, based on the in-
formation around an initial point, to give conditions ensuring the convergence
of the iterative procedure; while the local one is, based on the information
around a solution, to find estimates of the radii of convergence balls. There
exist many studies which deal with the local and semi-local convergence anal-
ysis of Newton-like methods such as [1]-[20].

We present a local convergence analysis for the cubically convergent family
methods defined for each n = 0, 1, 2, · · · by

yn = xn − F ′(xn)−1F (xn),

xn+1 = xn − αA−1n (I −An)F ′(xn)−1F (xn), (1.2)

where x0 is an initial point, α, θ ∈ (−∞,∞) are given parameters and

An = θF ′(xn)−1F (yn) + (1− 2θ)F ′(xn)−1F ′
(
yn + xn

2

)
+ θI.

If α = 1, method (1.2) specializes to the method studied in [6, 15]. Moreover,
if we choose θ = 0, 12 ,

1
6 and 1

4 in turn, we obtain, respectively, the midpoint
Newton method proposed by Traub [18], the arithmetic Newton’s method
introduced by Weerakoon and Fernando [20], Hasanov’s, Nedzhibov’s method
[12]. We shall use the conditions (C):

(C1) F (x∗) = 0, F ′(x∗)−1 ∈ L(Y,X);
(C2) ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ L0‖x− x∗‖ for each x ∈ D;
(C3) ‖F ′(x∗)−1(F ′(x)− F ′(y)‖ ≤ L‖x− y‖ for each x, y ∈ D;
(C4) ‖F ′(x∗)−1(F ′′(x)− F ′′(y))‖ ≤ K‖x− y‖ for each x, y ∈ D.
In particular, the local convergence of method (1.2) for α = 1 was studied

under condition (C1), (C3) and (C4) in [15]. It was then later improved in
[6] under conditions (C1)–(C4). Notice that in the earlier results the very
restrictive condition (C4) is used although the second derivative is not used
in the method. As a motivational example, let us define function F on X =
[−1

2 ,
5
2 ] by

F (x) =

{
x3 lnx2 + x5 − x4, if x 6= 0,
0, if x = 0.

We have that

F ′(x) = 3x2 lnx2 + 5x4 − 4x3 + 2x2

and

F ′′(x) = 6x lnx2 + 20x3 − 12x2 + 10x.
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Then, obviously, function F cannot satisfy condition (C4). In the present
paper, we only use hypotheses on the first Fréchet derivative (see conditions
((2.9)–(2.12)). This way, we extend the applicability of method (1.2) and
under less computational cost than in [6], [15] (and for α not necessarily only
1).

The rest of the paper is organized as follows. The local convergence of
method (1.2) is given in Section 2, whereas the numerical examples are pre-
sented in the concluding Section 3.

2. Local convergence analysis

We present the local convergence analysis of method (1.2) in this section.
Let U(v, ρ) and U(v, ρ) denote the open and closed ball in X, respectively,
with center v ∈ X and of radius ρ > 0. Let L0 > 0, L > 0, M > 0, β >
0, γ ≥ 0 and α, θ ∈ (−∞,+∞) be given parameters. It is convenient for the
local convergence analysis that follows to define some functions on the interval
[0, 1

L0
) by

g1(r) =
Lr

2(1− L0r)
,

g2(r) = γ + |1− θ|+ |θ|L0(1 + 3g1(r))r

2(1− L0r)
+
|1− θ|M
1− L0r

,

h2(r) = βg2(r)− 1,

g3(r) =
(|θ|+ |1− 2θ|)M

1− L0r
+ |θ|,

g4(r) = g1(r) +
|α|Mβ(1 + g3(r))

(1− βg2(r))(1− L0r)

and

h4(r) = g4(r)− 1.

Define

rA :=
2

L+ 2L0
. (2.1)

It follows from the definition of function g1 and (2.1) that

0 ≤ g1(r) < 1 for each r ∈ [0, rA).

Suppose that

β(γ + (1 +M)|1− θ|) < 1. (2.2)
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We have that h2(0) < 0 by (2.2) and h2(t) → ∞ as t → 1
L0

−
. It follows from

the intermediate value theorem that there exist zeros of function h2 in the
interval (0, 1

L0
). Denote by r2 the smallest such zero.

Suppose that

β|α|M((1 + (|θ|+ |1− 2θ|)M + |θ|) + β(γ + (1 +M)|1− θ|)) < 1. (2.3)

Notice that (2.3) implies (2.2). We get by (2.3) that h4(0) < 0 and h4(t) →
+∞ as t→ 1

L0

−
. It follows from the intermediate value theorem that function

h4 has zeros in the interval (0, 1
L0

). Denote by r4 the smallest such zero. Then,
we have that

0 ≤ g4(r) < 1 for each r ∈ [0, r4).

Define
r∗ = min{rA, r2, r4}. (2.4)

It follows that

0 ≤ g1(r) < 1, (2.5)

0 ≤ βg2(r) < 1, (2.6)

0 ≤ g3(r), (2.7)

and
0 ≤ g4(r) < 1, (2.8)

for each r ∈ [0, r∗).

Next, we present the local convergence analysis of method (1.2).

Theorem 2.1. Let F : D ⊆ X → Y be a Fréchet-differentiable operator.
Suppose that there exist x∗ ∈ D, L0 > 0, L > 0, M > 0, β > 0, γ ≥ 0 and
α, θ ∈ (−∞,+∞) such that condition (2.3) holds and for each x ∈ D
F (x∗) = 0, F ′(x∗)−1 ∈ L(Y,X), ‖F ′(x∗)−1‖ ≤ β, ‖I − F ′(x∗)‖ ≤ γ, (2.9)

‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ L0‖x− x∗‖, (2.10)

‖F ′(x∗)−1(F (x)− F (x∗)− F ′(x)(x− x∗))‖ ≤ L

2
‖x− x∗‖2, (2.11)

‖F ′(x∗)−1F ′(x)‖ ≤M (2.12)

and
Ū(x∗, r∗) ⊆ D, (2.13)

where r∗ is defined by (2.4). Then, the sequence {xn} generated by method
(1.2) for x0 ∈ U(x∗, r∗) − {x∗} is well defined, remains in U(x∗, r∗) for each
n = 0, 1, 2, · · · and converges to x∗. Moreover, the following estimates hold for
each n = 0, 1, 2, · · · ,

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖ < r, (2.14)



Local convergence for a family of cubically convergent methods 267

‖F ′(x∗)−A(xn)‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ <
1

β
, (2.15)

‖A(xn)‖ ≤ g3(‖xn − x∗‖) (2.16)

and

‖xn+1 − x∗‖ ≤ g4(‖xn − x∗‖)‖xn − x∗‖, (2.17)

where the “g” functions are defined above and

A(x) = θF ′(x)−1F ′(x− F ′(x)−1F (x))

+(1− 2θ)F ′(x)−1F ′
(

2x− F ′(x)−1F (x)

2

)
+θI for each x ∈ D.

Furthermore, suppose that there exists T ∈ [r, 2
L0

) such that Ū(x∗, T ) ⊂ D,

then the limit point x∗ is the only solution of equation F (x) = 0 in Ū(x∗, R).

Proof. Using (2.10), the definition of r∗ and the hypothesis x0 ∈ U(x∗, r∗) −
{x∗} we get that

‖F ′(x∗)−1(F (x0)− F (x∗))‖ ≤ L0‖x0 − x∗‖ < L0r
∗ < 1. (2.18)

It follows from (2.18) and the Banach Lemma on invertible operators [3, 16]
that F ′(x0)

−1 ∈ L(Y,X) and

‖F ′(x0)−1F ′(x∗)‖ ≤
1

1− L0‖x0 − x∗‖
<

1

1− L0r∗
. (2.19)

Hence, from the first substep of method (1.2) for n = 0, (2.5), (2.11) and
(2.19) we get that

y0 − x∗ = −F ′(x0)−1F ′(x∗)F ′(x∗)−1[F (x0)− F (x∗)− F ′(x0)(x0 − xa)],

so,

‖y0 − x∗‖ ≤ ‖F ′(x0)−1F ′(x∗)‖‖F ′(x∗)−1[F (x0)−F (x∗)−F ′(x0)(x0−x∗)]‖

≤ L‖x0 − x∗‖2

2(1− L0‖x0 − x∗‖)
= g1(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r∗,
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which shows (2.14) for n = 0 and y0 ∈ U(x∗, r∗). We have by the definition of
A0

‖F ′(x∗)−A0‖ =

∥∥∥∥F ′(x∗)− I + I − θI

−θF ′(x0)−1F ′(y0)− (1− 2θ)F ′(x0)
−1F ′

(
y0 + x0

2

)∥∥∥∥
=

∥∥∥∥(F ′(x∗)− I) + (1− θ)I

+θF ′(x0)
−1
(
F ′
(
y0 + x0

2

)
− F ′(y0)

)
−(1− θ)F ′(x0)−1F ′

(
y0 + x0

2

)∥∥∥∥.
Using (2.6), (2.9), (2.10), (2.12) and the definition of r∗ (since ‖y0+x0

2 −x∗‖ ≤
1
2(‖y0 − x∗‖+ ‖x0 − x∗‖ < 1

2(r∗ + r∗) = r∗), we get that

‖F ′(x∗)−A0‖
≤ ‖F ′(x∗)− I‖+ ‖F ′(x∗)−1(F ′(y0)− F ′(x∗))‖

+|1− θ|+ |θ|‖F ′(x0)−1F ′(x∗)‖
∥∥∥∥F ′(x∗)−1(F ′(y0 + x0

2

)
− F ′(x∗)

)∥∥∥∥
+|1− θ|‖F ′(x0)−1F ′(x∗)‖

∥∥∥∥F ′(x∗)−1F ′(y0 + x0
2

)∥∥∥∥
≤ γ + |1− θ|+ |θ|

1− L0‖x0 − x∗‖

(
L0

2
(‖y0 − x∗‖+ ‖x0 − x∗‖)

+L0‖y0 − x∗‖
)

+
|1− θ|M

1− L0‖x0 − x∗‖

≤ γ + |1− θ|+ |θ|L0

2(1− L0‖x0 − x∗‖)
(3‖y0 − x∗‖+ ‖x0 − x∗‖)

+
M |1− θ|

1− L0‖x0 − x∗‖

≤ γ + |1− θ|+ |θ|L0(3g1(‖x0 − x∗‖) + 1)‖x0 − x∗‖
2(1− L0‖x0 − x∗‖)

+
M |1− θ|

1− L0‖x0 − x∗‖

= g2(‖x0 − x∗‖) <
1

β
, (2.20)

which shows (2.15) for n = 0. It follows from (2.20) and the Banach lemma
on invertible operators that A−10 exists and
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‖A−10 ‖ ≤
β

1− βg2(‖x0 − x∗‖)
. (2.21)

Moreover from the definition of A0, g3, (2.19) and (2.12) we have that

‖A0‖ ≤ θ‖F ′(x0)−1F ′(x∗)‖‖F ′(x∗)−1F ′(y0)‖

+|1− 2θ|‖F ′(x0)−1F ′(x∗)‖‖F ′(x∗)−1F ′(
y0 + x0

2
)‖+ |θ|

≤ |θ|M
1− L0‖x0 − x∗‖

+
|1− 2θ|M

1− L0‖x0 − x∗‖
+ |θ|

= g3(‖x0 − x∗‖), (2.22)

which shows (2.16) for n = 0. Furthermore, using the last substep of method
(1.2) for n = 0, we get from (2.12), (2.14), (2.18), (2.20), (2.21) and the
definition of function g4 and r∗ that

‖x1 − x∗‖
≤ ‖y0 − x∗‖+ |α|‖A−10 ‖(1 + ‖A0‖)

×‖F ′(x0)−1F ′(x∗)‖
∥∥∥∥∫ 1

0
F ′(x∗)−1F ′(x∗ + t(x0 − x∗))(x0 − x∗)dt

∥∥∥∥
≤
[
g1(‖x0 − x∗‖) +

βM |α|(1 + g3(‖x0 − x∗‖))
(1− βg2(‖x0 − x∗‖))(1− L0‖x0 − x∗‖)

]
‖x0 − x∗‖

= g4(‖x0 − x∗‖)‖x0 − x∗‖ < r∗,

which shows (2.17) for n = 0 and x1 ∈ U(x∗, r∗). By simply replacing x0, y0, x1
by xk, yk, xk+1 in the preceding estimates we arrive at (2.14)-(2.17). Then,
from the estimate ‖xk+1−x∗‖ < ‖xk−x∗‖ < r∗, we deduce that limk→∞ xk =
x∗ and xk+1 ∈ U(x∗, r∗).

Finally, to show the uniqueness part, let Q =
∫ 1
0 F

′(y∗ + t(x∗ − y∗)dt for

some y∗ ∈ Ū(x∗, T ) with F (y∗) = 0. Using (2.10), we get that

‖F ′(x∗)−1(Q− F ′(x∗))‖ ≤
∫ 1

0
L0‖y∗ + t(x∗ − y∗)− x∗‖dt

≤
∫ 1

0
(1− t)‖x∗ − y∗‖dt

≤ L0

2
T < 1. (2.23)

It follows from (2.23) that Q is invertible. Then, from the identity 0 = F (x∗)−
F (y∗) = Q(x∗ − y∗), we deduce that x∗ = y∗. �
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Remark 2.2. 1. In view of (2.10) and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x)− F ′(x∗)) + I‖
≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖
≤ 1 + L0‖x− x∗‖

condition (2.12) can be dropped and be replaced by

M(r) = 1 + L0r.

Moreover, condition (2.11) can be replaced by the popular but stronger con-
dition (C3) or

‖F ′(x∗)−1(F ′(x∗ + t(x− x∗))− F ′(x))‖ ≤ L(1− t)‖x− x∗‖

for each x, y ∈ D and t ∈ [0, 1].

2. The results obtained here can be used for operators F satisfying autonomous
differential equations [3, 5, 14] of the form

F ′(x) = T (F (x)),

where T is a continuous operator. Then, since F ′(x∗) = T (F (x∗)) = T (0), we
can apply the results without actually knowing x∗. For example, let F (x) =
ex − 1. Then, we can choose: T (x) = x+ 1.

3. The local results obtained here can be used for projection methods such as
the Arnoldi’s method, the generalized minimum residual method (GMRES),
the generalized conjugate method(GCR) for combined Newton/finite projec-
tion methods and in connection to the mesh independence principle can be
used to develop the cheapest and most efficient mesh refinement strategies
[2, 5].

4. The parameter rA given by (2.1) was shown by us to be the convergence
radius of Newton’s method [2, 6]

xn+1 = xn − F ′(xn)−1F (xn) for each n = 0, 1, 2, · · · (2.24)

under the conditions (2.10) and (C3). It follows from (2.2) that the convergence
radius r∗ of method (1.2) cannot be larger than the convergence radius rA of
the second order Newton’s method (2.24). As already noted in [2, 5] rA is at
least as large as the convergence ball given by Rheinboldt [18]

rR =
2

3L
.

In particular, for L0 < L we have that

rR < rA
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and
rR
rA
→ 1

3
as

L0

L
→ 0.

That is our convergence ball rA is at most three times larger than Rheinboldt’s.
The same value for rR was given by Traub [19].

5. It is worth noticing that method (1.2) is not changing when we use the
conditions of Theorem 2.1 instead of the stronger (C) conditions used in [6, 15].
Moreover, we can compute the computational order of convergence (COC)
defined by

ξ = ln

(
‖xn+1 − x∗‖
‖xn − x∗‖

)
/ ln

(
‖xn − x∗‖
‖xn−1 − x∗‖

)
or the approximate computational order of convergence

ξ1 = ln

(
‖xn+1 − xn‖
‖xn − xn−1‖

)
/ ln

(
‖xn − xn−1‖
‖xn−1 − xn−2‖

)
.

This way we obtain in practice the order of convergence.

3. Numerical Examples

We present numerical examples in this section.

Example 3.1. Let X = Y = R3, D = Ū(0, 1), x∗ = (0, 0, 0)T . Define function
F on D for w = (x, y, z)T by

F (w) =

(
ex − 1,

e− 1

2
y2 + y, z

)T

.

Then, the Fréchet-derivative is given by

F ′(v) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .
Notice that using the (C) conditions, we get L0 = e − 1, L = M = e. Then,
for α = 0.1121, θ = −1.6388, β = 1, γ = 0, we have rA = 0.3249, rR =
0.2453, r2 = 0.5067, r4 = 0.2736, r∗ = 0.2736

ξ1 = 0.9991, ξ = 0.9992.

Example 3.2. Returning back to the motivational example at the introduc-
tion of this study, we have using the (C) conditions, L0 = L = 146.6629073, M =
101.5578008. Then, for α = 0.0025, θ = −1.1039, β = 1

3 , γ = 0, we have
rA = 0.0045, rR = 0.0045, r2 = 0.0069, r4 = 0.0021, r∗ = 0.0021

ξ1 = 1.0000, ξ = 1.0000.
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