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Abstract. In this paper, we establish some weak convergence results of modified S-iteration

process to converge to common fixed points for two total asymptotically nonexpansive non-

self mappings in the framework of uniformly convex Banach spaces under the following

conditions (i) the Banach space E satisfying Opial condition and (ii) the dual E∗ of E

has the Kadec-Klee property. Our results extend and improve the previous works from the

current existing literature.

1. Introduction

Let C be a nonempty subset of a Banach space E and T : C → C a nonlinear
mapping. We denote the set of all fixed points of T by F (T ). The set of
common fixed points of two mappings S and T will be denoted by F = F (S)∩
F (T ).

A mapping T : C → C is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ (1.1)

for all x, y ∈ C.
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An important generalization of the class of nonexpansive mappings and the
class of asymptotically nonexpansive mappings was introduced by Goebel and
Kirk [8]. They proved that every asymptotically nonexpansive self mappings
of a nonempty closed convex subset of a real uniformly convex Banach space
has a fixed point.

T is called asymptotically nonexpansive if there exists a positive sequence
kn ∈ [1,∞) with limn→∞ kn = 1 such that

‖Tnx− Tny‖ ≤ kn ‖x− y‖, (1.2)

for all x, y ∈ C and n ≥ 1.

A mapping T : C → C is called asymptotically noneexpansive in the inter-
mediate sense if it is continuous and the following inequality holds:

lim sup
n→∞

sup
x,y∈C

(
‖Tnx− Tny‖ − ‖x− y‖

)
≤ 0. (1.3)

Observe that if we define

an = lim sup
n→∞

sup
x,y∈C

(
‖Tnx− Tny‖ − ‖x− y‖

)
and µn = max{0, an},

then µn → 0 as n→∞. It follows that (1.3) is reduced to

‖Tnx− Tny‖ ≤ ‖x− y‖+ µn, (1.4)

for all x, y ∈ C and n ≥ 1.

The class of mappings which are asymptotically nonexpansive in the inter-
mediate sense was introduced by Bruck, Kuczumow and Reich [4]. It is known
[14] that if C is a nonempty closed convex bounded subset of a uniformly con-
vex Banach space E and T is asymptotically nonexpansive in the intermediate
sense mapping, then T has a fixed point. It is worth mentioning that the class
of mappings which are asymptotically nonexpansive in the intermediate con-
tains properly the class of asymptotically nonexpansive mappings.

Albert et al. [2] introduced the concept of total asymptotically nonex-
pansive mappings in 2006. Recall that T is said to be total asymptotically
nonexpansive if

‖Tnx− Tny‖ ≤ ‖x− y‖+ µnψ(‖x− y‖) + νn, (1.5)

for all x, y ∈ C and n ≥ 1, where {µn} and {νn} are nonnegative real sequences
such that µn → 0 and νn → 0 as n→∞ and a strictly increasing continuous
function ψ : [0,∞) → [0,∞) with ψ(0) = 0. From the definition, we see that
the class of total asymptotically nonexpansive mappings include the class of
asymptotically nonexpansive mappings as a special case; see also [6] for more
details.
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Remark 1.1. From the above definition, it is clear that each asymptotically
nonexpansive mapping is a total asymptotically nonexpansive mapping with
νn = 0, µn = kn − 1 for all n ≥ 1, ψ(t) = t, t ≥ 0.

A subset C of E is called a retract of E if there exists a continuous map
P : E → C such that Px = x for all x ∈ C. Every closed convex subset of a
uniformly convex Banach space is a retract. A map P : E → E is said to be a
retraction if P 2 = P . It follows that if P is a retraction then Py = y for all y
in the range of P .

In 2003, Chidume et al. [5] defined non-self asymptotically nonexpansive
mappings as follows:

Let P : E → C be a nonexpansive retraction of E into C. A non-self
mapping T : C → E is called asymptotically nonexpansive if for a sequence
{kn} ⊂ [1,∞) with limn→∞ kn = 1 such that

‖T (PT )n−1x− T (PT )n−1y‖ ≤ kn‖x− y‖, (1.6)

for all x, y ∈ C and n ∈ N.

Also T is called uniformly L-Lipschitzian if for some L > 0 such that

‖T (PT )n−1x− T (PT )n−1y‖ ≤ L‖x− y‖,

for all x, y ∈ C and n ∈ N.

Recently, Yolacan and Kiziltune [28] (J. Nonlinear Sci. Appl. 5(2012),
389-402) defined the following:

Let C be a nonempty closed and convex subset of a Banach space E. Let
P : E → C be the nonexpansive retraction of E onto C. A non-self map
T : C → E is said to be total asymptotically nonexpansive if there exist se-
quences {µn} and {νn} in [0,∞) with µn → 0 and νn → 0 as n → ∞ and a
strictly increasing continuous function ψ : [0,∞)→ [0,∞) with ψ(0) = 0 such
that

‖T (PT )n−1x− T (PT )n−1y‖ ≤ ‖x− y‖+ µnψ(‖x− y‖) + νn, (1.7)

for all x, y ∈ C and n ≥ 1.

(i) Modified S-iteration for self mapping ([1]).
x1 = x ∈ C,
xn+1 = (1− αn)Tnxn + αnT

nyn,

yn = (1− βn)xn + βnT
nxn, n ≥ 1,

(1.8)

where {αn} and {βn} are sequences in (0, 1).
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(ii) Modified Mann iteration for non-self mapping ([5]).{
x1 = x ∈ C,
xn+1 = P (αnT (PT )n−1xn + (1− αn)xn), n ≥ 1,

(1.9)

where {αn} is a sequence in (0, 1).

Recently, Khan [12] introduced and studied the following iteration scheme
for non-self mappings.

(iii) Modified S-iteration for non-self mapping ([12]).
x1 = x ∈ C,
xn+1 = P ((1− αn)T (PT )n−1xn + αnT (PT )n−1yn),

yn = P ((1− βn)xn + βnT (PT )n−1xn), n ≥ 1,

(1.10)

where {αn} and {βn} are sequences in (0, 1).

Motivated by the above works we introduce and study the following it-
eration scheme for two total asymptotically nonexpansive non-self mappings
S, T : C → E defined as follows.

(iv) Modified S-iteration for two non-self mappings.
x1 = x ∈ C,
xn+1 = P ((1− αn)T (PT )n−1xn + αnS(PS)n−1yn),

yn = P ((1− βn)S(PS)n−1xn + βnT (PT )n−1xn), n ≥ 1,

(1.11)

where {αn} and {βn} are appropriate sequences in (0, 1).

Remark 1.2. If we take S = I, where I is the identity mapping and βn = 0
for all n ≥ 1, then (1.11) reduces to the modified Mann iteration process for
non-self mapping T : C → E.

The asymptotic fixed point theory has a fundamental role in nonlinear func-
tional analysis (see, [3]). A branch of this theory related to asymptotically
nonexpansive self and non-self mappings have been developed by many au-
thors (see, e.g., [4], [5], [8]-[11], [13], [15]-[16], [18]-[25], [27]) in Banach spaces
with suitable geometrical structure.

The purpose of this paper is to prove some weak convergence theorems
of iteration scheme (1.11) for two total asymptotically nonexpansive non-self
mappings in the framework of uniformly convex Banach spaces.

2. Preliminaries

For the sake of convenience, we restate the following concepts and results.
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Let E be a Banach space with its dimension greater than or equal to 2. The
modulus of convexity of E is the function δE(ε) : (0, 2]→ [0, 1] defined by

δE(ε) = inf
{

1−
∥∥∥∥1

2
(x+ y)

∥∥∥∥ : ‖x‖ = 1, ‖y‖ = 1, ε = ‖x− y‖
}
.

A Banach space E is uniformly convex if and only if δE(ε) > 0 for all
ε ∈ (0, 2].

We recall the following:

Let S = {x ∈ E : ‖x‖ = 1} and let E∗ be the dual of E, that is, the space
of all continuous linear functionals f on E.

The space E has Opial condition [17] if for any sequence {xn} in E, xn
converges to x weakly it follows that lim supn→∞ ‖xn−x‖ < lim supn→∞ ‖xn−
y‖ for all y ∈ E with y 6= x. Examples of Banach spaces satisfying Opial
condition are Hilbert spaces and all spaces lp(1 < p <∞). On the other hand,
Lp[0, 2π] with 1 < p 6= 2 fail to satisfy Opial condition.

A mapping T : C → C is said to be demiclosed at zero, if for any sequence
{xn} in K, the condition {xn} converges weakly to x ∈ C and {Txn} converges
strongly to 0 imply Tx = 0.

A Banach space E has the Kadec-Klee property [24] if for every sequence
{xn} in E, xn → x weakly and ‖xn‖ → ‖x‖ it follows that ‖xn − x‖ → 0.

Proposition 2.1. Let C be a nonempty subset of a Banach space E which is
also a nonexpansive retract of E and S, T : C → E be two total asymptotically
nonexpansive non-self mappings. Then there exist nonnegative real sequences
{µn} and {νn} in [0,∞) with µn → 0 and νn → 0 as n → ∞ and a strictly
increasing continuous function ψ : R+ → R+ with ψ(0) = 0 such that

‖S(PS)n−1x− S(PS)n−1y‖ ≤ ‖x− y‖+ µnψ(‖x− y‖) + νn, (2.1)

and

‖T (PT )n−1x− T (PT )n−1y‖ ≤ ‖x− y‖+ µnψ(‖x− y‖) + νn, (2.2)

for all x, y ∈ C and n ≥ 1.

Proof. Since S, T : C → E are two total asymptotically nonexpansive non-self
mappings, there exist nonnegative real sequences {µ′n}, {µ′′n}, {ν ′n} and {ν ′′n}
in [0,∞) with µ′n, µ

′′
n → 0 and ν ′n, ν

′′
n → 0 as n → ∞ and strictly increasing

continuous functions ψ1, ψ2 : R+ → R+ with ψ1(0) = 0 and ψ2(0) = 0 such
that

‖S(PS)n−1x− S(PS)n−1y‖ ≤ ‖x− y‖+ µ′nψ1(‖x− y‖) + ν ′n, (2.3)
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and

‖T (PT )n−1x− T (PT )n−1y‖ ≤ ‖x− y‖+ µ′′nψ2(‖x− y‖) + ν ′′n, (2.4)

for all x, y ∈ C and n ≥ 1.
Setting

µn = max{µ′n, µ′′n}, νn = max{ν ′n, ν ′′n}
and

ψ(a) = max{ψ1(a), ψ2(a), for a ≥ 0},
then we get that there exist nonnegative real sequences {µn} and {νn} with
µn → 0 and νn → 0 as n → ∞ and strictly increasing continuous function
ψ : R+ → R+ with ψ(0) = 0 such that

‖S(PS)n−1x− S(PS)n−1y‖ ≤ ‖x− y‖+ µ′nψ1(‖x− y‖) + ν ′n
≤ ‖x− y‖+ µnψ(‖x− y‖) + νn,

and

‖T (PT )n−1x− T (PT )n−1y‖ ≤ ‖x− y‖+ µ′′nψ2(‖x− y‖) + ν ′′n
≤ ‖x− y‖+ µnψ(‖x− y‖) + νn,

for all x, y ∈ C and n ≥ 1. This completes the proof. �

Next we state the following useful lemmas to prove our main results.

Lemma 2.2. ([26]) Let {αn}∞n=1, {βn}∞n=1 and {rn}∞n=1 be sequences of non-
negative numbers satisfying the inequality

αn+1 ≤ (1 + βn)αn + rn, ∀n ≥ 1.

If
∑∞

n=1 βn <∞ and
∑∞

n=1 rn <∞, then limn→∞ αn exists.

Lemma 2.3. ([22]) Let E be a uniformly convex Banach space and 0 < α ≤
tn ≤ β < 1 for all n ∈ N. Suppose further that {xn} and {yn} are sequences of
E such that lim supn→∞ ‖xn‖ ≤ a, lim supn→∞ ‖yn‖ ≤ a and limn→∞ ‖tnxn +
(1− tn)yn‖ = a hold for some a ≥ 0. Then limn→∞ ‖xn − yn‖ = 0.

Lemma 2.4. ([24]) Let E be a real reflexive Banach space with its dual E∗

has the Kadec-Klee property. Let {xn} be a bounded sequence in E and p, q ∈
ww(xn) (where ww(xn) denotes the set of all weak subsequential limits of {xn}).
Suppose limn→∞ ‖txn + (1− t)p− q‖ exists for all t ∈ [0, 1]. Then p = q.

Lemma 2.5. ([24]) Let K be a nonempty convex subset of a uniformly convex
Banach space E. Then there exists a strictly increasing continuous convex



Total asymptotically nonexpansive non-self mappings 295

function φ : [0,∞) → [0,∞) with φ(0) = 0 such that for each Lipschitzian
mapping T : C → C with the Lipschitz constant L,

‖tTx+ (1− t)Ty − T (tx+ (1− t)y)‖ ≤ Lφ−1
(
‖x− y‖ − 1

L
‖Tx− Ty‖

)
for all x, y ∈ K and all t ∈ [0, 1].

3. Main results

In this section, we prove some weak convergence theorems for two total
asymptotically nonexpansive non-self mappings in the framework of uniformly
convex Banach spaces. First, we shall need the following lemmas.

Lemma 3.1. Let E be a real Banach space and C be a nonempty closed
convex subset of E. Let P : E → C be a nonexpansive retraction of E into C
and S, T : C → E be two total asymptotically nonexpansive non-self mappings
with sequences {µn} and {νn} as defined in Proposition 2.1 and F = F (S) ∩
F (T ) 6= ∅. Let {xn} be the iteration scheme defined by (1.11) and the following
conditions are satisfied:

(i)
∑∞

n=1 µn <∞ and
∑∞

n=1 νn <∞;
(ii) there exists a constant K > 0 such that ψ(t) ≤ K t, t ≥ 0.

Then limn→∞ ‖xn − p‖ exists for all p ∈ F .

Proof. Let p ∈ F . For the sake of simplicity, set

Anx = P ((1− βn)S(PS)n−1x+ βnT (PT )n−1x)

and

Bnx = P ((1− αn)T (PT )n−1x+ αnS(PS)n−1Anx).

Then yn = Anxn and xn+1 = Bnxn. Moreover, it is clear that p is a fixed
point of Bn for all n.

Consider

‖Anx−Any‖ = ‖P ((1− βn)S(PS)n−1x+ βnT (PT )n−1x)

− P ((1− βn)S(PS)n−1y + βnT (PT )n−1y)‖
≤ ‖(1− βn)S(PS)n−1x+ βnT (PT )n−1x

− (1− βn)S(PS)n−1y + βnT (PT )n−1y‖
= ‖(1− βn)(S(PS)n−1x− S(PS)n−1y)

+ βn(T (PT )n−1x− T (PT )n−1y)‖
≤ (1− βn)[‖x− y‖+ µnψ(‖x− y‖) + νn]

+ βn[‖x− y‖+ µnψ(‖x− y‖) + νn]
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≤ (1− βn)[‖x− y‖+ µnK‖x− y‖+ νn]

+ βn[‖x− y‖+ µnK‖x− y‖+ νn]

= (1− βn)[(1 + µnK)‖x− y‖+ νn]

+ βn[(1 + µnK)‖x− y‖+ νn]

≤ (1 + µnK)‖x− y‖+ νn. (3.1)

Choosing x = xn and y = p, we get

‖yn − p‖ ≤ (1 + µnK)‖xn − p‖+ νn. (3.2)

Now, we consider

‖Bnx−Bny‖ = ‖P ((1− αn)T (PT )n−1x+ αnS(PS)n−1Anx)

− P ((1− αn)T (PT )n−1y + αnS(PS)n−1Any)‖
≤ ‖(1− αn)T (PT )n−1x+ αnS(PS)n−1Anx

− (1− αn)T (PT )n−1y + αnS(PS)n−1Any‖
= ‖(1− αn)(T (PT )n−1x− T (PT )n−1y)

+ αn(S(PS)n−1Anx− S(PS)n−1Any)‖
≤ (1− αn)[‖x− y‖+ µnψ(‖x− y‖) + νn]

+ αn[‖Anx−Any‖+ µnψ(‖Anx−Any‖) + νn]

≤ (1− αn)[‖x− y‖+ µnK‖x− y‖+ νn]

+ αn[‖Anx−Any‖+ µnK‖Anx−Any‖+ νn]

= (1− αn)[(1 + µnK)‖x− y‖+ νn]

+ αn[(1 + µnK)‖Anx−Any‖+ νn]

= (1− αn)(1 + µnK)‖x− y‖
+ αn(1 + µnK)‖Anx−Any‖+ νn. (3.3)

Now using (3.1) in (3.3), we get

‖Bnx−Bny‖ ≤ (1− αn)(1 + µnK)‖x− y‖
+ αn(1 + µnK)[(1 + µnK)‖x− y‖+ νn] + νn

≤ (1− αn)(1 + µnK)2‖x− y‖
+ αn(1 + µnK)2‖x− y‖+ αn(1 + µnK)νn + νn

≤ (1 + µnK)2‖x− y‖+ (2 + µnK)νn

= (1 +M1µn)‖x− y‖+M2νn, (3.4)

for some M1,M2 > 0. Choosing x = xn and y = p in (3.4), we get

‖xn+1 − p‖ = ‖Bnxn − p‖ ≤ (1 +M1µn)‖xn − p‖+M2νn. (3.5)
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Since by hypothesis
∑∞

n=1 µn < ∞ and
∑∞

n=1 νn < ∞, so by Lemma 2.2, we
have limn→∞ ‖xn − p‖ exists. This completes the proof. �

Lemma 3.2. Let E be a uniformly convex Banach space and C be a nonempty
closed convex subset of E. Let P : E → C be a nonexpansive retraction of E
into C and S, T : C → E be two total asymptotically nonexpansive non-self
mappings with sequences {µn} and {νn} as defined in Proposition 2.1 and
F = F (S) ∩ F (T ) 6= ∅. Let {xn} be the iteration scheme defined by (1.11),
where {αn} and {βn} are sequences in [δ, 1 − δ] for all n ∈ N and for some
δ ∈ (0, 1) and the following conditions are satisfied:

(i)
∑∞

n=1 µn <∞ and
∑∞

n=1 νn <∞;
(ii) there exists a constant K > 0 such that ψ(t) ≤ K t, t ≥ 0.

If ‖x − S(PS)n−1x‖ ≤ ‖T (PT )n−1x − S(PS)n−1x‖ for all x ∈ C, then
limn→∞ ‖xn − Sxn‖ = 0 and limn→∞ ‖xn − Txn‖ = 0.

Proof. By Lemma 3.1, limn→∞ ‖xn−p‖ exists for all p ∈ F and therefore {xn}
is bounded. Thus there exists a real number r > 0 such that {xn} ⊆ K ′ =

Br(0)∩C, so that K ′ is a closed convex subset of C. Let limn→∞ ‖xn−p‖ = c.
Then c > 0 otherwise there is nothing to prove.Now (3.2) implies that

lim sup
n→∞

‖yn − p‖ ≤ c. (3.6)

Also

‖T (PT )n−1xn − p‖ ≤ ‖xn − p‖+ µnψ(‖xn − p‖) + νn

≤ ‖xn − p‖+ µnK‖xn − p‖+ νn

= (1 + µnK)‖xn − p‖+ νn

for all n = 1, 2, . . . , and

‖S(PS)n−1xn − p‖ ≤ ‖xn − p‖+ µnψ(‖xn − p‖) + νn

≤ ‖xn − p‖+ µnM‖xn − p‖+ νn

= (1 + µnM)‖xn − p‖+ νn

for all n = 1, 2, . . . , so

lim sup
n→∞

‖T (PT )n−1xn − p‖ ≤ c. (3.7)

and

lim sup
n→∞

‖S(PS)n−1xn − p‖ ≤ c. (3.8)
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Next,

‖S(PS)n−1yn − p‖ ≤ ‖yn − p‖+ µnψ(‖yn − p‖) + νn

≤ ‖yn − p‖+ µnK‖yn − p‖+ νn

= (1 + µnK)‖yn − p‖+ νn

gives by virtue of (3.6) that

lim sup
n→∞

‖S(PS)n−1yn − p‖ ≤ c. (3.9)

Since

c = ‖xn+1 − p‖ = ‖(1− αn)(T (PT )n−1xn − p) + αn(S(PS)n−1yn − p)‖.

It follows from Lemma 2.3 that

lim
n→∞

‖T (PT )n−1xn − S(PS)n−1yn‖ = 0. (3.10)

From (1.11) and (3.8), we have

‖xn+1 − T (PT )n−1xn‖ = αn‖S(PS)n−1yn − T (PT )n−1xn‖
≤ ‖S(PS)n−1yn − T (PT )n−1xn‖
→ 0 as n→∞. (3.11)

Hence

‖xn+1 − S(PS)n−1yn‖ ≤ ‖xn+1 − T (PT )n−1xn‖
+‖T (PT )n−1xn − S(PS)n−1yn‖

→ 0 as n→∞. (3.12)

Now

‖xn+1 − p‖ ≤ ‖xn+1 − S(PS)n−1yn‖+ ‖S(PS)n−1yn − p‖
≤ ‖xn+1 − S(PS)n−1yn‖+ |yn − p‖+ µnψ(‖yn − p‖) + νn

≤ ‖xn+1 − S(PS)n−1yn‖+ |yn − p‖+ µnK‖yn − p‖+ νn

= ‖xn+1 − S(PS)n−1yn‖+ (1 + µnK)‖yn − p‖+ νn, (3.13)

which gives from (3.12) that

c ≤ lim inf
n→∞

‖yn − p‖. (3.14)

From (3.6) and (3.14), we obtain

c = ‖yn − p‖ = ‖(1− βn)(T (PT )n−1xn − p) + βn(S(PS)n−1xn − p)‖.

It follows from Lemma 2.3 that

lim
n→∞

‖T (PT )n−1xn − S(PS)n−1xn‖ = 0. (3.15)
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Now

‖T (PT )n−1xn − xn‖
≤ ‖T (PT )n−1xn − S(PS)n−1xn‖+ ‖S(PS)n−1xn − xn‖
≤ ‖T (PT )n−1xn − S(PS)n−1xn‖+ ‖S(PS)n−1xn − T (PT )n−1xn‖
= 2‖T (PT )n−1xn − S(PS)n−1xn‖
→ 0 as n→∞, (3.16)

Again note that

‖yn − xn‖ = ‖P ((1− βn)S(PS)n−1xn + βnT (PT )n−1xn)− Pxn‖
≤ ‖(1− βn)S(PS)n−1xn + βnT (PT )n−1xn − xn‖
= βn‖T (PT )n−1xn − S(PS)n−1xn‖
≤ (1− δ) ‖T (PT )n−1xn − S(PS)n−1xn‖.

Hence by (3.15), we obtain

lim
n→∞

‖yn − xn‖ = 0. (3.17)

Also note that

‖xn+1 − xn‖ ≤ ‖P ((1− αn)T (PT )n−1xn + αnS(PS)n−1yn)− Pxn‖
≤ ‖(1− αn)T (PT )n−1xn + αnS(PS)n−1yn − xn‖
= ‖(T (PT )n−1xn − xn) + αn(T (PT )n−1xn − S(PS)n−1yn)‖
≤ ‖T (PT )n−1xn − xn‖+ αn‖T (PT )n−1xn − S(PS)n−1yn‖
→ 0 as n→∞, (3.18)

so that

‖xn+1 − yn‖ ≤ ‖xn+1 − xn‖+ ‖xn − yn‖
→ 0 as n→∞. (3.19)

Furthermore, from

‖xn − T (PT )n−2yn−1‖ ≤ ‖xn − xn−1‖+ ‖xn−1 − T (PT )n−2xn−1‖
+‖T (PT )n−2xn−1 − T (PT )n−2yn−1‖

≤ ‖xn − xn−1‖+ ‖xn−1 − T (PT )n−2xn−1‖
+‖xn−1 − yn−1‖+ µn−1ψ(‖xn−1 − yn−1‖)
+νn−1
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≤ ‖xn − xn−1‖+ ‖xn−1 − T (PT )n−2xn−1‖
+‖xn−1 − yn−1‖+ µn−1K‖xn−1 − yn−1‖
+νn−1

= ‖xn − xn−1‖+ ‖xn−1 − T (PT )n−2xn−1‖
+(1 + µn−1K)‖xn−1 − yn−1‖+ νn−1. (3.20)

Using (3.16)-(3.18) in (3.20), we obtain

lim
n→∞

‖xn − T (PT )n−2yn−1‖ = 0. (3.21)

Since T is continuous and P is nonexpansive retraction, it follows from (3.21)
that

‖T (PT )n−1yn−1 − Txn‖ = ‖TP (T (PT )n−2)yn−1 − TPxn‖
→ 0 as n→∞. (3.22)

Now, from

‖xn − Txn‖ ≤ ‖xn − T (PT )n−1xn‖+ ‖T (PT )n−1xn − T (PT )n−1yn−1‖
+‖T (PT )n−1yn−1 − Txn‖

≤ ‖xn − T (PT )n−1xn‖+ ‖xn − yn−1‖+ µnψ(‖xn − yn−1‖)
+νn + ‖T (PT )n−1yn−1 − Txn‖

≤ ‖xn − T (PT )n−1xn‖+ ‖xn − yn−1‖+ µnK‖xn − yn−1‖
+νn + ‖T (PT )n−1yn−1 − Txn‖

= ‖xn − T (PT )n−1xn‖+ (1 + µnK)‖xn − yn−1‖+ νn

+‖T (PT )n−1yn−1 − Txn‖. (3.23)

Using (3.16), (3.19) and (3.22) in (3.23), we obtain

lim
n→∞

‖xn − Txn‖ = 0. (3.24)

Similarly, we can prove that

lim
n→∞

‖xn − Sxn‖ = 0. (3.25)

This completes the proof. �

Theorem 3.3. Let E be a uniformly convex Banach space satisfying Opial’s
condition and C be a nonempty closed convex subset of E. Let P : E → C
be a nonexpansive retraction of E into C and S, T : C → E be two total
asymptotically nonexpansive non-self mappings with sequences {µn} and {νn}
as defined in Proposition 2.1 and F = F (S) ∩ F (T ) 6= ∅. Let {xn} be the
iteration scheme defined by (1.11), where {αn} and {βn} are sequences in
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[δ, 1− δ] for all n ∈ N and for some δ ∈ (0, 1) and the following conditions are
satisfied:

(i)
∑∞

n=1 µn <∞ and
∑∞

n=1 νn <∞;
(ii) there exists a constant K > 0 such that ψ(t) ≤ K t, t ≥ 0.

If the mappings I − S and I − T , where I denotes the identity mapping, are
demiclosed at zero, then {xn} converges weakly to a common fixed point of the
mappings S and T .

Proof. Let q ∈ F , from Lemma 3.1 the sequence {‖xn− q‖} is convergent and
hence bounded. Since E is uniformly convex, every bounded subset of E is
weakly compact. Thus there exists a subsequence {xnk

} ⊂ {xn} such that
{xnk

} converges weakly to q∗ ∈ C. From Lemma 3.2, we have

lim
k→∞

‖xnk
− Sxnk

‖ = 0 and lim
k→∞

‖xnk
− Txnk

‖ = 0.

Since the mappings I−S and I−T are demiclosed at zero, therefore Sq∗ = q∗

and Tq∗ = q∗, which means q∗ ∈ F . Finally, let us prove that {xn} converges
weakly to q∗. Suppose on contrary that there is a subsequence {xnj} ⊂ {xn}
such that {xnj} converges weakly to p∗ ∈ C and q∗ 6= p∗. Then by the same
method as given above, we can also prove that p∗ ∈ F . From Lemma 3.1 the
limits limn→∞ ‖xn − q∗‖ and limn→∞ ‖xn − p∗‖ exist. By virtue of the Opial
condition of E, we obtain

lim
n→∞

‖xn − q∗‖ = lim
nk→∞

‖xnk
− q∗‖

< lim
nk→∞

‖xnk
− p∗‖ = lim

n→∞
‖xn − p∗‖

= lim
nj→∞

‖xnj − p∗‖

< lim
nj→∞

‖xnj − q∗‖ = lim
n→∞

‖xn − q∗‖,

which is a contradiction so q∗ = p∗. Thus {xn} converges weakly to a common
fixed point of the mappings S and T . This completes the proof. �

It is well known that there exist classes of uniformly convex Banach spaces
with out the Opial condition (e.g., Lp spaces, p 6= 2). Therefore, Theorem 3.3
is not true for such Banach spaces. We now show that Theorem 3.3 is valid
if the assumption that E satisfies the Opial condition is replaced by the dual
E∗ of E has the Kadec-Klee property (KK-property).

Lemma 3.4. Under the conditions of Lemma 3.2 and for any p, q ∈ F ,
limn→∞ ‖txn + (1− t)p− q‖ exists for all t ∈ [0, 1].

Proof. By Lemma 3.1, limn→∞ ‖xn−z‖ exists for all z ∈ F and therefore {xn}
is bounded. Letting

an(t) = ‖txn + (1− t)p− q‖



302 G. S. Saluja and J. K. Kim

for all t ∈ [0, 1]. Then limn→∞ an(0) = ‖p− q‖ and limn→∞ an(1) = ‖xn − q‖
exists by Lemma 3.1. It, therefore, remains to prove the Lemma 3.4 for t ∈
(0, 1). For all x ∈ C, we define the mapping Bn : C → C by:

Anx = P ((1− βn)S(PS)n−1x+ βnT (PT )n−1x)

and

Bnx = P ((1− αn)T (PT )n−1x+ αnS(PS)n−1Anx).

Then it follows that xn+1 = Bnxn, Bn(p) = p for all p ∈ F and we have shown
earlier in Lemma 3.1 that

‖Bnx−Bny‖ ≤ (1 +M1µn)‖x− y‖+M2νn

= hn ‖x− y‖+ gn, (3.26)

for some M1,M2 > 0 and for all x, y ∈ C, where hn = 1 + M1µn, and gn =
M2νn with

∑∞
n=1 hn <∞,

∑∞
n=1 gn <∞ and hn → 1 as n→∞. Setting

Wn,m = Bn+m−1Bn+m−2 . . . Bn, m ≥ 1 (3.27)

and

bn,m = ‖Wn,m(txn + (1− t)p)− (tWn,mxn + (1− t)Wn,mq)‖.

From (3.26) and (3.27), we have

‖Wn,mx−Wn,my‖ (3.28)

= ‖Bn+m−1Bn+m−2 . . . Bnx−Bn+m−1Bn+m−2 . . . Bny‖
≤ hn+m−1‖Bn+m−2 . . . Bnx−Bn+m−2 . . . Bny‖+ gn+m−1

≤ hn+m−1hn+m−2‖Bn+m−3 . . . Bnx−Bn+m−3 . . . Bny‖
+ gn+m−1 + gn+m−2

...

≤
( n+m−1∏

k=n

hk

)
‖x− y‖+

n+m−1∑
k=n

gk

= Vn‖x− y‖+

n+m−1∑
k=n

gk, (3.29)
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for all x, y ∈ C, where Vn =
∏n+m−1

k=n hk and Wn,mxn = xn+m, Wn,mp = p for
all p ∈ F . Thus

an+m(t) = ‖txn+m + (1− t)p− q‖
≤ bn,m + ‖Wn,m(txn + (1− t)p)− q‖

≤ bn,m + Vnan(t) +

n+m−1∑
k=n

gk. (3.30)

By using Theorem 2.3 in [7], we have

bn,m ≤ ϕ−1(‖xn − u‖ − ‖Wn,mxn −Wn,mu‖)
≤ ϕ−1(‖xn − u‖ − ‖xn+m − u+ u−Wn,mu‖)
≤ ϕ−1(‖xn − u‖ − (‖xn+m − u‖ − ‖Wn,mu− u‖))

and so the sequence {bn,m} converges uniformly to 0, i.e., bn,m → 0 as n→∞.
Since limn→∞ Vn = 1 and

∑∞
n=1 gn <∞, that is, gn → 0 as n→∞, therefore

from (3.30), we have

lim sup
n→∞

an(t) ≤ lim
n,m→∞

bn,m + lim inf
n→∞

an(t) + 0 = lim inf
n→∞

an(t).

This shows that limn→∞ an(t) exists, that is, limn→∞ ‖txn+(1−t)p−q‖ exists
for all t ∈ [0, 1]. This completes the proof. �

Now, we prove a weak convergence theorem for the spaces whose dual have
Kadec-Klee property (KK-property).

Theorem 3.5. Let E be a real uniformly convex Banach space such that its
dual E∗ has the Kadec-Klee property and C be a nonempty closed convex subset
of E. Let P : E → C be a nonexpansive retraction of E into C and S, T : C →
E be two total asymptotically nonexpansive non-self mappings with sequences
{µn} and {νn} as defined in Proposition 2.1 and F = F (S) ∩ F (T ) 6= ∅.
Let {xn} be the iteration scheme defined by (1.11), where {αn} and {βn} are
sequences in [δ, 1− δ] for all n ∈ N and for some δ ∈ (0, 1) and the following
conditions are satisfied:

(i)
∑∞

n=1 µn <∞ and
∑∞

n=1 νn <∞;
(ii) there exists a constant K > 0 such that ψ(t) ≤ K t, t ≥ 0.

If the mappings I − S and I − T , where I denotes the identity mapping, are
demiclosed at zero, then {xn} converges weakly to a common fixed point of the
mappings S and T .

Proof. By Lemma 3.1, {xn} is bounded and since E is reflexive, there exists a
subsequence {xnj} of {xn} which converges weakly to some p ∈ C. By Lemma
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3.2, we have

lim
j→∞

‖xnj − Sxnj‖ = 0 and lim
j→∞

‖xnj − Txnj‖ = 0.

Since by hypothesis the mappings I − S and I − T are demiclosed at zero,
therefore Sp = p and Tp = p, which means p ∈ F . Now, we show that
{xn} converges weakly to p. Suppose {xni} is another subsequence of {xn}
converges weakly to some q ∈ C. By the same method as above, we have
q ∈ F and p, q ∈ ww(xn). By Lemma 3.4, the limit

lim
n→∞

‖txn + (1− t)p− q‖

exists for all t ∈ [0, 1] and so p = q by Lemma 2.4. Thus, the sequence {xn}
converges weakly to p ∈ F . This completes the proof. �

Example 3.6. ([28], Example 3.10) Let E be the real line with the usual
norm |.|, C = [0,∞) and P be the identity mapping. Assume that S(x) = x
and T (x) = sinx for all x ∈ C. Let ψ be the strictly increasing continuous
function such that ψ : R+ → R+ with ψ(0) = 0. Let {µn}n≥1 and {νn}n≥1
be two nonnegative real sequences defined by µn = 1

n2 and νn = 1
n3 for all

n ≥ 1 with µn → 0 and νn → 0 as n → ∞. Then S and T are total
asymptotically nonexpansive mappings with common fixed point 0, that is,
F = F (S) ∩ F (T ) = {0}.

4. Concluding remarks

In this paper, we establish some weak convergence theorems for newly de-
fined two-step iteration scheme for two total asymptotically nonexpansive non-
self mappings in the framework of uniformly convex Banach spaces. The re-
sults presented in this paper extend, generalize and improve several results
from the current existing literature by means of more general class of map-
pings, spaces and iteration schemes considered in this paper.
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