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Abstract. In this paper, the existence and uniqueness of local mild solution to quasilinear

equation with additive cylindrical Wiener process in a separable Hilbert space are established

using contraction mapping principle. Here we employ the technique used by Pazy to treat

homogeneous quasilinear evolution equations. We first show the existence of mild solution

of the corresponding linear part, using which we define a contraction map on a suitable

complete metric space. The fixed point then obtained using contraction mapping principle

is the mild solution of the quasilinear equation.

1. Introduction

In recent decades there has been a tremendous emphasis on understanding
and modeling nonlinear processes which are often governed by nonlinear sto-
chastic differential equations. The reason for this growing interest is because
the field of stochastic processes forms a bridge between central mathematical
issues and practical applications. It arose initially from the study of Brownian
motion by Wiener and was extended by Itô, Levy, Kolmogorov and others,
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to a general theory of stochastic differential equations (SDEs). In the case of
ordinary differential equations (ODEs), this type of stochastic equations has
been well developed since Itô introduced the stochastic integral equations in
the mid-1940s (see [9],[8]). Until the 1960s, most of the work on stochastic dif-
ferential equations had been confined to stochastic ODEs. Since then, spurred
by the modern applications, partial differential equations (PDEs) with ran-
dom parameters, such as the coefficients or the forcing term, have begun to
attract the attention of many researchers.

Before the 1970s, there was no general framework for the study of stochastic
PDEs. Later, by recasting stochastic partial differential equations (SPDEs) as
stochastic evolution equations or stochastic ODEs in Hilbert or Banach spaces,
a more coherent theory of SPDEs, under the cover of stochastic evolution
equations, began to develop steadily. For study of ODEs one can refer [13] (see
also [20]). Since then the SPDEs are more or less, synonymous with stochastic
evolution equations. The study of SPDEs in Hilbert space goes back to Baklan
[1]. He proved the existence of solutions for a stochastic parabolic equation or
parabolic Itô equation with the aid of the associated Green’s function. This
technique is a precursor to what is now known as the semigroup method and
the solution in the Itô sense is called a mild solution. For further reading on
this, one can refer to [3] and[4].

Semigroup theory is an important part in mathematics having several con-
nections with theory of partial differential equations. Semigroups have been
successfully applied to treat both semilinear and quasilinear equations. A sys-
tematic study of deterministic quasilinear equations of evolution can be seen
in [10], [11], [12] and [14]. The assumption that the linear part of the equation
is an infinitesimal generator of a linear semigroup, is equivalent to the mini-
mal requirement that the studied equation, in its simplest form, has a unique
solution continuously depending on the initial data. Semigroup formulation
allows a uniform treatment of parabolic, hyperbolic and also delay equations.
In numerous situations results obtained by more specialized SPDE method
can be recovered by semigroup approach.

The Cauchy problem for stochastic semilinear equation in Hilbert space X
is given by,

dx(t) +A (t)x(t)dt = f(t, x(t))dt+ σ(t, x(t))dW (t), t ∈ (0, T ],

x(0) = x0. (1.1)

where (Ω,P,F) is a complete probabiltiy space with a filtration {Ft}t∈[0,T ].
The operators {A(t)}t∈[0,T ] are unbounded and with domains which may be
time dependent. The functions f : [0, T ]×X→ X and σ : [0, T ]×X→ L(Y,X)
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(Y is another Hilbert space) are measurable and adapted. W (t) is cylindrical
Wiener process on Y with respect to the filtration {Ft}t∈[0,T ].

Dawson [6] used semigroup methods to study (1.1) in the autonomous case
(A is constant). This work has been further developed by Da Prato and
Zabczyk and their collaborators (see [4], [5] and references therein). In [17],
Seidler considered the non-autonomous case with D(A(t)) constant in time.
An extension to non-autonomous setting with D(A(t)) depending on time was
given in [15] and [21]. In [7], Fernando studied stochastic counterpart of Kato’s
quasilinear partial differential equations seen in [12] using semigroup approach
with A depending on time and space and taking S−α in the place of σ(t, ),
α > 2 and proved the existence and uniqueness of mild solutions using Ba-
nach fixed point theorem. Fixed point theorems play a vital role in proving
existence (see [18] and [19]) and also controllability of solutions of various dif-
ferential equations (see [2]). In this paper, we consider Lipschitz perturbation
to stochastic quasilinear partial differential equation with additive cylindrical
Wiener process considered in [7].

2. Preliminaries

We consider X and Y to be separable Hilbert spaces with norms ‖ · ‖X and
‖ · ‖Y respectively. L(X,Y) denotes the space of all bounded linear operators
from X to Y with norm ‖ · ‖L(X,Y).
For β,M ∈ R, let G(X,M, β) denote the set of all linear operators A in X,
such that −A generates a C0 semigroup {e−tA}t≥0 with∥∥e−tA∥∥

L(X,X)
≤Meβt, t ∈ [0,∞).

In particular, A is m-accretive if A ∈ G(X, 1, 0), in which case {e−tA}t≥0 is a
contraction semigroup. A is quasi-m-accretive if A ∈ G(X, 1, β). Moreover if
A is quasi-m-accretive, then A is stable with stability index 1, β (see [10]).

Let (Ω,F ,P) be complete probability space with a filtration {Ft}t∈[0,T ].
W (t) be a cylindrical Wiener process with respect to the filtration {Ft}t∈[0,T ]

on X. Consider the Cauchy problem for stochastic quasilinear equation with
additive cylindrical Wiener noise

dx(t) +A (t, x(t))x(t)dt = f(t, x(t))dt+ ΦdW (t), t ∈ (0, T ],

x(0) = x0 (2.1)

in X. Here x(t, ω) is the unknown taking values in X and x0 is F0 measurable.
{A (t, x(t), ω)}t∈[0,T ],ω∈Ω is a family of possibly unbounded operators on X and
f is a semilinear nonlinearity. From now on, we do not mention the dependence
on the probability space explicitly unless necessary.
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For a fixed X-valued stochastic process z ∈ E, we consider the corresponding
linear equation to (2.1),

dx(t) +A (t, z(t))x(t)dt = f (t, z(t)) dt+ ΦdW (t), t ∈ (0, T ],

x(0) = x0. (2.2)

Here we make the following assumptions,

(H1) Let B be an open ball in Y with center a and containing x0 a.s. There-
fore, it is possible to choose r0 such that ‖x0− a‖2Y < r0 a.s. For some

T̃ ≤ T (to be determined later) we denote E to be the set of all

strongly measurable functions z : Ω × [0, T̃ ∧ τN ] → Y, such that for

all t ∈ [0, T̃ ∧ τN ], ‖z(t)− a‖2Y ≤ r0 a.s., and t→ z(t) is continuous as
X-valued functions a.s., where τN is stopping time defined later.

(H2) X be a separable Hilbert space. Y is another separable Hilbert space
which is densely and continuously embedded in X and there exists an
isomorphism S : Y → X. The norm of Y is chosen such that S is an
isometry from Y to X, i.e., we have ‖S‖L(Y,X) = ‖S−1‖L(X,Y) = 1.

(H3) A(t, z) is a linear operator on X and ∀(t, z) ∈ [0, T ] × E, A(t, z) ∈
G(X, 1, β) and

SA(t, z)S−1 = A(t, z) +B(t, z)

where B(t, z) ∈ L(X,X) with ‖B(t, z)‖L(X,X) ≤ C1. The above relation
is satisfied in the strict sense, including the domain relation. Therefore,
x ∈ D(A(t, z)) if and only if S−1x ∈ D(A(t, z)) and A(t, z)S−1x ∈ Y.

(H4) Y ⊂ D(A(t, z)) for (t, z) ∈ [0, T ] × E so that ∀(t, z) ∈ [0, T ] × E,
A(t, z) restricted to Y belongs to L(Y,X) with ‖A(t, z)‖L(Y,X) ≤ C0.
Also, ∀z ∈ E, t → A(t, z) is continuous in L(Y,X) norm and ∀t ∈
[0, T ], z → A(t, z) is Lipschitz continuous in L(Y,X) norm,

‖A(t, z1)−A(t, z2)‖L(Y,X) ≤ L1‖z1 − z2‖X.

(H5) ∀(t, z) ∈ [0, T ]× E, we have A(t, z)a ∈ Y with ‖A(t, z)a‖Y ≤ C2.

(H6) f be a bounded function on [0, T ]×E → Y with ‖f(t, z)‖Y ≤ C3. Also,
∀z ∈ E, t→ f(t, z) is continuous in X-norm and ∀t ∈ [0, T ], z → f(t, z)
is X-Lipschitz continuous

‖f(t, z1)− f(t, z2)‖X ≤ L2‖z1 − z2‖X.

(H7) The operator Φ satisfies ‖SnΦ‖2L2
0
≤ M < ∞, for n = 1, 2. L2

0 is

Hilbert-Schmidt space, same as defined in [4].



On stochastic quasilinear evolution equations in Hilbert spaces 311

The constants β,C0, C1, C2, C3, L1, L2 in the assumptions depend on x(t). Let
us define the stopping time τN by,

τN := inf
t≥0
{t : β ∨ C0 ∨ C1 ∨ C2 ∨ C3 ∨ L1 ∨ L2 ≥ N}.

Remark 2.1. Let X1(t, s) and X2(t, s) be evolution operators on 0 ≤ s ≤ t ≤
T , associated with operators A1(t) and A2(t) on 0 ≤ t ≤ T (satisfying assump-
tions (H3) and (H4)) respectively. Assume that Y ⊂ D(A1(t))∩D(A2(t)), for
0 ≤ t ≤ T . Then ∀ y ∈ Y we have,

X1(t, s)y −X2(t, s)y = −
∫ t

s

∂

∂r
X1(t, r)X2(r, s)ydr

=

∫ t

s
X1(t, r) [A2(r)−A1(r)]X2(r, s)ydr. (2.3)

Remark 2.2. We have the following elementary inequality for any m,n ∈ N
and ai ≥ 0 (

n∑
i=1

ai

)m
≤ nm−1

n∑
i=1

ami . (2.4)

3. Existence theorem

In this section, we prove the the existence of mild solution to the linear
equation (2.2) corresponding to the quasilinear equation (2.1). We denote
A (t, z(t)) by Az(t) and similarly for f and B and rewrite (2.2) as follows,

dx(t) +Az (t)x(t)dt = fz(t)dt+ ΦdW (t), t ∈ (0, T ],

x(0) = x0. (3.1)

Lemma 3.1. For t ∈ [0, T̃ ], t→ Az(t) is continuous in L(Y,X) norm a.s.

Proof. Consider,

‖Az(t)−Az(t′)‖L(Y,X)

= ‖A(t, z(t))−A(t′, z(t′))‖L(Y,X)

≤ ‖A(t, z(t))−A(t, z(t′))‖L(Y,X) + ‖A(t, z(t′))−A(t′, z(t′))‖L(Y,X)

≤ L1‖z(t)− z(t′)‖X + ‖A(t, z(t′))−A(t′, z(t′))‖L(Y,X).

Using hypothesis (H4) and the assumption t → z(t) is continuous a.s. we
obtain the desired result. �
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Lemma 3.2. For t ∈ [0, T̃ ], t→ Bz(t) is weakly continuous and hence strongly
measurable as an operator valued function a.s.

Proof. By hypothesis (H3), we can write

S−1Bz(t)y = Az(t)S−1y − S−1Az(t)y, ∀ y ∈ Y.

Since, S−1y ∈ Y we have the right hand side of the above equation is continu-
ous in X-norm a.s., using Lemma 3.1. Hence the same is true for left member
and therefore we have, ∀y ∈ Y, t → S−1Bz(t)y is continuous in X-norm a.s.
Using hypothesis (H3), we obtain ‖S−1Bz(t)‖L(X,X) ≤ C1‖S−1‖L(X,X) and fur-

ther since Y is dense in X we have ∀x ∈ X, t → S−1Bz(t)x is continuous in
X-norm a.s. Since,

‖S−1Bz(t)x‖Y ≤ ‖S−1‖L(X,Y)‖Bz(t)‖L(X,X)‖x‖X ≤ C1‖x‖X ≤ C1‖x‖Y,

we have t→ S−1Bz(t) is bounded in Y-norm a.s. By using Lemma 7.4 in [12],
we obtain ∀x ∈ X, t→ S−1Bz(t)x is weakly continuous as Y-valued function
a.s. Consequently, since S−1 is an isometry from X to Y we obtain ∀x ∈ X,
t→ Bz(t)x is strongly measurable as X-valued function a.s. �

Theorem 3.3. If hypothesis (H1)-(H7) are satisfied and E‖x0‖2Y < ∞, then
(3.1) has a unique mild solution,

x ∈ L2(Ω;C([0, T ∧ τN ],Y)).

Proof. The above two lemmas which are direct consequences of the correspond-
ing deterministic results in [12] ensures all the condition of Theorem 1 in [12]
are fulfilled by the family {Az(t)}. This guarantees that there exists a unique
family of evolution operators {Xz(t, s)} defined on 0 ≤ s ≤ t ≤ T ∧ τN for
(3.1) with the properties described in Theorem 1 in [12]. Also we can obtain
the following estimates as given in [12],

sup
0≤s≤t≤T∧τN

‖Xz(t, s)‖L(X,X) ≤ eβT ≤ eNT , (3.2)

sup
0≤s≤t≤T∧τN

‖Xz(t, s)‖L(Y,Y) ≤ e(β+C1)T ≤ e2NT . (3.3)

The stochastic mild solution for the linear problem (3.1) in terms of the family
of evolution operators {Xz(t, s)} on 0 ≤ s ≤ t ≤ T ∧ τN is usually represented
as follows:

x(t) = Xz(t, 0)x0 +

∫ t

0
Xz(t, s)fz(s)ds+

∫ t

0
Xz(t, s)ΦdW (s).

Since Xz(t, s) is generally not Fs measurable, the stochastic integral above is
not defined in Itô sense. To rectify this issue, we apply integration by parts
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and obtain a new representation for the mild solution (as in [15]) which does
not involve the stochastic integration of non-adapted integrands as seen below.

x(t) = Xz(t, 0)x0 +

∫ t

0
Xz(t, s)fz(s)ds+Xz(t, 0)

∫ t

0
ΦdW (θ)

+

∫ t

0
Xz(t, s)Az(s)

(∫ t

s
ΦdW (θ)

)
ds. (3.4)

We now show that x(t) given in (3.4) is in the space L2(Ω;C([0, T ∧ τN ],Y))
for which we consider

E sup
0≤t≤T∧τN

‖x(t)‖2Y

= E sup
0≤t≤T∧τN

∥∥∥∥Xz(t, 0)x0 +

∫ t

0
Xz(t, s)fz(s)ds +Xz(t, 0)

∫ t

0
ΦdW (θ)

+

∫ t

0
Xz(t, s)Az(s)

(∫ t

s
ΦdW (θ)

)
ds

∥∥∥∥2

Y

≤ 4

(
E sup

0≤t≤T
‖Xz(t, 0)x0‖2Y + E sup

0≤t≤T

∥∥∥∥∫ t

0
Xz(t, s)fz(s)ds

∥∥∥∥2

Y

+ E sup
0≤t≤T∧τN

∥∥∥∥Xz(t, 0)

∫ t

0
ΦdW (θ)

∥∥∥∥2

Y

+E sup
0≤t≤T∧τN

∥∥∥∥∫ t

0
Xz(t, s)Az(s)

(∫ t

s
ΦdW (θ)

)
ds

∥∥∥∥2

Y

)
=4 (A+B + C +D) ,

where we have used the inequality (2.4). Now, using (3.3) we estimate the
first term above as follows,

A = E sup
0≤t≤T∧τN

‖Xz(t, 0)x0‖2Y

≤ E sup
0≤t≤T∧τN

‖Xz(t, 0)‖2L(Y,Y) ‖x0‖2Y ≤ e4NTE ‖x0‖2Y .

Using (3.3) and hypothesis (H6) we obtain,

B = E sup
0≤t≤T∧τN

∥∥∥∥∫ t

0
Xz(t, s)fz(s)ds

∥∥∥∥2

Y

≤ E sup
0≤t≤T∧τN

t

∫ t

0
‖Xz(t, s)‖2L(Y,Y) ‖f

z(s)‖2Y ds

≤ T 2N2e4NT .



314 R. Mabel Lizzy, K. Balachandran and J. K. Kim

Using the fact that S is an isometry (i.e., hypothesis (H2)), (3.3), Theorem
3.8(ii) and Lemma 7.7 in [4] we obtain the following estimate,

C = E sup
0≤t≤T∧τN

∥∥∥∥Xz(t, 0)

∫ t

0
ΦdW (θ)

∥∥∥∥2

Y

= E sup
0≤t≤T∧τN

∥∥∥∥SXz(t, 0)S−1

∫ t

0
SΦdW (θ)

∥∥∥∥2

X

≤ E sup
0≤t≤T∧τN

‖S‖2L(Y,X) ‖X
z(t, 0)‖2L(Y,Y)

∥∥S−1
∥∥2

L(X,Y)

∥∥∥∥∫ t

0
SΦdW (θ)

∥∥∥∥2

X

≤ e4NTE sup
0≤t≤T∧τN

∥∥∥∥∫ t

0
SΦdW (θ)

∥∥∥∥2

X

≤ 4e4NT sup
0≤t≤T

E

∥∥∥∥∫ t

0
SΦdW (θ)

∥∥∥∥2

X

≤ 4MTe4NT .

Using hypothesis (H3) and (2.4) we get,

D = E sup
0≤t≤T∧τN

∥∥∥∥∫ t

0
Xz(t, s)Az(s)

(∫ t

s
ΦdW (θ)

)
ds

∥∥∥∥2

Y

= E sup
0≤t≤T∧τN

∥∥∥∥∫ t

0
Xz(t, s)Az(s)S−1

(∫ t

s
SΦdW (θ)

)
ds

∥∥∥∥2

Y

= E sup
0≤t≤T∧τN

∥∥∥∥∫ t

0
Xz(t, s)

(
S−1Az(s) + S−1Bz(s)

)(∫ t

s
SΦdW (θ)

)
ds

∥∥∥∥2

Y

≤ 2E sup
0≤t≤T∧τN

∥∥∥∥∫ t

0
SXz(t, s)S−1Az(s)

(∫ t

s
SΦdW (θ)

)
ds

∥∥∥∥2

X

+ 2E sup
0≤t≤T∧τN

∥∥∥∥∫ t

0
SXz(t, s)S−1Bz(s)

(∫ t

s
SΦdW (θ)

)
ds

∥∥∥∥2

X
= D1 +D2.

Using hypothesis (H2), (3.3) and hypothesis (H4) the first term is estimated
as follows,

D1 = 2E sup
0≤t≤T∧τN

∥∥∥∥∫ t

0
SXz(t, s)S−1Az(s)

(∫ t

s
SΦdW (θ)

)
ds

∥∥∥∥2

X

≤ 2Te4NTE sup
0≤t≤T∧τN

C2
0

∫ t

0

∥∥∥∥∫ t

s
S2ΦdW (θ)

∥∥∥∥2

X
ds
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= 2Te4NTN2E sup
0≤t≤T∧τN

∫ t

0

∥∥∥∥(∫ t

0
−
∫ s

0

)
S2ΦdW (θ)

∥∥∥∥2

X
ds

≤ 8T 2e4NTN2E sup
0≤t≤T∧τN

∥∥∥∥∫ t

0
S2ΦdW (θ)

∥∥∥∥2

X

≤ 32T 2e4NTN2

∫ T∧τN

0

∥∥S2Φ
∥∥2

L0
2

dθ

≤ 32T 3N2Me4NT .

Applying hypothesis (H3) we obtain the following result for the second term,

D2 = 2E sup
0≤t≤T∧τN

∥∥∥∥∫ t

0
SXz(t, s)S−1Bz(s)

(∫ t

s
SΦdW (θ)

)
ds

∥∥∥∥2

X

≤ 2Te4NTE sup
0≤t≤T∧τN

C2
1

∫ t

0

∥∥∥∥∫ t

s
SΦdW (θ)

∥∥∥∥2

X
ds

= 2Te4NTN2E sup
0≤t≤T∧τN

∫ t

0

∥∥∥∥(∫ t

0
−
∫ s

0

)
SΦdW (θ)

∥∥∥∥2

X
ds

≤ 8T 2e4NTN2E sup
0≤t≤T∧τN

∥∥∥∥∫ t

0
SΦdW (θ)

∥∥∥∥2

X

≤ 32T 2e4NTN2 sup
0≤t≤T∧τN

E

∥∥∥∥∫ t

0
SΦdW (θ)

∥∥∥∥2

X

≤ 32T 2e4NTN2

∫ T∧τN

0
‖SΦ‖2L0

2
dθ

≤ 32T 3N2Me4NT .

Therefore we have, using the fact that E‖x0‖2Y <∞ and hypothesis (H7),

E sup
0≤t≤T∧τN

‖x(t)‖2Y

≤ 4e4NT
(
E ‖x0‖2Y + T 2N2 + 4TM + 64T 3N2M

)
= K <∞. (3.5)

This completes the proof of the theorem. �

4. Local mild solution

In this section, we obtain the mild solution of (2.1) by first defining a map Λ
on the set E and choosing time small enough so that Λ becomes a contraction.
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Then using contraction mapping principle we obtain a fixed point for Λ in E
which is the mild solution of (2.1).

Theorem 4.1. If hypothesis (H1)-(H7) are satisfied and E‖x0 − a‖2Y < ∞,
then (2.1) has a unique mild solution

x ∈ L2(Ω;C([0, T̃ ∧ τN ],Y)) for some T̃ > 0 with T̃ ≤ T.

Proof. We first show that the solution obtained in Theorem 3.3 belongs to E
a.s. for some T1 ≤ T . For the same, we first set x̃(t) = x(t)− a and see that,

dx̃(t) +Az(t)x̃(t)dt = fz(t)dt+ ΦdW (t)−Az(t)a dt, t ∈ (0, T ],

x̃(0) = x0 − a.

Then,

x(t)− a = Xz(t, 0)(x0 − a) +

∫ t

0
Xz(t, s)fz(s)ds

+ Xz(t, 0)

∫ t

0
ΦdW (θ) +

∫ t

0
Xz(t, s)Az(s)

(∫ t

s
ΦdW (θ)

)
ds

−
∫ t

0
Xz(t, s)Az(s)a ds.

We now consider for some T1 ≤ T (to be fixed later), and using (2.4) we get,

E sup
0≤t≤T1∧τN

‖x(t)− a‖2Y

≤ 5

(
E sup

0≤t≤T1
‖Xz(t, 0)(x0 − a)‖2Y

+ E sup
0≤t≤T1∧τN

∥∥∥∥∫ t

0
Xz(t, s)fz(s)ds

∥∥∥∥2

Y

+ E sup
0≤t≤T1∧τN

∥∥∥∥Xz(t, 0)

∫ t

0
ΦdW (θ)

∥∥∥∥2

Y

+ E sup
0≤t≤T1∧τN

∥∥∥∥∫ t

0
Xz(t, s)Az(s)

(∫ t

s
ΦdW (θ)

)
ds

∥∥∥∥2

Y

+ E sup
0≤t≤T1∧τN

∥∥∥∥∫ t

0
Xz(t, s)Az(s)ads

∥∥∥∥2

Y

)
.

The first four terms in the above inequality can be estimated as in Theorem
3.3. We now use hypothesis (H5) along with (3.3) to obtain the following
estimate for the fifth term.
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E sup
0≤t≤T1∧τN

∥∥∥∥∫ t

0
Xz(t, s)Av(t)a dt

∥∥∥∥2

Y

≤ T1E sup
0≤t≤T1∧τN

∫ t

0
‖Xz(t, s)Av(s)a‖2Y ds

≤ T1e
4NT1E sup

0≤t≤T1

∫ t

0
‖Av(s)a‖2Y ds ≤ T 2

1N
2e4NT1 .

Therefore,

E sup
0≤t≤T1∧τN

‖x(t)− a‖2Y

≤ 5e4NT1
(
E ‖x0 − a‖2Y + 2T 2

1N
2 + 4T1M + 64T 3

1N
2M
)
≤ r0,

by choosing T1 ≤ T sufficiently small. Using Kolmogorov’s continuous theo-
rem, there exists a continuous modification of x which belongs to E a.s.
Now let us define a distance function on E as,

d(v, w) = E sup
0≤t≤T1∧τN

‖v(t)− w(t)‖2X .

Then we see that (E, d) forms a complete metric space, since closed ball in Y
is a closed subset of X (see Lemma 7.3 in [12]) and also using the completeness
of the space X. We now define a map,

Λ : E → E 3 Λ(z) = x,

where x is the solution of equation (3.1) given by Theorem 3.3. Next, we show

that Λ is a strict contraction if we choose T̃ ≤ T1 ≤ T . Consider,

d (Λ(z1),Λ(z2))

= E sup
0≤t≤T̃∧τN

‖Λ(z1)− Λ(z2)‖2X

≤ 5

(
E sup

0≤t≤T̃∧τN
‖(Xz1(t, 0)−Xz2(t, 0)) (x0 − a)‖2X

+ E sup
0≤t≤T̃∧τN

∥∥∥∥∫ t

0
(Xz1(t, s)fz1(s)−Xz2(t, s)fz2(s)) ds

∥∥∥∥2

X

+ E sup
0≤t≤T̃∧τN

∥∥∥∥(Xz1(t, 0)−Xz2(t, 0))

∫ t

0
ΦdW (θ)

∥∥∥∥2

X

+ E sup
0≤t≤T̃∧τN

∥∥∥∥∫ t

0
(Xz1(t, s)Az1(s)−Xz2(t, s)Az2(s))

(∫ t

s
ΦdW (θ)

)
ds

∥∥∥∥2

X
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+E sup
0≤t≤T̃∧τN

∥∥∥∥∫ t

0
(Xz1(t, s)Az1(s)a−Xz2(t, s)Az2(s)) ads

∥∥∥∥2

X

)
= 5(F +G+H + I + J).

Using (2.3), (3.2), (3.3) and hypothesis (H4) we obtain the following estimate,

F = E sup
0≤t≤T̃∧τN

‖(Xz1(t, 0)−Xz2(t, 0)) (x0 − a)‖2X

≤ T̃E sup
0≤t≤T̃∧τN

∫ t

0
‖Xz1(t, r) (Az2(r)−Az1(r))Xz2(r, 0)(x0 − a)‖2X dr

≤ T̃ 2e6NT̃E

(
‖x0 − a‖2Y sup

0≤t≤T̃
‖Az1(t)−Az2(t)‖2L(Y,X)

)
≤ r0N

2T̃ 2e6NT̃E sup
0≤t≤T̃

‖z1(t)− z2(t)‖2X .

Using (2.3), (2.4), Minkowski’s inequality for integrals, hypothesis (H4) and
(H6),

G = E sup
0≤t≤T̃∧τN

∥∥∥∥∫ t

0
(Xz1(t, s)fz1(s)−Xz2(t, s)fz2(s)) ds

∥∥∥∥2

X

≤ 2E sup
0≤t≤T̃∧τN

∥∥∥∥∫ t

0
[Xz1(t, s)−Xz2(t, s)] fz1(s)ds

∥∥∥∥2

X

+ 2E sup
0≤t≤T̃∧τN

∥∥∥∥∫ t

0
Xz2(t, s) [fz1(s)− fz2(s)] ds

∥∥∥∥2

X

= 2E sup
0≤t≤T̃∧τN

∥∥∥∥∫ t

0

∫ t

s
Xz1(t, r) [Az2(r)−Az1(r)]Xz2(r, s)fz1(s)drds

∥∥∥∥2

X

+ 2E sup
0≤t≤T̃∧τN

∥∥∥∥∫ t

0
Xz2(t, s) [fz1(s)− fz2(s)] ds

∥∥∥∥2

X

≤ 2E sup
0≤t≤T̃∧τN

[∫ t

0

∫ r

0
‖Xz1(t, r) [Az2(r)−Az1(r)]Xz2(r, s)fz1(s)‖X dsdr

]2

+ 2T̃E sup
0≤t≤T̃∧τN

∫ t

0
‖Xz2(t, s) [fz1(s)− fz2(s)]‖2X ds

≤ 2
(
T̃ 4N4e6NT̃ + T̃ 2N2e2NT̃

)
E sup

0≤t≤T̃
‖z1(t)− z2(t)‖2X .
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Using (2.3), (3.2), (3.3), Hölder’s inequality, hypothesis (H7) and (H4) we
obtain the following inequalities,

H =E sup
0≤t≤T̃∧τN

∥∥∥∥(Xz1(t, 0)−Xz2(t, 0))

∫ t

0
ΦdW (θ)

∥∥∥∥2

X

≤T̃E sup
0≤t≤T̃∧τN

∫ t

0

∥∥∥∥Xz1(t, r) (Az2(r)−Az1(r))Xz2(r, 0)

(∫ t

0
ΦdW (θ)

)∥∥∥∥2

X
dr

≤T̃ e6NT̃E sup
0≤t≤T̃∧τN

∫ t

0
‖Az1(r)−Az2(r)‖2L(Y,X)

∥∥∥∥∫ t

0
SΦdW (θ)

∥∥∥∥2

X
dr

≤T̃ 3Me6NT̃E sup
0≤t≤T̃

‖z1(t)− z2(t)‖2X .

We now consider,

I = E sup
0≤t≤T̃∧τN

∥∥∥∥∫ t

0
(Xz1(t, s)Az1(s)−Xz2(t, s)Az2(s))

(∫ t

s
ΦdW (θ)

)
ds

∥∥∥∥2

X

≤ 2E sup
0≤t≤T̃∧τN

∥∥∥∥∫ t

0
Xz1(t, s) (Az1(s)−Az2(s))

(∫ t

s
ΦdW (θ)

)
ds

∥∥∥∥2

X

+ 2E sup
0≤t≤T̃∧τN

∥∥∥∥∫ t

0
(Xz1(t, s)−Xz2(t, s))Az2(s)

(∫ t

s
ΦdW (θ)

)
ds

∥∥∥∥2

X

= I1 + I2.

The first term in the above inequality is estimated using (3.2), hypothesis (H7)
and Hölder’s inequality as follows,

I1 = 2E sup
0≤t≤T̃∧τN

∥∥∥∥∫ t

0
Xz1(t, s) (Az1(s)−Az2(s))

(∫ t

s
ΦdW (θ)

)
ds

∥∥∥∥2

X

≤ 2T̃ e2NT̃E sup
0≤t≤T̃∧τN

∫ t

0
‖Az1(s)−Az2(s)‖2L(Y,X)

∥∥∥∥∫ t

s
SΦdW (θ)

∥∥∥∥2

X
ds

≤ 2T̃ 2Me2NT̃E sup
0≤t≤T̃∧τN

‖z1(t)− z2(t)‖2X .

The second term in estimating I is now considered. Using (2.3), Minkowski’s
inequality for integral, (3.2), (3.3), hypothesis (H7) and hypothesis (H3)
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I2 = 2E sup
0≤t≤T̃∧τN

∥∥∥∥∫ t

0
(Xz1(t, s)−Xz2(t, s))Az2(s)

(∫ t

s
ΦdW (θ)

)
ds

∥∥∥∥2

X

≤ 2T̃ 2E sup
0≤t≤T̃∧τN

∫ t

0

∫ r

0

∥∥∥∥Xz1(t, r) (Az1(r)−Az2(r))Xz2(r, s)Az2(s)

(∫ t

s
ΦdW (θ)

)∥∥∥∥2

X
dsdr

≤ 2T̃ 2e6NT̃E sup
0≤t≤T̃∧τN

‖Az1(t)−Az2(t)‖2L(Y,X)∫ t

0

∫ r

0

∥∥∥∥SAz2(s)S−1

(∫ t

s
SΦdW (θ)

)∥∥∥∥2

X
dsdr

≤ 2T̃ 2e6NT̃E sup
0≤t≤T̃

‖Az1(t)−Az2(t)‖2L(Y,X)∫ t

0

∫ r

0

∥∥∥∥(Az2(s) +Bz2(s))

(∫ t

s
SΦdW (θ)

)∥∥∥∥2

X
dsdr

≤ 4T̃ 2e6NT̃E sup
0≤t≤T̃

‖Az1(t)−Az2(t)‖2L(Y,X)

≤ 2T̃ 4e6NT̃E sup
0≤t≤T̃

‖Az1(t)−Az2(t)‖2L(Y,X)

≤ 4T̃ 4N2Me6NT̃E sup
0≤t≤T̃

‖z1(t)− z2(t)‖2X .

The last term is estimated as earlier and we obtain,

J = E sup
0≤t≤T̃

∥∥∥∥∫ t

0
(Xz1(t, s)Az1(s)−Xz2(t, s)Az2(s)) ads

∥∥∥∥2

X

≤ 2E sup
0≤t≤T̃

∥∥∥∥∫ t

0
Xz1(t, s) (Az1(s)−Az2(s)) ads

∥∥∥∥2

X

+ 2E sup
0≤t≤T̃

∥∥∥∥∫ t

0
(Xz1(t, s)−Xz2(t, s))Az2(s)ads

∥∥∥∥2

X

= J1 + J2.

The first term in the above inequality is estimated using (3.2) and Hölder’s
inequality as follows,
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J1 = 2E sup
0≤t≤T̃∧τN

∥∥∥∥∫ t

0
Xz1(t, s) (Az1(s)−Az2(s)) ads

∥∥∥∥2

X

≤ 2T̃ e2NT̃E sup
0≤t≤T̃∧τN

∫ t

0
‖Az1(s)−Az2(s)‖2L(Y,X) ‖a‖

2
Y ds

≤ 2 ‖a‖2Y T̃
2e2NT̃E sup

0≤t≤T̃∧τN
‖Az1(t)−Az2(t)‖2L(Y,X)

≤ 2T̃ 2N2e2NT̃ ‖a‖2YE sup
0≤t≤T̃∧τN

‖z1(t)− z2(t)‖2X .

The second term in estimating J is now considered. Using (2.3), Minkowski’s
inequality for integral, (3.2), (3.3) and hypothesis (H3)

J2 = 2E sup
0≤t≤T̃∧τN

∥∥∥∥∫ t

0
(Xz1(t, s)−Xz2(t, s))Az2(s)a ds

∥∥∥∥2

X

= 2E sup
0≤t≤T̃∧τN

∥∥∥∥∫ t

0

∫ t

s
Xz1(t, r) (Az1(r)−Az2(r))Xz2(r, s)Az2(s)a drds

∥∥∥∥2

X

≤ T̃ 4e6NT̃ ‖Az2(s)a‖2YE sup
0≤t≤T̃

‖Az1(t)−Az2(t)‖2L(Y,X)

≤ T̃ 4N4e6NT̃E sup
0≤t≤T̃

‖z1(t)− z2(t)‖2X .

Therefore,

d (Λ(z1),Λ(z2))

≤ T̃ 2
[
r0N

2e6NT̃ + 2T̃ 2N4e6NT̃ + 2N2e2NT̃ + T̃Me6NT̃ + 2Me2NT̃

+ 4T̃ 2N2Me6NT̃ +2N2e2NT̃ ‖a‖2Y + T̃ 2N4e6NT̃
]
E sup

0≤t≤T̃
‖z1(t)− z2(t)‖2X

= ρd(z1, z2),

where ρ can be made strictly less than 1 by choosing T̃ small enough. Hence
we can now apply contraction mapping principle to show that Λ has an unique
fixed point which is the solution of the quasilinear delay stochastic differential
equation given by (2.1). �
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Remark 4.2. We can now apply the same technique as above to the corre-
sponding stochastic quasilinear delay differential equation to (2.1) in a sepa-
rable Hilbert space X,

dx(t) +A (t, x(t), x(t− r))x(t)dt

= f(t, x(t), x(t− r))dt+ ΦdW (t), t ∈ (0, T ],

x(t) = φ(t), t ∈ [−r, 0], (4.1)

where for all t ∈ [−r, 0], t→ φ(t) is continuous and F0 measurable.

We alter the definition of the set E to be the set of all strongly measurable
functions z : Ω × [−r, T̃ ∧ τN ] → Y, such that for all t ∈ [−r, 0] we have

z(t) = φ(t) a.s., and for all t ∈ [−r, T̃ ∧ τN ], ‖z(t) − a‖2Y ≤ r0 a.s., along
with the condition, t→ z(t) is continuous as X-valued functions a.s. Now, the
corresponding linear equation is given as follows,

dx(t) +A (t, z(t), z(t− r))x(t)dt=f(t, z(t), z(t− r))dt+ ΦdW (t), t ∈ (0, T ],

x(t) = φ(t), t ∈ [−r, 0].

Here we replace the assumptions (H3)-(H6) by (H3)′-(H6)′ given below.

(H3)′ A(t, z, w) is a linear operator on X and ∀(t, z, w) ∈ [0, T ∧ τN ] × E2,
A(t, z, w) ∈ G(X, 1, β) and

SA(t, z, w)S−1 = A(t, z, w) +B(t, z, w)

where B(t, z, w) ∈ L(X,X) with ‖B(t, z, w)‖L(X,X) ≤ C1.The above
relation is satisfied in the strict sense, including the domain relation.
Therefore, x ∈ D(A(t, z, w)) if and only if S−1x ∈ D(A(t, z, w)) and
A(t, z, w)S−1x ∈ Y.

(H4)′ Y ⊂ D(A(t, z, w)) for (t, z, w) ∈ [0, T ∧ τN ]× E2 so that,
∀(t, z, w) ∈ [0, T∧τN ]×E2, A(t, z, w) restricted to Y belongs to L(Y,X)
with ‖A(t, z, w)‖L(Y,X) ≤ C0. Also, ∀(z, w) ∈ E2, t → A(t, z, w) is
continuous in L(Y,X) norm and ∀t ∈ [0, T ∧ τN ], (z, w)→ A(t, z, w) is
Lipschitz continuous in L(Y,X) norm,

‖A(t, z1, w1)−A(t, z2, w2)‖L(Y,X) ≤ L1 (‖z1 − z2‖X + ‖w1 − w2‖X) .

(H5)′ ∀(t, z, w) ∈ [0, T ∧ τN ]× E2 we have A(t, z, w)a ∈ Y with

‖A(t, z, w)a‖Y ≤ C2.

(H6)′ f be a bounded function on [0, T ∧ τN ]× E → Y with

‖f(t, z, w)‖Y ≤ C3.
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Also, ∀(z, w) ∈ E2, t → f(t, z, w) is continuous in X-norm and ∀t ∈
[0, T ∧ τN ], (z, w)→ f(t, z, w) is X-Lipschitz continuous

‖f(t, z1, w1)− f(t, z2, w2)‖X ≤ L2 (‖z1 − z2‖X + ‖w1 − w2‖X) .

Denoting A (t, z(t), z(t− r)) by Az(t) and using similar notation for f we can
proceed with the same method used for (2.1) to show that there exists unique
mild solution for (4.1).

References

[1] V.V. Baklan, On the existence of solutions of stochastic equations in Hilbert space,
Depov. Akad. Nauk. Ukr. USR., 10 (1963), 1299–1303.

[2] K. Balachandran and S. Karthikeyan, Controllability of nonlinear Itô stochastic inte-
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