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Abstract. In this paper, a high-order iterative scheme is established in order to get a
convergent sequence at a rate of order N (N > 1) to a local unique weak solution of a

nonlinear Love equation associated with mixed homogeneous conditions.

1. INTRODUCTION
In this paper, we consider the following Love equation with initial conditions
and mixed homogeneous conditions
Ut — Upg — Uggtt + Aug = f(z,t,u), 0<ax<l, 0<t<T, (1.1)
Uz (0, ) + ugt (0, 1) = u(1,t) = 0, (1.2)
u(z,0) = uo(x), w(z,0)=t1(z),

where g, 1, f, are given functions and A # 0 is a given function.
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When f =0, A =0, Eq.(1.1) is related to the Love equation
Ut — %Uxx - 2/~L2k2uxwtt = 07 (14)

presented by V. Radochovd in 1978 (see [12]). This equation describes the
vertical oscillations of a rod, which was established from Euler’s variational
equation of an energy function

S at [ [5Fp (uf + w2K22,) — §F (B2 + ppKugun)] de, (15)

the parameters in (1.5) have the following meanings: wu is the displacement, L
is the length of the rod, F' is the area of cross-section, k is the cross-section
radius, F is the Young modulus of the material and p is the mass density.
By using the Fourier method, Radochova [12] obtained a classical solution of
Prob. (1.4) associated with initial conditions (1.3) and boundary conditions

u(0,t) = u(L,t) =0, (1.6a)

or

u(0,t) =0,
) (1.6Db)
eug(L,t) + c“u, (L, t) =0,

where ¢? = %, e = 2u%k?. On the other hand, the asymptotic behaviour of

solutions for Prob. (1.3), (1.4), (1.6) as ¢ — 04 was also established by the
method of small parameters.

Equations of Love waves or Love type waves have been studied by many
authors, we refer to [3], [5], [6], [10], [15], [16] and references therein.

On the other hand, in [13], a symmetric version of the regularized long wave
equation (SRLW)

{ Ugppt — Ut = Pg + Ully, (1 7)

pt+u$:O7

has been proposed to describe weakly nonlinear ion acoustic and space - charge
waves. Eliminating p from (1.7), a class of SRLW is obtained as follows

Ut — Uy — Ugppt = —Ulgt — UgUy. (1.8)

Eq.(1.8) is explicitly symmetric in the x and ¢ derivatives and it is very similar
to the regularized long wave equation that describes shallow water waves and
plasma drift waves [1], [2]. The SRLW equation also arises in many other
areas of mathematical physics [4], [9], [11].
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In this paper, we associate with Eq.(1.1) a recurrent sequence {u,,} defined
by
32U,m a2um a4um aum
ot? 0x?  0t?0x? ot

(1.9)

’L
—Z;gzxtum D) (Um —tm_1)’, 0<z <1, 0<t<T,
with w,, satisfying (1.2), (1.3). The first term wg is chosen as ug = 0. If
f € CN([0,1] x Ry x R), we prove that the sequence {u,,} converges at rate
of order N to a weak unique solution of Prob.(1.1)—(1.3). The main result
is given in Theorems 2.2 and 2.6. In our proofs, the fixed point method and
Faedo-Galerkin method are used.

2. A HIGH-ORDER ITERATIVE SCHEME

We put 2 = (0,1) and denote the usual function spaces used in this paper
by the notations LP = LP(Q2), H™ = H™ (). Let (-,-) be either the scalar
product in L? or the dual pairing of a continuous linear functional and an
element of a function space. The notation ||-|| stands for the norm in L? and
we denote by ||-||y the norm in the Banach space X. We call X’ the dual
space of X.

We denote by LP(0,T; X), 1 < p < oo for the Banach space of real functions
u: (0,7) — X measurable, such that

1/p
lilnoro) = (Jy @l dt) ™ < 0o for 1< p < oo,

and
HUHLOO(O’T;X) = esssup |lu(t)]|y for p = oo.
0<t<T

Let u(t), v/(t) = ut(t) = a(t), u'(t) = uu(t) = il(t), ug(t) = yu(t), uze(t) =

Au(t), denote u(z, t), 28 (x,t), L4 (x,t), 2(x,t), T4 (a: t), respectively With

f€Ck(0,1] xRy xR), f = f(x,t,u), we put Dy f = 8 L Dof = 8t’D3f— or
and D®f = D" D5?Dg® f; a = (a1, o, az) € 73, lal = a1 + ag + az = k:
D(0,070)f = f.
On H', we shall use the following norm
1/2
oll s = (Hol” + loal”) (2.1)

Then the following lemma is known.

Lemma 2.1. The imbedding H' — C°(0) is compact and
[vllcom) < V2 ||v|l 1 for allv € H'. (2.2)
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We put
V={veH" :v(1) =0}
Then V is a closed subspace of H! and on V, v — ||v||z1 and v — ||v,|| are
equivalent norms. Furthermore,

1ol gog < llvall forall we V. (2.3)

We remark that the weak formulation of the initial-boundary value problem
(1.1)—(1.3) can be given in the following manner: Find u € L>(0,T;V N H?)
with ug, uy € L°(0,T;V N H?) such that u satisfies the following variational
equation
(ue (), w) + (Uape () + e (t), we) + Mue(t), w) = (f(z, 1, u),w),  (2.4)
for all w € V, a.e., t € (0,T), together with the initial conditions
u(0) = @, ut(0) = Uy. (2.5)
Next, we need the following assumptions:
(A1) g, w €V N H?,
(A2) f e C'([0,1] x Ry x R) such that
(i) Dif € C1([0,1] x Ry xR), 1<i< N —1,
(ii) DY f € C%([0,1] x Ry x R),
(iii) f(1,£,0)=0, V¢t > 0.
Consider T* > 0 fixed, let M > 0, we put
HfHC’O(AM) = sup |f(CC,t7U)| , with Ay = [07 1] X [OaT*] X [_M7 M]’

(z,t,u)GAM

I llercany = I llcoany + I1P1f loan,) + 1D2f lcoa,,) + 1P3fllcoa,,) »

N-1 .
KM(f) = Z;Q HDéfHCI(AM) + HD‘éVfHCO(AM) N

(2.6)
For each T € (0,7*] and M > 0, we put
W(M,T) = {u € L0, T;V N H?) : v, € L®(0,T;V N H?),
vy € L0, T;V),
" ( ) (2.7)

with HUHLOO(O,T;me) ) HUtHLOO(O,T;VﬂH?) ) ||Utt||Loo(0,T;V) = M},

| Wi(M,T) ={veW(M,T): vy € L>®0,T;VNH?)},
where Qp = Q x (0,7).

We establish the linear recurrent sequence {u,,} as follows.
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We choose the first term ug = 0, suppose that
Um—1 € Wi (M, T), (2.8)
and associate with problem (1.1)-(1.3) the following problem:
Find w,, € Wi(M,T) (m > 1) which satisfies the linear variational problem
{ (Ul (£), ) + (i (£) + 0l (6, 102) + Aot (£), ) = (Fa(8),0) , Yo € V,

um (0) = ag, ul,(0) = a1,
(2.9)

where

N— .
Fo(x,t) = 2 l, Lyt um—1) (U — Um—1)". (2.10)

Then we have the following theorem.

Theorem 2.2. Let (A1) —(A2) hold. Then there exist constants M > 0,T > 0
(M depending on ty,uy and T depending tg, U1, f ) such that for ug = 0, there
exists a recurrent sequence {un,} C W1(M,T) defined by (2.9) and (2.10).

Proof. The proof consists of several steps.

Step 1. Consider the basisin V : wj(z) = /1+>\2 cos(\jx), Aj = (25— 1)2,] €

N, constructed by the eigenfunctions of the Laplace operator —A = _W' Put

ulh) (t) = Z?Zl cyrf;-(t)wj, where cgf; sastisfy the following system of nonlinear

differential equations

(1), w; ) + (ulh(0) + 502 (0), g0 ) + 2 (i) (), 05
< F® @), w]> (2.11)
uP(0) = dgr, WP (0) =g, j=1,2, ...,k

where
Ugg, = Z§:1 a§k)wj — 7p strongly V N H?, o1
Uy = Z?Zl ,BJ(k)U)j — @y strongly V N H?, (212)
and
FY) (2,1) = i L0 (2, 1) () — ). (2.13)
We rewrite (2.13) as follows
Jol (x,t) = Nil U;(z,t, um_l)(ugf))i (2.14)
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with
N cwirair j—i
i@, b, um—1) = 3 7 G (@, t, Um—1)u;, 4. (2.15)
j=i

il(j—
Let us suppose that u,,_; sastifies (2.8). Then we have following lemma.

Lemma 2.3. Let (A1)-(Az2) hold. For fized M > 0 and T > 0, then the system
(2.11) has unique solution ulh) (t) on an interval [O,Trsf)] C [0,T).

Proof. System (2.11) can be written in form

B (1) + 05653 (0) + e (1) = 11 (1),

mj mj
(2.16)
k k (k k .
80y =al?, oy =P, 1<) <k,
where
(k) 1 (k)
t) = En7(t), ;
Fmg (1) 1+/\2< 1) (2.17)
A2 . . , '
=g o= ol M=~ DR JEN 1S <k

System (2.16) is equivalent to system of intergal equations

(k)
k k 5 . T o—gi(res) (k
(1) = o) 4 T (L—emit) — a2 [Ldr [T eI s)ds o g
+f0d7f ~0s(=9) {0 (5)ds, 1<j<k.

Omitting the index m, it is written as follows

c=Fld, (2.19)
where Flc] = (Fl[ ] o File]), e = (1, ., k),
Fild() = 4 %th e T=0)cy(5)ds
/\2 Z fo deOT —0j(1—s) <\I!i(3,um_1)(u(s))i,wj>ds,

j =1

(k)
(k) + ng (1 — e_aﬂ't)

1 T —oi(T—s .
+ mfg dr [ e i )<\I/0(s,um_1),wj>ds, 1<j<k.
\ J
(2.20)

(k)

For every Ty,” € (0,T] and p > 0 chosen later, we put

X = ([0.TWRY), S={ceX: el < p},
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where

lellx = sup Je(®)]y, el = X5 le;(®)],

o<t<T®
for each ¢ = (cy,...,cx) € X. Clearly S is a closed nonempty subset in X and

F: X — X. In what follows, we shall choose p > 0 and Téf ) > 0 such that
F :S — S is contractive.
(i) First we note that, for all ¢ = (cq, .., cx) € S,

k k
lu@®)] < ; e (0] [w;]| = ; ()]

k

le®llco@ < llua® < 2 les )] wse ] (2.21)

Eo < lel < llellx <

k z2
= ;\Cj(t) 1“2 <le@®h <llellx < p.

We have
NZL . o
W2t um—1)| < Kn(f) 3 aegiM? " =m(M,p), i=0,N -1, (2.22)

SO
(W3, wm—1) (u(s)) wi)] < Wils, wm—1)|| [[u(s) oy llws] (2.23)
<mi(M,p)p* =n:i(M,p), i=0,N —1.
It follows that
|Fy[c(®)] < g (¢t )! + 15 e"’f'T fo dr [ cj(s)] ds
+3 +A seloil” Z Jydr [T 7(M, p)ds 22
< g;(t )y +ukelal\T fo dr [y |c, )| ds '
o A%e‘“l'T ; w0 o) (T3
Thus
PEIOL < a0 + €7 |+ 5 & 00| 5 (180)° .
<|lqllr + Dp(M) (T,Sf))z, vie (0,1,
in which
llgllr = sup [q(t)|1,
el (2.26)

— 1 k _
Do) = 367 |ou + 1y S 04 p)|.
1
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Hence
— 2
1Pl < lall +D,(0) (T227) (2:27)

(ii) We prove below that

11~ Fldllx < Gp(a1) (T e —dl (2.28)
with
%WF;Wﬂ%ﬁfVZw L) FCED

For all j = 1,...,k and ¢ € [0, T}F], put
k k
u(t) = Zlcj(t)w o(t) = > dj(t)wj,
]:

we have

| Fjle](t) — Fjld]()]

< M2,€|UJ\T ft deOT ‘Cj S —d‘(S)’dS
+1+A26“’J'T Z Jo dr J5 1, wm—)|| [[u'(s) = ()| oy d (2.30)

< el T [ dr [ lej(s) — dj(s)] ds

1 o N=L 4 i i
+1 n )\%e‘ 1] Z; Jo dr [o ni(M, p) Hu (s)—wv (S)Hco(ﬁ) ds.
On the other hand

H“i(s) —v'(s Hc@(ﬁ)

<.
|

|| (5117, co(@) IV )l j( 1)HU( s) = v(s)llco(m) (2.31)

~ .
Il
- o

IA

P pt = e(s) — d(s)[y <ip' e —d| x -

<.
Il
o
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The result is
|Flc](t) — Fd](t)],
< 1T el 5 (1)

_l’_

|o1|T z 1 _ (k)
T ;mMm el 5 (1)

1 (2.32)
1 k
5( ) elorlT [uiJr T Z ip™ (M, p)] le = dll x

= G,(M) (Téf))Z e —dllx

with G,(M) as in (2.29). Thus, (2.28) holds. Choosing p > ||¢||r and ¥ €
(0,T] such that

_ 2

0<t® < [rlllr @ (Té{“)) <1 (2.33)
D, (M)

Combining (2.27), (2.28) and (2.33), F': S — S is contractive. We deduce

that F' has a unique fixed point in S, i.e., system (2.11) has a unique solution

ugf)(t) in [0, Tg)}. The proof of Lemma 2.3 is completed. O
(k)

The following estimates allow one to take Ty,
k.

= T independent of m and

Step 2. A priori estimates.
Put S (1) = pP (1) + ¢ (¢) + rP(¢), where

o) = iR+ [wBo|| + [
g (t) = [|asn(t )H2 + [ustace )H2 + ||tk 0] : (2.34)
) () = uﬁ,’f)(t)er )| + a2 ‘2.
Then, it follows from (2.11), (2.34) that
5B (6) = 5B (0) —2A [} [Hug; H +[as) @‘ZH@,&’?(S)W] ds
+2 [y (FS (s), uﬁ’?(s) ds +2 [J(F)(s), i (s))ds 055
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We shall estimate, respectively, 5’7(75)(0) and the following integrals on the

right-hand side of (2.35).
2 2
Estimate S (0). First, we estimate £ = Hu,&’i)(O)H + Hu,(lf;(())H .
Letting ¢ — 04 in (2.11), multiplying the result by 67(7],:])(0), we get
(k k k .. (k
[0 + [#R o) + (0, i820) = (FP0),i%0).
This implies that

Y=ol + ol

< (o + [P o) |#o)

1 (k) 2 )k H2
< _ —
<1 (o] « [ @)+ 3o

1 1 2
< g+ (o + £ o))

) (2.36)

Lew 1 (- = ~ N ~ i
=5ém +5 | toke|| + % FD5f (-, 0, 0)(tox — o)

1 1 _
- 36+ 3 ol

2
N-L ~ 3 :
+ > & sup |Dif(2,0,2)| (|ltokall + G0zl )*| -
=0  0<z<1, |2|<||toz]|
Thus
B 2
€9 < ol + S & swp [ DF(@0,2)] (lioksl+ os]) )
i=0  0<x<1, |z|<||Go]|
< Yo, Vm, k€N,
(2.37)

where X is a constant depending only on f, g, @1. By (2.12), (2.34) and

(2.37), we obtain
S (0)

~ 2 ~ 2 ~ 2 ~ 2 ~ 2 (k) (2'38)

= |[t1k]|” + [|torell” + 3 |@1kz||” + |Gokzzll” + [|T1kaa|” + &m” < So,

for all m, where Sy is a constant depending only on f, g, 1.

First integral I; = —2\ fg [Hu%)(s)HQ + Hqufg)g(s)H2 + Hu%)(s)‘ﬂ ds
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We have
= it + sk [ o]
< 2|\ J1 S (s)ds.

Next, the following estimates are need.

Lemma 2.4. We have

||FP )| < b ( sﬁ!?(t))ﬁ,
=0

il (k)(t)H < Nz:lg ( S(k)(t)>z

(i) || 78 <2 b (Vso) .
N—-1 i

iii) || £1(%) ) :

i) [ £ (t)HSZZOb( s00)

where b, i =0,1,.,N —1 are defined as follows

bi = (M + N)Ky(f)ag, i=0,1,..,N —1,

Nl ;
1+ Y M, i=0,
=1

335

(2.39)

(2.40)

(2.41)

a; =
iy i=1,2,..,N—1.
Proof. (i) Use inequality (a + b)? < 2P~1(a? +bP), for all @, b > 0, p > 1, we
have
N-1, ‘
@] < T 455t um- ) @ld) = wn)’
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= Ku(f)

N-1 gin1 . N-1 gic1 » i
1+ZT M+ > o S’ (t)
=1 =1

<> ’”())i,

where b;, i = 0,1,..., N — 1 are defined as (2.41). Hence, (i) follows.
(ii) We use below notations:

f[u]:f(x7tvu>v Djf[u}:Djf(xutau% Jj=12,3.

We have
R [ttm1] + D3 f 1]Vt 1]
N—-1 ) ) i
+ 5 4| 1D flum ]+ D5 flum | Ve ) ()~ )
+]:7§11;, D} ftm—1] (ugf) — um,l)iil (Vu(k) Vum,l)
< Kn(F)(L+ M) + Ky (14 M) S 1.( S (1) + )
=1
N—-1 (k
Ku(f) S a( ) < st )
=1
SO

‘E&{;) (. 1)

< Kn(f)(1+ M) + Kn(HO+ M) 5 25

~.

H
N
N
»
Ries
=
N———
_l_
~

FEw() S i << Sﬁf)(t))i+M">,

=1
1+]j:§_3112;1<< S,Sf)(t)>i+Mi>]
3 11 o << Sﬁf)<t>>i+Mi>

N - DEM() T
N=t gims (k) i i
T (( Sl (t)) +M)

< Ku(f)(1+ M)

< [Kum(f)(A+M)+(N-1) K (f)]
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< S (t))i]

= (M + N)Kum(f)

)

e
L+ 5 5 5 5
1= 1=

, (2.43)
N-1 i
=3 b( 5,2?(@) .
=0
It implies that _
HFéﬁg(t)H <5 b( Sﬁf?(t)) . (2.44)
=0
(iii) By Jad (t) is computed as follows
£ )
= Dof(x,t, um—1) + D3 f(z,t, Upm—1)Um—1
T E L (DaDif (2t 1) + D5 (2, 1yttt it ) () 1)
N-1 . ) )
+ 30 ADLf (@t ) (ul) = )@ — o), (2.45)
SO =
00
< KD+ 0 + KD+ 30 'S 4 (V5000 +a1)
i=1
N ) '
+Kun(f) ; Al Vo () +M
[ N1 i
< (M +N)Eu(f) |1+ X 1( S,S’f><t>+M)]
=1
[ N1 i ,
< (M+N)Ky(f) |1+ > 4201 (< Sﬁf)(t)) +M%>]
=1
[ N-1 . ON-1 i
<(M+N)EKu(f) [1+ X 5201+ 3 3!2Z1< S,,’?(t))]
=1 =1
_ Y b( sé’?(t))Z (2.46)
=0
Hence
N-1 i
HFT(,i“)(t)H <y < SSZP(t)) (2.47)
=0

Lemma 2.4 is proved.
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Now, we estimate all intergals I, I3, I4.
Integral I. Using the inequality
ri<14+2N, Vx>0, Yqgel0,N], (2.48)
we get from (2.40)—(i), that

L =2 [YFP (s),aP (s))ds < 2 [ HFW(S)H Hasjy@u ds

N—1_ i+l
<23 b fJ( s,(f;)(s)> ds
=0

_ (2.49)
< 2N§j bi [ [1 n (sﬁ,’?(s))ﬂ ds
T+ fg(Sﬁf)(s))Nds} .

Integral Is. We again use inequality (2.48) and from (2.40)-(ii), we have
I =2 [HFEE)(s), i) (s))ds < 2 f! HF,SQ s H Ha%(s)H ds

gz{vflz} IS <\/S(k ) Vs (s

1=0
~ (2.50)
< zNzl bi fi (1 + (S,(,’f)(s))N> ds
=0
N—_1
<23 b |+ fy (S5(5)™ ds]

Integral 1. Similarly, by (2.48) and (2.40)-(iii), we have
I =2 [HEP (s), i (s))ds < 2 [ HF,SP(@H Hug?(s)(] ds

g iJo (\/ )mds (2.51)
<2 IY_ [TJrfO(S’C ) ds].

| /\

Combining (2.35), (2.38), (2.49)—(2.51), after arrangement and choose M > 0

such that

we have

_ _ N
S < M4 TC(M) + Ci(M) ff (SW(s)) ds, 0<t<T,  (253)
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where
_ N-1_
Cl(M) =2 (‘)\‘ +3 Z bz) . (2.54)
=0
Then we have the following lemma.

Lemma 2.5. There exists constant T > 0 independent of k and m such that
SW @) < M2, Vte0,T], Yk, meN. (2.55)
Proof. Put
S(t) =2 4+ TC{ (M) + Cy(M) [} <S§,’f)(s)>N ds, 0<t<T.  (2.56)
Clearly
S(t)>0,0<SW)y<S@t), 0<t<T,
S'(t) < CL(M)SN(t), 0 <t <T, (2.57)
S(0) = M?/4 +TCy(M).
Intergrating of (2.57), we have
SN > [M2/4+ TC (M) — (N=1) Cy (M)t

- N (2.58)
> [M2/4+TC (M) — (N=1)TCy(M), VYt € [0,T).
By
im 2 9 N (v - g
lim, [(M JA+TCy(M)) (N —1) Tcl(M)} .

_ (M2/4)17N - (MQ)lfN’
then, from (2.59), we always choose a constant 7' > 0 such that
(M2/4+TC, (M) — (N = 1) TCy (M) > (M2)"™ . (2.60)
Finally, it follows from (2.57), (2.58) and (2.60), that
0<SP) < s

1-N

_ L <M viep1. (26
Ny [z ()] N - (N-1) G (e
Lemma 2.5 is proved. O
Remark 2.6. The function
S(t) = ! L 0<t<T

N‘{/[M?/z; +TC (M) — (N —1) G (M)t

is the maximal solution of the Volterra integral equation with non-decreasing
kernel [8].
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S(t) =22+ TC (M) + C (M) [i SN (s)ds, 0<t<T. (2.62)
By Lemma 2.5, we can take constant Téfj ) = T forall m and k. Therefore,

" e W(M,T), forall m and k. (2.63)

From (2.63), we deduce the existence of a subsequence of {ugf)} still also so
denoted, such that

P U, in L>®(0,T;V N H?) weakly*,
W) in L0, T;V N H?) weakly*,
ik in L0, T; V) weakly*,
Um € W(M,T).
By the compactness lemma of Lions ([7], p.57), from (2.64), there exists a

(2.64)

subsequence of {ugi)}, denoted by the same symbol, such that

(k) . 2 .
U — Uy, stronglyin L“(0,7;V) and a.e. in ,
{ gly ( ) Qr (2.65)

W ul, stronglyin L2(0,T;V) and a.e. in Q7.
On the other hand, using the inequality
}a;j —yj| <jMi7Yx—vy|, Vaz,ye[-M,M], VM >0, VjEN, (2.66)
we deduce from (2.63), (2.64)4, that

‘(u#f))i— (u)i| < iM—L ‘u,(fi’ — U] - (2.67)
Therefore, (2.65) and (2.67) yield
(ugf))Z — (um)® stronglyin L?(Qr). (2.68)
Hence, we deduce from (2.10), (2.14) and (2.68) that
F® 5 F, stronglyin L2(Qr). (2.69)

Passing to limit in (2.11), (2.12), we have u,, satisfying (2.9), (2.10) in L2(0, T).
On the other hand, it follows from (2.9); and (2.64)4 that

D (ully () + (1)) = ully (£) + My, (1) — Fn(t) € L(0,T; V). (2.70)

Consequently
ull (t) 4+ wp (t) = ® € L>=(0,T;V N H?), (2.71)
SO

ult (t) = ® — uy,(t) € L=(0,T;V N H?). (2.72)

m
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Hence u,, € Wi(M,T) and the proof of Theorem 2.2 is complete. O

We note that
Wr ={ue L*(0,T;V):u € L=(0,T;V)}
is a Banach space with respect to the norm

HUHWT = HUHLoo(o,T;V) + H”/HLoo(o,T;V) :
Then we have the following theorem.

Theorem 2.7. Let (A1)-(As) hold. Then
(i) Prob.(1.1)<(1.3) has a unique weak solution uw € Wi(M,T), where the
constants M > 0 and T > 0 are chosen as in Theorem 2.2.

Furthermore,
(ii) The recurrent sequence {un}, defined by (2.9) and (2.10), converges at a
rate of order N to the solution u strongly in the space Wr in the sense

[t = vl < Cllum—1 — ully, (2.73)
for allm > 1, where C is a suitable constant. On the other hand, the estimate
18 fulfilled

[t — ully, < Cr(kr)™", forall meN, (2.74)

where Cp and kp < 1 are the constants depending only on T.

Proof. (a) Existence.

We shall prove that {u,,} is a Cauchy sequence in Wrp. Let wy, = U1 —Um.
Then w,, satisfies the variational problem

(win (1), w) + (Wma (t) 4 Wiy (t), W) = (Finpa(t) — F(t),w) , Vw €V,
Wi (0) = w!,(0) = 0.
(2.75)
Taking w = w], in (2.75), after integrating in ¢, we get

Zin(t) = 2 J§ (Frns1(s) = Fin(s), wp, () ds, (2.76)
2 2
where Zp(t) = [[wh, () + [wma (011 + @), (8)]° -
Using Taylor’s expansion of the function f(z,t,u,,) around the point w,,_1
up to order IV, we obtain

f($7t7um) - f('rvtaum*l)

N-l . Lo N (2.77)
— ; ﬁDéf(a;,t,um_l)w,ﬂ%l + 5103 flz,t, Am)wiy_1q,
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where A\, = A\ (2,t) = wm—1 + 01 (U — um—1), 0 < 61 < 1. Hence, it follows
from (2.10) and (2.77) that

Fm+1(x7t) - Fm(l',t)

Ny , 2.78
i=1
So, we have
N
1P (&) = Bl < 00/ Zin @ + 17 (VZr @) (2.79)

N-1 .
where ngpl) = Ky (f) 231 MZ.! = 175,«2) = 41K (f). Then we deduce from (2.76)
and (2.79) that
2 1 2
Zun(t) < T w3 + (200 + 07 ) Jo Zon(s)ds. (2.80)
By using Gronwall’s Lemma, (2.80) leads to

N
”meWT S mr ”wmfIHWT ) (281)

where pp = 2\/Tn¥) exp (T(QT](TI) + 77;2))). Then, it follows from (2.81) that

-1 m
| — um+p||WT <(1- kT)il (pur) V=1 (kT)N . (2.82)
1

Choosing T" small enough such that kp = Mpuy " < 1. It follows that {u,,} is
a Cauchy sequence in Wr. Then there exists u € Wr such that

Um — u strongly in - Wy (2.83)

Note that u,, € W1(M,T), then there exists a subsequence {uy,, } of {um,} such
that

U, — U in L>(0,7;V N H?) weakly*,
Uy, — U in L*>(0,T;V N H?) weakly*,
2.84
ngj — u” in L*(0,T;V) weakly*, (284)
ue W(M,T).
We note that
[Fm (2, 8) = (ot u(®)]] < Kar(f) Zl 3 llwm — wm-1lly, - (2.85)
1=
Hence, from (2.83) and (2.85), we obtain
Fon(t) = f(-,t,u(t)) strongly in L>(0,T; L?). (2.86)

Finally, passing to limit in (2.9), (2.10) as m = m; — oo, there exists u €
W (M, T) satisfying the problem (2.4), (2.5).
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On the other hand, by applying a similar argument used in the proof of
Theorem 2.2, v € Wi(M,T) is the local unique weak solution of problem
(1.1)-(1.3). Passing to the limit as p — +oo for fixed m, we obtain the
estimate (2.74) from (2.82). Theorem 2.7 is proved. O

Remark 2.8. In order to construct a N—order iterative scheme, we need the
condition f € CN([0,1] x Ry x R). Then, we get a convergent sequence at a
rate of order N to a local unique weak solution of problem and the existence
follows. However, this condition of f can be relaxed if we only consider the
existence of solution, see [6], [15], [16].
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