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Abstract. In this paper, a high-order iterative scheme is established in order to get a

convergent sequence at a rate of order N (N ≥ 1) to a local unique weak solution of a

nonlinear Love equation associated with mixed homogeneous conditions.

1. Introduction

In this paper, we consider the following Love equation with initial conditions
and mixed homogeneous conditions

utt − uxx − uxxtt + λut = f(x, t, u), 0 < x < 1, 0 < t < T, (1.1)

ux(0, t) + uxtt(0, t) = u(1, t) = 0, (1.2)

u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x), (1.3)

where ũ0, ũ1, f, are given functions and λ 6= 0 is a given function.
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When f = 0, λ = 0, Eq.(1.1) is related to the Love equation

utt − E
ρ uxx − 2µ2k2uxxtt = 0, (1.4)

presented by V. Radochová in 1978 (see [12]). This equation describes the
vertical oscillations of a rod, which was established from Euler’s variational
equation of an energy function∫ T

0 dt
∫ L

0

[
1
2Fρ

(
u2
t + µ2k2u2

tx

)
− 1

2F
(
Eu2

x + ρµ2k2uxuxtt
)]
dx, (1.5)

the parameters in (1.5) have the following meanings: u is the displacement, L
is the length of the rod, F is the area of cross-section, k is the cross-section
radius, E is the Young modulus of the material and ρ is the mass density.
By using the Fourier method, Radochová [12] obtained a classical solution of
Prob. (1.4) associated with initial conditions (1.3) and boundary conditions

u(0, t) = u(L, t) = 0, (1.6a)

or {
u(0, t) = 0,

εuxtt(L, t) + c2ux(L, t) = 0,
(1.6b)

where c2 = E
ρ , ε = 2µ2k2. On the other hand, the asymptotic behaviour of

solutions for Prob. (1.3), (1.4), (1.6) as ε → 0+ was also established by the
method of small parameters.

Equations of Love waves or Love type waves have been studied by many
authors, we refer to [3], [5], [6], [10], [15], [16] and references therein.

On the other hand, in [13], a symmetric version of the regularized long wave
equation (SRLW) {

uxxt − ut = ρx + uux,

ρt + ux = 0,
(1.7)

has been proposed to describe weakly nonlinear ion acoustic and space - charge
waves. Eliminating ρ from (1.7), a class of SRLW is obtained as follows

utt − uxx − uxxtt = −uuxt − uxut. (1.8)

Eq.(1.8) is explicitly symmetric in the x and t derivatives and it is very similar
to the regularized long wave equation that describes shallow water waves and
plasma drift waves [1], [2]. The SRLW equation also arises in many other
areas of mathematical physics [4], [9], [11].
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In this paper, we associate with Eq.(1.1) a recurrent sequence {um} defined
by

∂2um
∂t2

− ∂2um
∂x2

− ∂4um
∂t2∂x2

+ λ
∂um
∂t

=

N−1∑
i=0

1

i!

∂if

∂ui
(x, t, um−1)(um − um−1)i, 0 < x < 1, 0 < t < T,

(1.9)

with um satisfying (1.2), (1.3). The first term u0 is chosen as u0 ≡ 0. If
f ∈ CN ([0, 1]× R+ × R), we prove that the sequence {um} converges at rate
of order N to a weak unique solution of Prob.(1.1)–(1.3). The main result
is given in Theorems 2.2 and 2.6. In our proofs, the fixed point method and
Faedo-Galerkin method are used.

2. A high-order iterative scheme

We put Ω = (0, 1) and denote the usual function spaces used in this paper
by the notations Lp = Lp(Ω), Hm = Hm (Ω). Let 〈·, ·〉 be either the scalar
product in L2 or the dual pairing of a continuous linear functional and an
element of a function space. The notation ‖·‖ stands for the norm in L2 and
we denote by ‖·‖X the norm in the Banach space X. We call X ′ the dual
space of X.

We denote by Lp(0, T ;X), 1 ≤ p ≤ ∞ for the Banach space of real functions
u : (0, T )→ X measurable, such that

‖u‖Lp(0,T ;X) =
(∫ T

0 ‖u(t)‖pX dt
)1/p

<∞ for 1 ≤ p <∞,

and
‖u‖L∞(0,T ;X) = ess sup

0<t<T
‖u(t)‖X for p =∞.

Let u(t), u′(t) = ut(t) = u̇(t), u′′(t) = utt(t) = ü(t), ux(t) = 5u(t), uxx(t) =

∆u(t), denote u(x, t), ∂u∂t (x, t), ∂
2u
∂t2

(x, t), ∂u∂x(x, t), ∂
2u
∂x2

(x, t), respectively. With

f ∈ Ck([0, 1]×R+×R), f = f(x, t, u), we put D1f = ∂f
∂x , D2f = ∂f

∂t , D3f = ∂f
∂u

and Dαf = Dα1
1 Dα2

2 Dα3
3 f ; α = (α1, α2, α3) ∈ Z3, |α| = α1 + α2 + α3 = k,

D(0,0,0)f = f.
On H1, we shall use the following norm

‖v‖H1 =
(
‖v‖2 + ‖vx‖2

)1/2
. (2.1)

Then the following lemma is known.

Lemma 2.1. The imbedding H1 ↪→ C0(Ω) is compact and

‖v‖C0(Ω) ≤
√

2 ‖v‖H1 for all v ∈ H1. (2.2)
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We put

V = {v ∈ H1 : v(1) = 0}.
Then V is a closed subspace of H1 and on V, v 7−→ ||v||H1 and v 7−→ ||vx|| are
equivalent norms. Furthermore,

‖v‖C0(Ω) ≤ ‖vx‖ for all v ∈ V. (2.3)

We remark that the weak formulation of the initial-boundary value problem
(1.1)–(1.3) can be given in the following manner: Find u ∈ L∞(0, T ;V ∩H2)
with ut, utt ∈ L∞(0, T ;V ∩H2) such that u satisfies the following variational
equation

〈utt(t), w〉+ 〈uxtt(t) + ux(t), wx〉+ λ〈ut(t), w〉 = 〈f(x, t, u), w〉, (2.4)

for all w ∈ V, a.e., t ∈ (0, T ), together with the initial conditions

u(0) = ũ0, ut(0) = ũ1. (2.5)

Next, we need the following assumptions:

(A1) ũ0, ũ1 ∈ V ∩H2,
(A2) f ∈ C1([0, 1]× R+ × R) such that

(i) Di
3f ∈ C1([0, 1]× R+ × R), 1 ≤ i ≤ N − 1,

(ii) DN
3 f ∈ C0([0, 1]× R+ × R),

(iii) f(1, t, 0) = 0, ∀ t ≥ 0.

Consider T ∗ > 0 fixed, let M > 0, we put

‖f‖C0(AM ) = sup
(x,t,u)∈AM

|f(x, t, u)| , with AM = [0, 1]× [0, T ∗]× [−M,M ],

‖f‖C1(AM ) = ‖f‖C0(AM ) + ‖D1f‖C0(AM ) + ‖D2f‖C0(AM ) + ‖D3f‖C0(AM ) ,

KM (f) =
N−1∑
i=0

∥∥Di
3f
∥∥
C1(AM )

+
∥∥DN

3 f
∥∥
C0(AM )

.

(2.6)
For each T ∈ (0, T ∗] and M > 0, we put

W (M,T ) =

{
v ∈ L∞(0, T ;V ∩H2) : vt ∈ L∞(0, T ;V ∩H2),

vtt ∈ L∞(0, T ;V ),

with ‖v‖L∞(0,T ;V ∩H2) , ‖vt‖L∞(0,T ;V ∩H2) , ‖vtt‖L∞(0,T ;V ) ≤M
}
,

W1(M,T ) = {v ∈W (M,T ) : vtt ∈ L∞(0, T ;V ∩H2)},

(2.7)

where QT = Ω× (0, T ).

We establish the linear recurrent sequence {um} as follows.
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We choose the first term u0 ≡ 0, suppose that

um−1 ∈W1(M,T ), (2.8)

and associate with problem (1.1)-(1.3) the following problem:

Find um ∈W1(M,T ) (m ≥ 1) which satisfies the linear variational problem{
〈u′′m(t), w〉+ 〈umx(t) + u′′mx(t), wx〉+ λ〈u′m(t), w〉 = 〈Fm(t), w〉 , ∀w ∈ V,
um(0) = ũ0, u

′
m(0) = ũ1,

(2.9)
where

Fm(x, t) =
N−1∑
i=0

1
i!
∂if
∂ui

(x, t, um−1)(um − um−1)i. (2.10)

Then we have the following theorem.

Theorem 2.2. Let (A1)−(A2) hold. Then there exist constants M > 0, T > 0
(M depending on ũ0, ũ1 and T depending ũ0, ũ1, f ) such that for u0 ≡ 0, there
exists a recurrent sequence {um} ⊂W1(M,T ) defined by (2.9) and (2.10).

Proof. The proof consists of several steps.

Step 1. Consider the basis in V : wj(x) =
√

2
1+λ2j

cos(λjx), λj = (2j−1)π2 , j ∈

N, constructed by the eigenfunctions of the Laplace operator −∆ = − ∂2

∂x2
. Put

u
(k)
m (t) =

∑k
j=1 c

(k)
mj(t)wj , where c

(k)
mj sastisfy the following system of nonlinear

differential equations

〈
ü

(k)
m (t), wj

〉
+
〈
u

(k)
mx(t) + ü

(k)
mx(t), wjx

〉
+ λ

〈
u̇

(k)
m (t), wj

〉
=
〈
F

(k)
m (t), wj

〉
,

u
(k)
m (0) = ũ0k, u̇

(k)
m (0) = ũ1k, j = 1, 2, ..., k,

(2.11)

where  ũ0k =
∑k

j=1 α
(k)
j wj → ũ0 strongly V ∩H2,

ũ1k =
∑k

j=1 β
(k)
j wj → ũ1 strongly V ∩H2,

(2.12)

and

F
(k)
m (x, t) =

N−1∑
i=0

1
i!
∂if
∂ui

(x, t, um−1)(u
(k)
m − um−1)i. (2.13)

We rewrite (2.13) as follows

F
(k)
m (x, t) =

N−1∑
i=0

Ψi(x, t, um−1)(u
(k)
m )i (2.14)
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with

Ψi(x, t, um−1) =
N−1∑
j=i

(−1)j−i

i!(j−i)!
∂jf
∂uj

(x, t, um−1)uj−im−1. (2.15)

Let us suppose that um−1 sastifies (2.8). Then we have following lemma.

Lemma 2.3. Let (A1)-(A2) hold. For fixed M > 0 and T > 0, then the system

(2.11) has unique solution u
(k)
m (t) on an interval [0, T

(k)
m ] ⊂ [0, T ].

Proof. System (2.11) can be written in form c̈
(k)
mj(t) + σj ċ

(k)
mj(t) + µ2

jc
(k)
mj(t) = f

(k)
mj (t),

c
(k)
mj(0) = α

(k)
j , ċ

(k)
mj(0) = β

(k)
j , 1 ≤ j ≤ k,

(2.16)

where

f
(k)
mj (t) =

1

1 + λ2
j

〈
F

(k)
m (t), wj

〉
,

µ2
j =

λ2j
1+λ2j

, σj = λ
1+λ2j

, λj = (2j − 1)π2 , j ∈ N, 1 ≤ j ≤ k.
(2.17)

System (2.16) is equivalent to system of intergal equations

c
(k)
mj(t) = α

(k)
j +

β
(k)
j

σj

(
1− e−σjt

)
− µ2

j

∫ t
0 dτ

∫ τ
0 e
−σj(τ−s)c

(k)
mj(s)ds

+
∫ t

0 dτ
∫ τ

0 e
−σj(τ−s)f

(k)
mj (s)ds, 1 ≤ j ≤ k.

(2.18)

Omitting the index m, it is written as follows

c = F [c], (2.19)

where F [c] = (F1[c], ..., Fk[c]), c = (c1, .., ck),

Fj [c](t) = qj(t)− µ2
j

∫ t
0 dτ

∫ τ
0 e
−σj(τ−s)cj(s)ds

+
1

1 + λ2
j

N−1∑
i=1

∫ t
0 dτ

∫ τ
0 e
−σj(τ−s) 〈Ψi(s, um−1)(u(s))i, wj

〉
ds,

u(t) =
∑k

j=1 cj(t)wj ,

qj(t) = α
(k)
j +

β
(k)
j

σj

(
1− e−σjt

)
+

1

1 + λ2
j

∫ t
0 dτ

∫ τ
0 e
−σj(τ−s) 〈Ψ0(s, um−1), wj〉 ds, 1 ≤ j ≤ k.

(2.20)

For every T
(k)
m ∈ (0, T ] and ρ > 0 chosen later, we put

X = C0
(

[0, T
(k)
m ];Rk

)
, S = {c ∈ X : ‖c‖X ≤ ρ},
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where
‖c‖X = sup

0≤t≤T (k)
m

|c(t)|1, |c(t)|1 =
∑k

j=1 |cj(t)|,

for each c = (c1, ..., ck) ∈ X. Clearly S is a closed nonempty subset in X and

F : X → X. In what follows, we shall choose ρ > 0 and T
(k)
m > 0 such that

F : S → S is contractive.
(i) First we note that, for all c = (c1, .., ck) ∈ S,

‖u(t)‖ ≤
k∑
j=1
|cj(t)| ‖wj‖ =

k∑
j=1
|cj(t)| 1√

1+λ2j
≤ |c(t)|1 ≤ ||c||X ≤ ρ,

‖u(t)‖C0(Ω) ≤ ‖ux(t)‖ ≤
k∑
j=1
|cj(t)| ‖wjx‖

=
k∑
j=1
|cj(t)|

√
λ2j

1+λ2j
≤ |c(t)|1 ≤ ||c||X ≤ ρ.

(2.21)

We have

|Ψi(x, t, um−1)| ≤ KM (f)
N−1∑
j=i

1
i!(j−i)!M

j−i ≡ ηi(M,ρ), i = 0, N − 1, (2.22)

so ∣∣〈Ψi(s, um−1)(u(s))i, wj
〉∣∣ ≤ ‖Ψi(s, um−1)‖ ‖u(s)‖iC0(Ω) ‖wj‖

≤ ηi(M,ρ)ρi ≡ η̄i(M,ρ), i = 0, N − 1.
(2.23)

It follows that

|Fj [c](t)| ≤ |qj(t)|+ µ2
je
|σj |T

∫ t
0 dτ

∫ τ
0 |cj(s)| ds

+
1

1 + λ2
j

e|σj |T
N−1∑
i=1

∫ t
0 dτ

∫ τ
0 η̄i(M,ρ)ds

≤ |qj(t)|+ µ2
ke
|σ1|T

∫ t
0 dτ

∫ τ
0 |cj(s)| ds

+
1

1 + λ2
1

e|σ1|T
N−1∑
i=1

η̄i(M,ρ)
1

2

(
T

(k)
m

)2
.

(2.24)

Thus

|F [c](t)|1 ≤ |q(t)|1 + e|σ1|T
[
ρµ2

k +
k

1 + λ2
1

N−1∑
i=1

η̄i(M,ρ)

]
1

2

(
T

(k)
m

)2

≤ ||q||T +Dρ(M)
(
T

(k)
m

)2
, ∀ t ∈ [0, T

(k)
m ],

(2.25)

in which

||q||T = sup
t∈[0,T ]

|q(t)|1,

Dρ(M) =
1

2
e|σ1|T

[
ρµ2

k +
k

1 + λ2
1

∑N−1
i=1 η̄i(M,ρ)

]
.

(2.26)
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Hence

‖F [c]‖X ≤ ‖q‖T +Dρ(M)
(
T

(k)
m

)2
. (2.27)

(ii) We prove below that

‖F [c]− F [d]‖X ≤ Gρ(M)
(
T

(k)
m

)2
‖c− d‖X (2.28)

with

Gρ(M) =
1

2
e|σ1|T

[
µ2
k +

k

1 + λ2
1

N−1∑
i=1

iρi−1ηi(M,ρ)

]
. (2.29)

For all j = 1, ..., k and t ∈ [0, T
(k)
m ], put

u(t) =
k∑
j=1

cj(t)wj , v(t) =
k∑
j=1

dj(t)wj ,

we have

|Fj [c](t)− Fj [d](t)|

≤ µ2
je
|σj |T

∫ t
0 dτ

∫ τ
0 |cj(s)− dj(s)| ds

+
1

1 + λ2
j

e|σj |T
N−1∑
i=1

∫ t
0 dτ

∫ τ
0 ‖Ψi(s, um−1)‖

∥∥ui(s)− vi(s)∥∥
C0(Ω)

ds

≤ µ2
ke
|σ1|T

∫ t
0 dτ

∫ τ
0 |cj(s)− dj(s)| ds

+
1

1 + λ2
1

e|σ1|T
N−1∑
i=1

∫ t
0 dτ

∫ τ
0 ηi(M,ρ)

∥∥ui(s)− vi(s)∥∥
C0(Ω)

ds.

(2.30)

On the other hand∥∥ui(s)− vi(s)∥∥
C0(Ω)

≤
i−1∑
j=0
‖u(s)‖j

C0(Ω)
‖v(s)‖i−j−1

C0(Ω)
‖u(s)− v(s)‖C0(Ω)

≤
i−1∑
j=0

ρjρi−j−1|c(s)− d(s)|1 ≤ iρi−1 ‖c− d‖X .

(2.31)
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The result is

|F [c](t)− F [d](t)|1

≤ µ2
ke
|σ1|T ‖c− d‖X

1

2

(
T

(k)
m

)2

+
k

1 + λ2
1

e|σ1|T
N−1∑
i=1

ηi(M,ρ)iρi−1 ‖c− d‖X
1

2

(
T

(k)
m

)2

=
1

2

(
T

(k)
m

)2
e|σ1|T

[
µ2
k +

k

1 + λ2
1

N−1∑
i=1

iρi−1ηi(M,ρ)

]
‖c− d‖X

≡ Gρ(M)
(
T

(k)
m

)2
‖c− d‖X

(2.32)

with Gρ(M) as in (2.29). Thus, (2.28) holds. Choosing ρ > ||q||T and T
(k)
m ∈

(0, T ] such that

0 < T
(k)
m ≤

√
ρ− ||q||T
Dρ(M)

and Gρ(M)
(
T

(k)
m

)2
< 1. (2.33)

Combining (2.27), (2.28) and (2.33), F : S −→ S is contractive. We deduce
that F has a unique fixed point in S, i.e., system (2.11) has a unique solution

u
(k)
m (t) in [0, T

(k)
m ]. The proof of Lemma 2.3 is completed. �

The following estimates allow one to take T
(k)
m = T independent of m and

k.

Step 2. A priori estimates.

Put S
(k)
m (t) = p

(k)
m (t) + q

(k)
m (t) + r

(k)
m (t), where

p
(k)
m (t) =

∥∥∥u̇(k)
m (t)

∥∥∥2
+
∥∥∥u(k)

mx(t)
∥∥∥2

+
∥∥∥u̇(k)

mx(t)
∥∥∥2
,

q
(k)
m (t) =

∥∥∥u̇(k)
mx(t)

∥∥∥2
+
∥∥∥u(k)

mxx(t)
∥∥∥2

+
∥∥∥u̇(k)

mxx(t)
∥∥∥2
,

r
(k)
m (t) =

∥∥∥ü(k)
m (t)

∥∥∥2
+
∥∥∥u̇(k)

mx(t)
∥∥∥2

+
∥∥∥ü(k)

mx(t)
∥∥∥2
.

(2.34)

Then, it follows from (2.11), (2.34) that

S
(k)
m (t) = S

(k)
m (0)− 2λ

∫ t
0

[∥∥∥u̇(k)
m (s)

∥∥∥2
+
∥∥∥u̇(k)

mx(s)
∥∥∥2

+
∥∥∥ü(k)

m (s)
∥∥∥2
]
ds

+2
∫ t

0 〈F
(k)
m (s), u̇

(k)
m (s)〉ds+ 2

∫ t
0 〈F

(k)
mx(s), u̇

(k)
mx(s)〉ds

+2
∫ t

0 〈Ḟ
(k)
m (s), ü

(k)
m (s)〉ds

= S
(k)
m (0) +

4∑
j=1

Ij .

(2.35)
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We shall estimate, respectively, S
(k)
m (0) and the following integrals on the

right-hand side of (2.35).

Estimate S
(k)
m (0). First, we estimate ξ

(k)
m =

∥∥∥ü(k)
m (0)

∥∥∥2
+
∥∥∥ü(k)

mx(0)
∥∥∥2
.

Letting t→ 0+ in (2.11), multiplying the result by c̈
(k)
mj(0), we get∥∥∥ü(k)

m (0)
∥∥∥2

+
∥∥∥ü(k)

mx(0)
∥∥∥2

+
〈
u

(k)
mx(0), ü

(k)
mx(0)

〉
=
〈
F

(k)
m (0), ü

(k)
mx(0)

〉
.

This implies that

ξ
(k)
m =

∥∥∥ü(k)
m (0)

∥∥∥2
+
∥∥∥ü(k)

mx(0)
∥∥∥2

≤
(∥∥∥u(k)

mx(0)
∥∥∥+

∥∥∥F (k)
m (0)

∥∥∥)∥∥∥ü(k)
mx(0)

∥∥∥
≤ 1

2

(∥∥∥u(k)
mx(0)

∥∥∥+
∥∥∥F (k)

m (0)
∥∥∥)2

+
1

2

∥∥∥ü(k)
mx(0)

∥∥∥2

≤ 1

2
ξ

(k)
m +

1

2

(∥∥∥u(k)
mx(0)

∥∥∥+
∥∥∥F (k)

m (0)
∥∥∥)2

=
1

2
ξ

(k)
m +

1

2

(
‖ũ0kx‖+

∥∥∥∥N−1∑
i=0

1
i!D

i
3f(·, 0, ũ0)(ũ0k − ũ0)i

∥∥∥∥)2

=
1

2
ξ

(k)
m +

1

2

[
‖ũ0kx‖

+
N−1∑
i=0

1
i! sup

0≤x≤1, |z|≤‖ũ0x‖

∣∣Di
3f(x, 0, z)

∣∣ (‖ũ0kx‖+ ‖ũ0x‖ )i
]2

.

(2.36)

Thus

ξ
(k)
m ≤

[
‖ũ0kx‖+

N−1∑
i=0

1
i! sup

0≤x≤1, |z|≤‖ũ0x‖

∣∣Di
3f(x, 0, z)

∣∣ (‖ũ0kx‖+‖ũ0x‖ )i
]2

≤ X0, ∀m, k ∈ N,
(2.37)

where X0 is a constant depending only on f, ũ0, ũ1. By (2.12), (2.34) and
(2.37), we obtain

S
(k)
m (0)

= ‖ũ1k‖2 + ‖ũ0kx‖2 + 3 ‖ũ1kx‖2 + ‖ũ0kxx‖2 + ‖ũ1kxx‖2 + ξ
(k)
m ≤ S0,

(2.38)

for all m, where S0 is a constant depending only on f, ũ0, ũ1.

First integral I1 = −2λ
∫ t

0

[∥∥∥u̇(k)
m (s)

∥∥∥2
+
∥∥∥u̇(k)

mx(s)
∥∥∥2

+
∥∥∥ü(k)

m (s)
∥∥∥2
]
ds.
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We have

I1 = −2λ
∫ t

0

[∥∥∥u̇(k)
m (s)

∥∥∥2
+
∥∥∥u̇(k)

mx(s)
∥∥∥2

+
∥∥∥ü(k)

m (s)
∥∥∥2
]
ds

≤ 2 |λ|
∫ t

0 S
(k)
m (s)ds.

(2.39)

Next, the following estimates are need.

Lemma 2.4. We have

(i)
∥∥∥F (k)

m (t)
∥∥∥ ≤ N−1∑

i=0

b̃i

(√
S

(k)
m (t)

)i
,

(ii)
∥∥∥F (k)

mx(t)
∥∥∥ ≤ N−1∑

i=0

b̃i

(√
S

(k)
m (t)

)i
,

(iii)
∥∥∥Ḟ (k)

m (t)
∥∥∥ ≤ N−1∑

i=0

b̃i

(√
S

(k)
m (t)

)i
,

(2.40)

where b̃i, i = 0, 1, .., N − 1 are defined as follows

b̃i = (M +N)KM (f)ãi, i = 0, 1, ..., N − 1,

ãi =


1 +

N−1∑
i=1

2i−1

i! M
i, i = 0,

2i−1

i! , i = 1, 2, ..., N − 1.

(2.41)

Proof. (i) Use inequality (a + b)p ≤ 2p−1(ap + bp), for all a, b ≥ 0, p ≥ 1, we
have ∣∣∣F (k)

m (x, t)
∣∣∣ ≤ N−1∑

i=0

∣∣∣ 1
i!
∂if
∂ui

(x, t, um−1)(u
(k)
m − um−1)i

∣∣∣
≤ KM (f)

[
1 +

N−1∑
i=1

1
i!

(∣∣∣u(k)
m

∣∣∣+ |um−1|
)i]

≤ KM (f)

[
1 +

N−1∑
i=1

1
i!

(∥∥∥u(k)
mx(t)

∥∥∥+M
)i]

≤ KM (f)

[
1 +

N−1∑
i=1

1
i!

(√
S

(k)
m (t) +M

)i]

≤ KM (f)

[
1 +

N−1∑
i=1

2i−1

i!

((√
S

(k)
m (t)

)i
+M i

)]
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= KM (f)

[
1 +

N−1∑
i=1

2i−1

i! M
i +

N−1∑
i=1

2i−1

i!

(√
S

(k)
m (t)

)i]

≤
N−1∑
i=0

b̃i

(√
S

(k)
m (t)

)i
,

(2.42)

where b̃i, i = 0, 1, ..., N − 1 are defined as (2.41). Hence, (i) follows.
(ii) We use below notations:

f [u] = f(x, t, u), Djf [u] = Djf(x, t, u), j = 1, 2, 3.

We have∣∣∣F (k)
mx(x, t)

∣∣∣ ≤ |D1f [um−1] +D3f [um−1]∇um−1|

+
N−1∑
i=1

1
i!

∣∣∣∣(D1D
i
3f [um−1]+Di+1

3 f [um−1]∇um−1

) (
u

(k)
m −um−1

)i∣∣∣∣
+
N−1∑
i=1

i
i!

∣∣∣∣Di
3f [um−1]

(
u

(k)
m − um−1

)i−1 (
∇u(k)

m −∇um−1

)∣∣∣∣
≤ KM (f)(1 +M) +KM (f)(1 +M)

N−1∑
i=1

1
i!

(√
S

(k)
m (t) +M

)i
+KM (f)

N−1∑
i=1

i
i!

(√
S

(k)
m (t) +M

)i−1(√
S

(k)
m (t) +M

)
,

so ∣∣∣F (k)
mx(x, t)

∣∣∣
≤ KM (f)(1 +M) +KM (f)(1 +M)

N−1∑
i=1

2i−1

i!

((√
S

(k)
m (t)

)i
+M i

)

+KM (f)
N−1∑
i=1

i2i−1

i!

((√
S

(k)
m (t)

)i
+M i

)
,

≤ KM (f)(1 +M)

[
1 +

N−1∑
i=1

2i−1

i!

((√
S

(k)
m (t)

)i
+M i

)]

+(N − 1)KM (f)
N−1∑
i=1

2i−1

i!

((√
S

(k)
m (t)

)i
+M i

)

≤ [KM (f)(1+M)+(N−1)KM (f)]

[
1+

N−1∑
i=1

2i−1

i!

((√
S

(k)
m (t)

)i
+M i

)]
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= (M +N)KM (f)

[
1 +

N−1∑
i=1

2i−1

i! M
i +

N−1∑
i=1

2i−1

i!

(√
S

(k)
m (t)

)i]

=
N−1∑
i=0

b̃i

(√
S

(k)
m (t)

)i
.

(2.43)

It implies that ∥∥∥F (k)
mx(t)

∥∥∥ ≤ N−1∑
i=0

b̃i

(√
S

(k)
m (t)

)i
. (2.44)

(iii) By Ḟ
(k)
m (t) is computed as follows

Ḟ
(k)
m (t)

= D2f(x, t, um−1) +D3f(x, t, um−1)u̇m−1

+
N−1∑
i=1

1
i!

(
D2D

i
3f(x, t, um−1)+Di+1

3 f(x, t, um−1)u̇m−1

)
(u

(k)
m −um−1)i

+
N−1∑
i=1

i
i!D

i
3f(x, t, um−1)(u

(k)
m − um)i−1(u̇

(k)
m − u̇m−1), (2.45)

so ∣∣∣Ḟ (k)
m (t)

∣∣∣
≤ KM (f)(1 +M) +KM (f)(1 +M)

N−1∑
i=1

1
i!

(√
S

(k)
m (t) +M

)i
+KM (f)

N−1∑
i=1

i
i!

(√
S

(k)
m (t) +M

)i
≤ (M +N)KM (f)

[
1 +

N−1∑
i=1

1
i!

(√
S

(k)
m (t) +M

)i]

≤ (M +N)KM (f)

[
1 +

N−1∑
i=1

1
i!2

i−1

((√
S

(k)
m (t)

)i
+M i

)]

≤ (M +N)KM (f)

[
1 +

N−1∑
i=1

1
i!2

i−1M i +
N−1∑
i=1

1
i!2

i−1

(√
S

(k)
m (t)

)i]

=
N−1∑
i=0

b̃i

(√
S

(k)
m (t)

)i
. (2.46)

Hence ∥∥∥Ḟ (k)
m (t)

∥∥∥ ≤ N−1∑
i=0

b̃i

(√
S

(k)
m (t)

)i
. (2.47)

Lemma 2.4 is proved. �
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Now, we estimate all intergals I2, I3, I4.

Integral I2. Using the inequality

xq ≤ 1 + xN , ∀x ≥ 0, ∀ q ∈ [0, N ], (2.48)

we get from (2.40)−(i), that

I2 = 2
∫ t

0 〈F
(k)
m (s), u̇

(k)
m (s)〉ds ≤ 2

∫ t
0

∥∥∥F (k)
m (s)

∥∥∥∥∥∥u̇(k)
m (s)

∥∥∥ ds
≤ 2

N−1∑
i=0

b̃i
∫ t

0

(√
S

(k)
m (s)

)i+1

ds

≤ 2
N−1∑
i=0

b̃i
∫ t

0

[
1 + (S

(k)
m (s))N

]
ds

≤ 2
N−1∑
i=0

b̃i

[
T +

∫ t
0 (S

(k)
m (s))Nds

]
.

(2.49)

Integral I3. We again use inequality (2.48) and from (2.40)-(ii), we have

I3 = 2
∫ t

0 〈F
(k)
mx(s), u̇

(k)
mx(s)〉ds ≤ 2

∫ t
0

∥∥∥F (k)
mx(s)

∥∥∥∥∥∥u̇(k)
mx(s)

∥∥∥ ds
≤ 2

N−1∑
i=0

b̃i
∫ t

0

(√
S

(k)
m (s)

)i√
S

(k)
m (s)ds

≤ 2
N−1∑
i=0

b̃i
∫ t

0

(
1 + (S

(k)
m (s))N

)
ds

≤ 2
N−1∑
i=0

b̃i

[
T +

∫ t
0

(
Skm(s)

)N
ds
]
.

(2.50)

Integral I4. Similarly, by (2.48) and (2.40)-(iii), we have

I4 = 2
∫ t

0 〈Ḟ
(k)
m (s), ü

(k)
m (s)〉ds ≤ 2

∫ t
0

∥∥∥Ḟ (k)
m (s)

∥∥∥∥∥∥ü(k)
m (s)

∥∥∥ ds
≤ 2

N−1∑
i=0

b̃i
∫ t

0

(√
S

(k)
m (s)

)i+1

ds

≤ 2
N−1∑
i=0

b̃i

[
T +

∫ t
0

(
Skm(s)

)N
ds
]
.

(2.51)

Combining (2.35), (2.38), (2.49)–(2.51), after arrangement and choose M > 0
such that

S0 ≤ M2

4 , (2.52)

we have

S
(k)
m (t) ≤ M2

4 + TC̄1(M) + C̄1(M)
∫ t

0

(
S

(k)
m (s)

)N
ds, 0 ≤ t ≤ T, (2.53)
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where

C̄1(M) = 2

(
|λ|+ 3

N−1∑
i=0

b̃i

)
. (2.54)

Then we have the following lemma.

Lemma 2.5. There exists constant T > 0 independent of k and m such that

S
(k)
m (t) ≤M2, ∀ t ∈ [0, T ], ∀ k, m ∈ N. (2.55)

Proof. Put

S(t) = M2

4 + TC̄1(M) + C̄1(M)
∫ t

0

(
S

(k)
m (s)

)N
ds, 0 ≤ t ≤ T. (2.56)

Clearly 
S(t) > 0, 0 ≤ S(k)

m (t) ≤ S(t), 0 ≤ t ≤ T,
S
′
(t) ≤ C̄1(M)SN (t), 0 ≤ t ≤ T,

S(0) = M2/4 + TC̄1(M).

(2.57)

Intergrating of (2.57), we have

S1−N (t) ≥
[
M2/4 + TC̄1(M)

]1−N − (N−1) C̄1(M)t

≥
[
M2/4 + TC̄1(M)

]1−N − (N−1)TC̄1(M), ∀ t ∈ [0, T ].
(2.58)

By

lim
T→0+

[(
M2/4 + TC̄1(M)

)1−N − (N − 1)TC̄1(M)
]

=
(
M2/4

)1−N
>
(
M2
)1−N

,

(2.59)

then, from (2.59), we always choose a constant T > 0 such that(
M2/4 + TC̄1(M)

)1−N − (N − 1)TC̄1(M) >
(
M2
)1−N

. (2.60)

Finally, it follows from (2.57), (2.58) and (2.60), that

0 ≤ S(k)
m (t) ≤ S(t)

= 1
N−1

√
[M2/4+TC̄1(M)]

1−N−(N−1)C̄1(M)t
≤M2, ∀ t ∈ [0, T ].

(2.61)

Lemma 2.5 is proved. �

Remark 2.6. The function

S(t) =
1

N−1

√[
M2/4 + TC̄1(M)

]1−N − (N − 1) C̄1(M)t
, 0 ≤ t ≤ T,

is the maximal solution of the Volterra integral equation with non-decreasing
kernel [8].
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S(t) = M2

4 + TC̄1(M) + C̄1(M)
∫ t

0 S
N (s)ds, 0 ≤ t ≤ T. (2.62)

By Lemma 2.5, we can take constant T
(k)
m = T for all m and k. Therefore,

u
(k)
m ∈W (M,T ), for all m and k. (2.63)

From (2.63), we deduce the existence of a subsequence of {u(k)
m } still also so

denoted, such that

u
(k)
m → um in L∞(0, T ;V ∩H2) weakly*,

u̇
(k)
m → u′m in L∞(0, T ;V ∩H2) weakly*,

ü
(k)
m → u′′m in L∞(0, T ;V ) weakly*,

um ∈W (M,T ).

(2.64)

By the compactness lemma of Lions ([7], p.57), from (2.64), there exists a

subsequence of {u(k)
m }, denoted by the same symbol, such that{

u
(k)
m → um strongly in L2(0, T ;V ) and a.e. in QT ,

u̇
(k)
m → u′m strongly in L2(0, T ;V ) and a.e. in QT .

(2.65)

On the other hand, using the inequality∣∣xj − yj∣∣ ≤ jM j−1 |x− y| , ∀x, y ∈ [−M,M ], ∀M > 0, ∀ j ∈ N, (2.66)

we deduce from (2.63), (2.64)4, that∣∣∣(u(k)
m )i − (um)i

∣∣∣ ≤ iM i−1
∣∣∣u(k)
m − um

∣∣∣ . (2.67)

Therefore, (2.65) and (2.67) yield

(u
(k)
m )i → (um)i strongly in L2(QT ). (2.68)

Hence, we deduce from (2.10), (2.14) and (2.68) that

F
(k)
m → Fm strongly in L2(QT ). (2.69)

Passing to limit in (2.11), (2.12), we have um satisfying (2.9), (2.10) in L2(0, T ).
On the other hand, it follows from (2.9)1 and (2.64)4 that

∂2

∂x2
(u′′m(t) + um(t)) = u′′m(t) + λu′m(t)− Fm(t) ∈ L∞(0, T ;V ). (2.70)

Consequently

u′′m(t) + um(t) = Φ ∈ L∞(0, T ;V ∩H2), (2.71)

so
u′′m(t) = Φ− um(t) ∈ L∞(0, T ;V ∩H2). (2.72)
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Hence um ∈W1(M,T ) and the proof of Theorem 2.2 is complete. �

We note that

WT = {u ∈ L∞(0, T ;V ) : u′ ∈ L∞(0, T ;V )}

is a Banach space with respect to the norm

‖v‖WT
= ‖v‖L∞(0,T ;V ) +

∥∥v′∥∥
L∞(0,T ;V )

.

Then we have the following theorem.

Theorem 2.7. Let (A1)-(A2) hold. Then
(i) Prob.(1.1)–(1.3) has a unique weak solution u ∈ W1(M,T ), where the
constants M > 0 and T > 0 are chosen as in Theorem 2.2.

Furthermore,
(ii) The recurrent sequence {um}, defined by (2.9) and (2.10), converges at a
rate of order N to the solution u strongly in the space WT in the sense

‖um − u‖WT
≤ C ‖um−1 − u‖NWT

, (2.73)

for all m ≥ 1, where C is a suitable constant. On the other hand, the estimate
is fulfilled

‖um − u‖WT
≤ CT (kT )N

m

, for all m ∈ N, (2.74)

where CT and kT < 1 are the constants depending only on T.

Proof. (a) Existence.

We shall prove that {um} is a Cauchy sequence in WT . Let wm = um+1−um.
Then wm satisfies the variational problem{

〈w′′m(t), w〉+ 〈wmx(t) + w′′mx(t), wx〉 = 〈Fm+1(t)− Fm(t), w〉 , ∀w ∈ V,
wm(0) = w′m(0) = 0.

(2.75)
Taking w = w′m in (2.75), after integrating in t, we get

Zm(t) = 2
∫ t

0 〈Fm+1(s)− Fm(s), w′m(s)〉 ds, (2.76)

where Zm(t) = ‖w′m(t)‖2 + ‖wmx(t)‖2 + ‖w′mx(t)‖2 .
Using Taylor’s expansion of the function f(x, t, um) around the point um−1

up to order N , we obtain

f(x, t, um)− f(x, t, um−1)

=
N−1∑
i=1

1
i!D

i
3f(x, t, um−1)wim−1 + 1

N !D
N
3 f(x, t, λm)wNm−1,

(2.77)
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where λm = λm(x, t) = um−1 + θ1 (um − um−1), 0 < θ1 < 1. Hence, it follows
from (2.10) and (2.77) that

Fm+1(x, t)− Fm(x, t)

=
N−1∑
i=1

1
i!D

i
3f(x, t, um)wim + 1

N !D
N
3 f(x, t, λm)wNm−1.

(2.78)

So, we have

‖Fm+1(t)− Fm(t)‖ ≤ η(1)
T

√
Zm(t) + η

(2)
T

(√
Zm−1(t)

)N
, (2.79)

where η
(1)
T = KM (f)

N−1∑
i=1

M i−1

i! , η
(2)
T = 1

N !KM (f). Then we deduce from (2.76)

and (2.79) that

Zm(t) ≤ Tη(2)
T ‖wm−1‖2NWT

+
(

2η
(1)
T + η

(2)
T

) ∫ t
0 Zm(s)ds. (2.80)

By using Gronwall’s Lemma, (2.80) leads to

‖wm‖WT
≤ µT ‖wm−1‖NWT

, (2.81)

where µT = 2

√
Tη

(2)
T exp

(
T (2η

(1)
T + η

(2)
T )
)
. Then, it follows from (2.81) that

‖um − um+p‖WT
≤ (1− kT )−1 (µT )

−1
N−1 (kT )N

m

. (2.82)

Choosing T small enough such that kT = Mµ
1

N−1

T < 1. It follows that {um} is
a Cauchy sequence in WT . Then there exists u ∈WT such that

um → u strongly in WT . (2.83)

Note that um ∈W1(M,T ), then there exists a subsequence {umj} of {um} such
that 

umj → u in L∞(0, T ;V ∩H2) weakly*,

u′mj
→ u′ in L∞(0, T ;V ∩H2) weakly*,

u′′mj
→ u′′ in L∞(0, T ;V ) weakly*,

u ∈W (M,T ).

(2.84)

We note that

‖Fm(x, t)− f(·, t, u(t))‖ ≤ KM (f)
N−1∑
i=1

1
i! ‖um − um−1‖iWT

. (2.85)

Hence, from (2.83) and (2.85), we obtain

Fm(t)→ f(·, t, u(t)) strongly in L∞(0, T ;L2). (2.86)

Finally, passing to limit in (2.9), (2.10) as m = mj → ∞, there exists u ∈
W (M,T ) satisfying the problem (2.4), (2.5).
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On the other hand, by applying a similar argument used in the proof of
Theorem 2.2, u ∈ W1(M,T ) is the local unique weak solution of problem
(1.1)–(1.3). Passing to the limit as p → +∞ for fixed m, we obtain the
estimate (2.74) from (2.82). Theorem 2.7 is proved. �

Remark 2.8. In order to construct a N–order iterative scheme, we need the
condition f ∈ CN ([0, 1] × R+ × R). Then, we get a convergent sequence at a
rate of order N to a local unique weak solution of problem and the existence
follows. However, this condition of f can be relaxed if we only consider the
existence of solution, see [6], [15], [16].
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