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Abstract. In this paper, we consider nonlinear mixed vector variational inequality problems

in the setting of topological vector spaces. We extend the concept of upper sign continuity for

vector-valued functions and establish some existence results for solutions of vector variational

inequalities. By utilizing a new version of Ky Fan lemma we investigated the nonemptyness

and compactness of solution sets of these problems under some suitable assumptions.

1. Introduction

It has been shown that a wide class of linear and nonlinear problems arising
in various branches of mathematical and engineering sciences can be studied
in the unified and general framework of variational inequalities. Variational
inequalities were introduced and considered by Stampacchia [9] in early sixties.
Variational inequalities have been generalized and extended in several direc-
tions using new techniques. As a useful and important branch of variational
inequality theory, vector variational inequalities were initially introduced and
considered by Giannessi [3] in a finite-dimensional Euclidean space in 1980.
Ever since the theory of vector variational inequalities has been extensively
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studied in the last two decades because of its applications to vector optimiza-
tion problems, vector complementarity problems, game theory, economics, etc;
See, for example, [3, 4, 6, 7, 8] and references therein.

Inspired and motivated by the recent research activities going on in this
direction, we introduce the concept of Px-η-upper sign continuity which extend
the previous concept of upper sign continuity introduced by Hadjisavvas [5]
and considered two classes of nonlinear vector variational inequality problems.
Further, we obtain an existence result for their solutions in real Hausdorff
topological vector spaces setting for a moving cone by relaxing continuity and
compactness by using a new version of famous Ky Fan lemma which is due to
Ben-El-Mechaiekh et al. [1]. The results of this paper are generalizations and
refinement of several results recently appeared in the literature.

2. Preliminaries

Throughout the paper unless otherwise specified, let X and Y be two topo-
logical vector spaces, K ⊂ X be a nonempty convex subset of X. A nonempty
set P ⊂ Y be a convex cone if λP ⊆ P, for all λ ≥ 0 and P + P = P also P
is said to be a pointed cone with its apex at the origin if P ∩ (−P ) = {0}.

The partial order ≤P in Y , induced by the pointed cone P , is defined by
declaring

x ≤P y if and only if y − x ∈ P, ∀x, y ∈ Y.
An ordered topological vector space is a pair (Y, P ) with the partial order
induced by P . Let L(X,Y ) denote the space of all continuous linear mappings
from X into Y . We will denote by 2A, the family of all subsets of A and by
F (A) the family of all nonempty finite subsets of A. A set-valued mapping
P : K → 2Y be such that for each x ∈ K, P (x) is closed and convex cone.

Now, we recall the following concepts and results which are needed in the
sequel. Throughout the paper, unless otherwise specified, let Px=

⋂
x∈K

P (x) is

closed, convex and pointed cone in Y .

Definition 2.1. A mapping f : K → Y is said to be

(i) Px-convex, if tf(x)+(1−t)f(y)−f(tx+(1−t)y) ∈ Px, ∀x, y ∈ K, t ∈
[0, 1];

(ii) Px-concave, if −f is Px-convex.
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Definition 2.2. Let K0 be a nonempty subset of K. A set-valued mapping
Γ : K0 → 2K is said to be a KKM mapping if, coA ⊆

⋃
x∈A

Γ(x), ∀A ∈ F (K0),

where co denotes the convex hull.

Definition 2.3 ([1]). Consider a subset A of a topological vector space and a
topological space Y . A family {Ci,Ki}i∈I of pairs of sets is said to be coercing
for a map G : A→ 2Y if and only if

(i) for each i ∈ I, Ci is contained in a compact convex subset of A, and
Ki is a compact subset of Y ;

(ii) for each i, j, there exists k ∈ I such that Ci ∪ Cj ⊆ Ck;
(iii) for each i ∈ I, there exists k ∈ I with

⋂
x∈Ck

G(x) ⊆ Ki.

Theorem 2.4 ([1]). Let F : K → 2Y be a KKM mapping with compactly
closed (in K) values. If F admits a coercing family, then

⋂
x∈K

F (x) 6= ∅.

3. Main Results

Throughout this section we let X and Y be two topological vector spaces,
K a nonempty convex subset of X, P : K → 2Y with convex cone values, and
let T : K → L(X,Y ) be a mapping and η : K ×K → X, f : K ×K → Y are
two nonlinear mappings. Now, we consider following nonlinear mixed vector
variational inequality (for short, NMVVI) problem that consists of finding
x ∈ K such that

〈Tx, η(y, x)〉+ f(y, x) ∈ P (x), ∀y ∈ K. (3.1)

Also, we consider dual nonlinear mixed vector variational inequality (for short,
DNMVVI) problem with respect to f that consists in finding x ∈ K such that

〈Ty, η(x, y)〉+ f(y, x) ∈ −P (y), ∀y ∈ K. (3.2)

We denote the solution set of NMVVI and DNMVVI with S1 and S2, respec-
tively.

In order to establish existence results for the solutions of NMVVI and DN-
MVVI, we define the following concepts.

Definition 3.1. A mapping T : K ∈ L(X,Y ) is said to be Px-η-pseudomonotone
with respect to f if, for all x, y ∈ K,

〈Tx, η(y, x)〉+ f(y, x) ∈ P (x)⇒ 〈Ty, η(x, y)〉+ f(y, x) ∈ −P (y).
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Example 3.2. Let X=R, K=R+, Y=R2, P (x) and P (y)=R2
+,∀x, y ∈ K,

η(y, x) = y − x, for all x, y ∈ K and

T (x) =

(
0

2.5 + cos x

)
and f(y, x) =

(
y − x
y − x

)
for all x, y ∈ K.

If

〈Tx, η(y, x)〉+ f(y, x) =

(
y − x

(3.5 + cos x)(y − x)

)
∈ R2

+.

Then, we have y ≥ x. It follows that

〈Ty, η(x, y)〉+ f(y, x) =

(
y − x

(1.5 + cos y)(x− y)

)
∈ −R2

+.

So, T is Px-η-pseudomonotone with respect to f .

Definition 3.3. A mapping T : K → L(X,Y ) is said to be Px-η-upper sign
continuous with respect to f if, for all x, y ∈ K,

〈Tu, η(y, u)〉+ f(y, u) ∈ P (u), ∀u ∈ ]x, y[⇒ 〈Tx, η(y, x)〉+ f(y, x) ∈ P (x).

It is remarked that, if X=Y=R, K=P (u)=[0,∞) and f ≡ 0, η(y, x)=y−x,
for all x, y ∈ K, then any positive mapping T : K → L(X,Y ) = R is Px-
η-upper sign continuous while it is not hemicontinuous. In this case, the
concept of Px-η-upper sign continuity reduces to upper sign continuity intro-
duced by Hadjisavvas [5] in the framework of variational inequalities and later
by Bianchi and Pini [2] for real bifunctions.

Theorem 3.4. Let K ⊂ X be a nonempty and convex subset of X. Let
f : K ×K → Y and η : K ×K → X be two bi-mappings. Suppose following
conditions hold:

(i) f is Px-convex in first argument with the condition

f(x, x) = 0, ∀x ∈ K;

(ii) η is an affine mapping in first argument with the condition

η(x, x) = 0, ∀x ∈ K;

(iii) T : K → L(X,Y ) is Px-η-upper sign continuous and Px-η-pseudomonotone
mapping.

Then, the solution sets of NMVVI and DNMVVI are equivalent.
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Proof. By the concept of Px-η-pseudomonotonicity of T with respect to f , we
have

NMV V I ⊆ DNMV V I. (3.3)

Conversely, let x0 ∈ K be the solution of DNMVVI. For any given x ∈ K,
we know that

xt = x0 + t(x− x0) ∈ K, ∀t ∈ (0, 1),

as K is convex. Since x0 ∈ K is a solution of DNMVVI, so for each x0 ∈ K,
it follows that

〈Txt, η(x0, xt)〉+ f(xt, x0) ∈ −P (xt). (3.4)

If 〈Txs, η(x, xs)〉 + f(xs, x) 6∈ P (xs), for some s ∈ (0, 1), then from inclusion
(3.4) and conditions (i)-(ii), it follows that

0 = 〈Txs, η(xs, xs)〉+ f(xs, xs)

= 〈Txs, η(sx+ (1− s)x0, xs)〉+ f(xs, sx+ (1− s)x0)
≤P s[〈Txs, η(x, xs)〉+ f(xs, x)]

+ (1− s)[〈Txs, η(x0, xs)〉+ f(xs, x0)] 6∈ P (xs).

Which leads to a contradiction, since P (xs) is a pointed convex cone. Hence,
we have

〈Txs, η(x, xs)〉+ f(xs, x) ∈ P (xs), for some s ∈ (0, 1).

From Px-η-upper sign continuity of T with respect to f , we get

〈Tx0, η(x, x0)〉 + f(x, x0) ∈ P (x), ∀x ∈ K.

Therefore, x0 ∈ K is solution of NMVVI. This completes the proof.
�

We now establish existence results for NMVVI and DNMVVI under Px-η-
upper sign continuity.

Theorem 3.5. Let K ⊂ X be a nonempty and convex subset of X. Let
f : K ×K → Y and η : K ×K → X be two bi-mappings. Suppose following
conditions hold:

(i) f is Px-convex in first argument with the condition

f(x, x) = 0, ∀x ∈ K;

(ii) η is an affine mapping in first argument with the condition

η(x, x) = 0, ∀x ∈ K;
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(iii) any compact E of K, the set

{y ∈ E : 〈Ty, η(x, y)〉+ f(y, x) ∈ P (y)},

is closed in E;
(iv) for each finite subset A of K and any y ∈ coA\A, there exists x ∈ A

such that

〈Ty, η(x, y)〉+ f(y, x) ∈ P (y);

(v) there exist compact subset B ⊆ K and compact convex subset D ⊆ K
such that ∀x ∈ K\B, ∃y ∈ D such that

〈Tx, η(y, x)〉+ f(y, x) 6∈ P (x).

Then, the solution set S1 of NMVVI is nonempty and compact.

Proof. Define a set-valued mapping Γ : K → 2K as follows:

Γ(y) = {x ∈ K : 〈Tx, η(y, x)〉+ f(y, x) ∈ P (x)}.

From conditions (i)-(iii), Γ has compactly closed values. We claim that Γ is a
KKM mapping. If this is not true, then there exist a finite set {y1, ..., yn} ⊂ K
and z ∈ co({y1, ..., yn}) such that

z 6∈
n⋃

i=1

Γ(yi).

Thus by definition of Γ, we have

〈Tz, η(yi, z)〉+ f(yi, z) 6∈ P (z), i = 1, ..., n. (3.5)

which is a contradiction (by (iv)). It is clear that {D,B} is a coercive family
for Γ. Now by Theorem 2.4,

NMVVI =
⋂
x∈K

Γ(x) 6= ∅.

Using (v) we obtain

NMVVI =
⋂
x∈K

Γ(x) ⊆ B, (3.6)

and hence

NMVVI =
⋂
x∈K

Γ(x) =
⋂
x∈K

(Γ(x) ∩B), (3.7)

which is closed in B (by (iii)) and so a compact set of B. �
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Example 3.6. Let X=R, K = E=[0, 1], Y=R2 and P (x), P (y)=P={(u, v) ∈
R2 : u ≥ 0, v ≥ 0} for all x, y ∈ K, be a fixed closed convex cone in Y . Let us
define

T (x)(t) = 〈T (x), t〉 = t(x, x2),

η(y, x) = y − x, ∀x, y ∈ K
and f ≡ 0, for all x ∈ K and t ∈ X. Then, f is Px-convex and T is Px-η-
pseudomonotone and Px-η-upper sign continuous with respect to f and

〈T (x), η(y, x)〉+ f(y, x) = (y − x)(x, x2) = ((y − x)x, (y − x)x2).

It is easy to see that the set

{x ∈ E : 〈T (y), η(x, y) ∈ −P (x)} = [0, y]

is closed. Since K is compact, condition (v) of Theorem 3.5 trivially holds.
Therefore, T satisfies all the assumptions of Theorem 3.5 and so the solution
set of NMVVI is nonempty and compact. It is clear that only x = 0 satisfies
the following relation

〈T (x), η(y, x)〉 ∈ P (x), ∀y ∈ K.

Similarly, only x = 0 satisfies the following relation

〈T (y), η(x, y)〉 ∈ −P (y), ∀y ∈ K.

Hence the solution sets of NMVVI and DNMVVI are equal to the singleton
set {0}.

Remark 3.7. (a) If X is a real reflexive Banach space and K is a nonempty,
bounded, closed and convex subset of X, then K is weakly compact. In
this case, condition (v) of Theorem 3.5 can be removed.

(b) It is obvious that if f(y, .) is continuous and the set-valued mapping
P (y)) for all y ∈ K, is closed, then condition (iii) of Theorem 3.5
trivially holds.

Theorem 3.8. Let K ⊂ X be a nonempty and convex subset of X. Let
f : K ×K → Y and η : K ×K → X be two bi-mappings. Suppose following
conditions hold:

(i) f is Px-convex in first argument with the condition

f(x, x) = 0, ∀x ∈ K;

(ii) η is an affine mapping in first argument with the condition

η(x, x) = 0, ∀x ∈ K;
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(iii) Any compact E of K, the set

{y ∈ E : 〈Ty, η(y, x)〉+ f(y, x) ∈ −P (y)}
is closed in E;

(iv) for each finite subset A of K and any y ∈ coA\A, there exists x ∈ A
such that

〈Ty, η(y, x)〉+ f(y, x) ∈ −P (x);

(v) there exist compact subset B ⊆ K and compact convex subset D ⊆ K
such that ∀x ∈ K\B;∃y ∈ D such that

〈Ty, η(x, y)〉+ f(y, x) 6∈ −P (y).

Then, the solution set S2 of DNMVVI is nonempty and compact.

Proof. Define a set-valued mapping Γ : K → 2K as follows:

Γ(y) = {x ∈ K : 〈Ty, η(x, y)〉+ f(y, x) ∈ −P (y)}.
From conditions (ii)-(iii), Γ has compactly closed values. From (iv), Γ is a
KKM mapping. It is obvious that {D,B} is a coercive family for Γ. Now, by
Theorem 2.4, DNMVVI =

⋂
x∈K

Γ(x) 6= ∅. Moreover, using (v) we obtain

DNMVVI =
⋂
x∈K

Γ(x) ⊆ B, (3.8)

and hence
DNMVVI =

⋂
x∈K

Γ(x) =
⋂
x∈K

(Γ(x) ∩B), (3.9)

which is closed in B (by (iii)) and so a compact set of B. �

Remark 3.9. Condition (iii) of Theorem 3.7 holds when f(y, .) is continuous
and the mapping P (y) is closed.
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