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Abstract. We establish the existence of mild solutions for a class of impulsive damped

second-order partial neutral functional differential equations with infinite delay in a Banach

space. The results are obtained using the cosine function theory and fixed point criterions.

1. Introduction

In this paper, we study the existence of mild solutions for a class of impulsive
damped second-order abstract neutral functional differential equations with
infinite delay of the form

d2

dt2

[
x(t)− g(t, xt)

]
= Ax(t) +Bx′(t) + f(t, xt, x

′(t)), t ∈ I = [0, a], (1.1)

x0 = ϕ ∈ B, x′(0) = ξ ∈ X, (1.2)

4x(ti) = I1i (xti), i = 1, ..., n, (1.3)

4x′(ti) = I2i (xti), i = 1, ..., n. (1.4)
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Here, A is the infinitesimal generator of a strongly continuous cosine family
of bounded linear operators (C(t))t∈R on a Banach space X, B is a bounded
linear operator on X; the history xt : (−∞, 0]→ X, xt(θ) = x(t+ θ), belongs

to some abstract phase space B defined axiomatically; g, f, Iji , are appropriate
functions; 0 < t1 < · · · < tn < a are prefixed numbers and the symbol
4u(t) represents the jump of the function u at t, which is defined by 4u(t) =
u(t+)− u(t−).

Neutral functional differential equations (abbreviated, NFDE) arise in many
areas of applied mathematics. For this reason, this type of equations have re-
ceived much attention in recent years. The literature concerning first and
second-order ordinary neutral functional differential equations is very exten-
sive. We only mention the works [10, 21, 23], which are directly related to this
work. First-order partial neutral functional differential equations have been
studied by different authors. The reader can consult Adimy [1], Hale [9], and
Wu [34] for systems with finite delay and Hernández & Henŕıquez [13, 14] and
Hernández [11] for the unbounded delay case.

On the other hand, the theory of impulsive differential equations describes
processes which experience a sudden change of their state at certain moments.
Processes with such a character arise naturally and often especially in phenom-
ena studied in physics, chemical technology , population dynamics, biotechnol-
ogy and economics. The theory of impulsive differential equations has become
an important area of investigation in recent years and is much richer than
the corresponding theory of classical differential equations. Several authors
[3, 4, 22, 25, 27, 28, 29] have investigated the impulsive differential equations.
The literature concerning second order functional differential equations is very
extensive. We refer the reader to Hernandez et al to [12, 16, 17, 18] for sec-
ond order impulsive differential equations. The damped first and second order
differential equations have been studied by many authors [5, 6, 24, 30, 33].

The study of existence and qualitative properties of solutions of impulsive
damped abstract partial neutral functional differential equations described by
the form (1.1)-(1.4) is an untreated topic in the literature and this fact is the
main motivation of this paper.

Next, we review some basic concepts, notations and properties needed to
establish our results. Throughout this paper, A is the infinitesimal generator
of a strongly continuous cosine family (C(t))t∈R of bounded linear operators
on the Banach space (X, ‖ · ‖) and (S(t))t∈R is the associated sine function

defined by S(t)x =
∫ t
0 C(s)xds, for x ∈ X and t ∈ R. In this paper, [D(A)] is

the domain of A endowed with the norm ‖ x ‖A=‖ x ‖ + ‖ Ax ‖, x ∈ D(A).
The notation E represents the space formed by the vectors x ∈ X for which
C(·)x is a function of class C1 on R. We know from Kisińsky [20] that E
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endowed with the norm

‖x‖E = ‖x‖+ sup
0≤t≤1

‖AS(t)x‖, x ∈ E,

is a Banach space. The operator valued function H(t) =

[
C(t) S(t)
AS(t) C(t)

]
is a

strongly continuous group of bounded linear operators on the space E×X with

generator A =

[
0 I
A 0

]
defined on D(A) × E. It follows from this property

that AS(t) : E → X is a bounded linear operator and that ‖ AS(t)x ‖→ 0 as
t → 0, for each x ∈ E. Furthermore, if x : [0,∞) → X is locally integrable,

then y(t) =
∫ t
0 S(t − s)x(s)ds is an E-valued continuous function. This is a

consequence of the fact that∫ t

0
H(t− s)

[
0
x(s)

]
ds =

[ ∫ t

0
S(t− s)x(s) ds,

∫ t

0
C(t− s)x(s) ds

]T
,

defines an E ×X-valued continuous function.
From the definition of the norm in E, it follows that u ∈ C(I;E) if, and

only if, u ∈ C(I;X) and the set of functions {AS(t)u(·) : 0 ≤ t ≤ 1} is an
equicontinuous subset of C(I;X).

The existence of solutions of the second-order abstract Cauchy problem

x′′(t) = Ax(t) + h(t), t ∈ I, (1.5)

x(0) = w, x′(0) = z, (1.6)

where h ∈ L1(I,X), is studied in [31]. On the other hand, the semilinear case
has been treated in [32]. We only mention here that the function x(·) given
by

x(t) = C(t)w + S(t)z +

∫ t

0
S(t− s)h(s) ds, t ∈ I, (1.7)

is called a mild solution of (1.5)-(1.6), and that when w ∈ E the function x(·)
is of class C1 and

x′(t) = AS(t)w + C(t)z +

∫ t

0
C(t− s)h(s) ds, t ∈ I.

A function u : [σ, τ ] → X is said to be a normalized piecewise continuous
function on [σ, τ ] if u is piecewise continuous and left continuous on (σ, τ ]. We
denote by PC([σ, τ ], X) the space of normalized piecewise continuous func-
tions from [σ, τ ] into X. In particular, we introduce the space PC formed by
all normalized piecewise continuous functions u : [0, a] → X such that u is
continuous at t 6= ti, i = 1, . . . , n. It is clear that PC endowed with the norm
of uniform convergence is a Banach space.
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In what follows, we set t0 = 0, tn+1 = a, and for u ∈ PC we denote by ũi,
for i = 0, 1, ..., n, the function ũi ∈ C([ti, ti+1];X) given by ũi(t) = u(t) for
t ∈ (ti, ti+1] and ũi(ti) = limt→t+i

u(t). Moreover, for a set F ⊆ PC, we denote

by F̃i, for i = 0, 1, ..., n, the set F̃i = {ũi : u ∈ F}.

Lemma 1.1. A set F ⊆ PC is relatively compact in PC if, and only if, each

set F̃i, i = 0, 1, · · · , n, is relatively compact in C([ti, ti+1], X).

In this work, we will employ an axiomatic definition of the phase space B,
similar to the one used in [19] and suitably modified to treat retarded impul-
sive differential equations. Specifically, B will be a linear space of functions
mapping (−∞, 0] into X endowed with a seminorm ‖ · ‖B and we will assume
that B satisfies the following axioms:

(A) If x : (−∞, σ + b] → X, b > 0, is such that xσ ∈ B and x|[σ,σ+b] ∈
PC([σ, σ + b], X), then for every t ∈ [σ, σ + b) the following conditions
hold:

(i) xt is in B,
(ii) ‖ x(t) ‖≤ H ‖ xt ‖B,

(iii) ‖ xt ‖B≤ K(t− σ) sup{‖ x(s) ‖: σ ≤ s ≤ t}+M(t− σ) ‖ xσ ‖B,
where H > 0 is a constant; K,M : [0,∞) → [1,∞), K is continuous,
M is locally bounded, and H,K,M are independent of x(·).

(B) The space B is complete.

Remark 1.2. In impulsive functional differential systems, the map [σ, σ+b]→
B, t→ xt, is in general discontinuous. For this reason, this property has been
omitted from our description of the phase space B.

Next, we consider some examples of phase spaces.

Example 1.3. The phase space PCρ(X)
We say that a function ϕ : (−∞, 0]→ X is normalized piecewise continuous

if ϕ is left continuous and the restriction of ϕ to any interval [−r, 0] is piecewise
continuous.

Let ρ : (−∞, 0] → [1,∞) be a continuous function which satisfies the con-
ditions (g-1), (g-2) in the terminology of [19]. Next, we slightly modify the
definition of spaces Cρ, C

0
ρ in [19]. We denote by PCρ(X) the space formed

by the normalized piecewise continuous functions ϕ such that ϕ
ρ is bounded

on (−∞, 0], and by PC0ρ(X) the subspace of PCρ(X) consisting of functions

ϕ such that ϕ(θ)
ρ(θ) → 0 as θ → −∞. It is easy to see that B = PCρ(X) and

B = PC0ρ(X) endowed with the norm ‖ ϕ ‖B:= supθ∈(−∞,0]
‖ϕ(θ)‖
ρ(θ) are phase

spaces in the sense defined above.
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Example 1.4. The phase space PCr × Lp(ρ,X)
Let r ≥ 0, 1 ≤ p < ∞ and let ρ : (−∞,−r] → R be a non-negative

measurable function which satisfies the conditions (g-5), (g-6) in the termi-
nology of [19]. Briefly, this means that ρ is locally integrable and there exists
a non-negative, locally bounded function γ on (−∞, 0] such that ρ(ξ + θ) ≤
γ(ξ)ρ(θ), for all ξ ≤ 0 and θ ∈ (−∞,−r) \ Nξ, where Nξ ⊆ (−∞,−r) is
a set with Lebesgue measure zero. The space B = PCr × Lp(ρ,X) consists
of all classes of Lebesgue-measurable functions ϕ : (−∞, 0] → X such that
ϕ |[−r,0]∈ PC([−r, 0], X) and ρ ‖ ϕ ‖p is Lebesgue integrable on (−∞,−r).
The seminorm in this space is defined by

‖ ϕ ‖B= sup{‖ ϕ(θ)‖ : −r ≤ θ ≤ 0}+

(∫ −r
−∞

ρ(θ) ‖ ϕ(θ) ‖p dθ
)1/p

.

Proceeding as in the proof of [19, Theorem 1.3.8], it follows that B is a space
which satisfies the axioms (A) and (B). Moreover, when r = 0 this space
coincides with C0 × Lp(ρ, X) and if, in addition, p = 2, we can take H = 1,

M(t) = γ(−t)1/2 and K(t) = 1 +
(∫ 0
−t ρ(θ)dθ

)1/2
for t ≥ 0.

Let (Z, ‖ · ‖Z) and (W, ‖ · ‖W ) be Banach spaces. In this paper, the notation
L(Z,W ) stands for the Banach space of bounded linear operators from Z into
W endowed with the operator norm and we abbreviate this notation to L(Z)
when Z = W . On the other hand, Br(x, Z) denotes the closed ball with center
at x and radius r > 0 in Z, and for a bounded function γ : [0, a] → Z and
0 ≤ t ≤ a, we will employ the notation γZ, t to mean

γZ, t = sup{‖ γ(s) ‖Z : s ∈ [0, t]}. (1.8)

We simplify this notation to γt when no confusion about the space Z arises.
Additionally, for a function ζ : I × Z → W and h ∈ R, we use the notation

∂hζ(t, z) = ζ(t+h,z)−ζ(t,z)
h . If ζ is differentiable, we employ the decomposition

ζ(s, w)− ζ(t, z) = D1ζ(t, z)(s− t) +D2ζ(t, z)(w − z)
+ ‖(s− t, w − z)‖ R(ζ(t, z), s− t, w − z),

where ‖R(ζ(t, z), s̃, w̃)‖W → 0 as ‖(s̃, w̃)‖ = |s̃|+ ‖w̃‖Z → 0.
This paper is divided into two additional sections. In Section 2, we discuss

the existence of mild solutions for impulsive second order neutral systems.
Then, some applications of the theory are considered in Section 3.
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2. Existence results

In this section, we discuss the existence of mild solutions for the system
(1.1)-(1.4). We begin by studying the following impulsive neutral system

d2

dt2

[
x(t)− g(t, xt)

]
= Ax(t) +Bx′(t) + f(t, xt), t ∈ I = [0, a], (2.1)

x0 = ϕ ∈ B, (2.2)

d

dt

[
x(t)− g(t, xt)

]∣∣∣
t=0

= z ∈ X, (2.3)

4x(ti) = I1i (xti), i = 1, ..., n. (2.4)

In this section, M,N are constants such that ‖C(t)‖ ≤ M and ‖S(t)‖ ≤ N
for all t ∈ I. The notation F(a) stands for the space

F(a) = {u : (−∞, a]→ X : u|I ∈ PC, u0 = 0},
endowed with the sup norm. In addition, y : (−∞, a] → X is the function
defined by y0 = ϕ and y(t) = C(t)ϕ(0) for t ∈ I.

In the following definition we introduce the concept of mild solution for
system (2.1)-(2.4).

Definition 2.1. A function x : (−∞, a] → X is called a mild solution of
(2.1)-(2.4) if x0 = ϕ; x |I∈ PC and

x(t) = C(t)(ϕ(0)− g(0, ϕ)) + S(t)z + g(t, xt)

+

j−1∑
i=0

[S(t− ti+1)Bx(t−i+1)− S(t− ti)Bx(t+i )]

−S(t− tj)Bx(t+j ) +

∫ t

0
C(t− s)Bx(s)ds

+

∫ t

0
AS(t− s)g(s, xs)ds+

∫ t

0
S(t− s)f(s, xs)ds

+
∑

0<ti<t

C(t− ti)I1i (xti),

for all t ∈ [tj , tj+1] and every j = 0, ..., n.

Remark 2.2. The above equation can also be written as

x(t) = C(t)(ϕ(0)− g(0, ϕ)) + S(t)z + g(t, xt) +

∫ t

0
S(t− s)Bx′(s)ds

+

∫ t

0
AS(t− s)g(s, xs)ds+

∫ t

0
S(t− s)f(s, xs)ds

+
∑

0<ti<t

C(t− ti)I1i (xti), t ∈ I.
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Now, a integration by parts permit us to infer that x(·) is a mild solution of
(2.1)-(2.4).

Remark 2.3. Clearly, a mild solution of (2.1)-(2.4) satisfies (2.2), (2.4). Nev-
ertheless, a mild solution may be not differentiable at zero.

Motivated by this definition, we introduce the following assumptions.

(H1) There exists a Banach space (Y, ‖ · ‖Y ) continuously included in X
such that AS(t) ∈ L(Y,X), for all t ∈ I, and AS(·)x ∈ C(I;X) for
every x ∈ Y . There exist constants NY , N1 such that ‖y‖ ≤ NY ‖y‖Y ,
for all y ∈ Y, and ‖AS(t)‖L(Y,X) ≤ N1, for all t ∈ I.

(H2) R(C(t)−I) is closed and dimKer(C(t)−I) <∞, for every 0 < t ≤ a.

Remark 2.4. The condition (H1) is motivated by the fact that, in general,
the function AS(·) defined from [0, a] into L(X) is not integrable. In fact,
if ‖ AS(·) ‖L(X)∈ L1([0, a]), then by using the relation C(t)x − C(s)x =

A
∫ t
s S(s)xds, x ∈ X, and that A is closed, we obtain

‖ C(t)x− C(s)x ‖=
∥∥∥A∫ t

s
S(θ)xdθ

∥∥∥ ≤ ∫ t

s
‖ AS(θ) ‖L(X) dθ ‖ x ‖,

proving that C(·) ∈ C(I;L(X)), and hence that A is bounded (see [31, Propo-
sition 4.1]).

Remark 2.5. If condition (H1) holds, then Y is continuously included in E.
In fact, for y ∈ Y

C(t)y − y = A

∫ t

0
S(s)y ds =

∫ t

0
AS(s)y ds, (2.5)

which implies that C(·)y is of class C1 and, therefore Y ⊆ E. Moreover, the
inequality

‖y‖E = ‖y‖+ sup
0≤t≤1

‖AS(t)y‖ ≤ (1 +N1)‖y‖ ≤ (1 +N1)NY ‖y‖Y ,

shows that the inclusion ι : Y → E is continuous. We observe that [D(A)]
and E satisfy (H1).

Remark 2.6. The assumption (H2) is satisfied by a long list of differential
operators; see in particular, the example in Section 3.

The following properties of cosine functions will be used to establish our
results [17].
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Lemma 2.7. Let condition (H2) be satisfied and F ⊆ Y . If F is bounded in
X and the set {AS(t)y : t ∈ [0, b], y ∈ F} is relatively compact in X, then F
is relatively compact in X.

Lemma 2.8. Let F ⊆ E and assume that V (b) = {AS(t)x : t ∈ [0, b], x ∈ F},
0 ≤ b ≤ a, is relatively compact in X. Then AS(h)x → 0, h → 0, uniformly
for x ∈ F .

We can consider a mild solution x(·) as a function which has jumps at the
points ti, for i = 1, ..., n, so that the tangent vector of the curve x(t) does not
change when t goes from t−i to t+i . Note however that, according to the defi-
nition, a mild solution x(·) need not be differentiable, so that this explanation
is only a rough translation of the concept.

To establish existence of solutions we consider the following assumptions:

(H3) The function g : I × B → Y satisfies the following conditions:
(i) For each t ∈ I, g(t, ·) : B → Y is continuous.
(ii) Let x : (−∞, a] → X be such that x0 = ϕ and x|I ∈ PC. Then

the function t 7→ g(t, xt) belongs to PC and is strongly measurable
from I into Y .

(iii) There exist a function mg ∈ L1(I, [0,∞)) and a continuous non-
decreasing function Wg : [0,∞)→ (0,∞) such that
‖g(t, ψ)‖Y ≤ mg(t)Wg (‖ψ‖B) , for all (t, ψ) ∈ I × B.

(H4) The function f : I × B → X satisfies the following conditions:
(i) For each t ∈ I, f(t, ·) : B → X is continuous.
(ii) Let x : (−∞, a] → X be such that x0 = ϕ and x|I ∈ PC. Then

the function [0, a]→ X, t 7→ f(t, xt), is strongly measurable.
(iii) There exist a function mf ∈ L1(I, [0,∞)) and a continuous non-

decreasing function Wf : [0,∞)→ (0,∞) such that
‖f(t, ψ)‖ ≤ mf (t)Wf (‖ ψ ‖B), for all (t, ψ) ∈ I × B.

Remark 2.9. In what follows we set W = max{Wg,Wf}.

In connection with these conditions it is worth mentioning the following
remarks.

Remark 2.10. If (H1), (H3) are satisfied and x : (−∞, a]→ X is a function
such that x0 = ϕ and x|I ∈ PC, then from Bochner’s criterion for integrable
functions and the estimate

‖ AS(t− s)g(s, xs) ‖≤ N1mg(s)W (Ka ‖ x ‖a +Ma ‖ ϕ ‖B),

we infer that s→ AS(t− s)g(s, xs) ∈ L1([0, t];X) for every t ∈ I.
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Remark 2.11. Concerning (H3)(ii) and (H4)(ii) we only remark that, in
general, the function t→ xt is not continuous.

We have conditions now to establish our first existence result.

Theorem 2.12. Assume that (H1)-(H4) are satisfied and that the following
conditions hold:

(a) The set U(r, t) = {S(t)f(s, ψ) : s ∈ I, ψ ∈ Br(0,B)} is relatively
compact in X, for each t ∈ I and all r > 0.

(b) Let r > 0 and V (r, g) be the set of functions V (r, g) = {t → g(t, ut +
yt);u ∈ Br(0,F(a))}. The set V (r) = {AS(θ)g(s, ψ) : θ, s ∈ I, ψ ∈
Br(0,B)} is pre-compact in X; for all i = 1, . . . , n, the set {ṽi : v ∈
V (r, g)} is an equicontinuous subset of C([ti, ti + 1], X) and there are
positive constants c1, c2 such that ‖g(t, ψ)‖Y ≤ c1‖ψ‖B + c2, for every
(t, ψ) ∈ I × B.

(c) The maps B, I1i : B → X are completely continuous and there are

positive constants dji , j = 1, 2, such that ‖ I1i (ψ) ‖≤ d1i ‖ ψ ‖B +d2i ,
for every i = 1, ..., n, and all ψ ∈ B.

(d) The constant µ = 1−Ka[NY c1 + 3N ‖ B ‖ H +M
∑n

i=1 d
1
i ] > 0, and

Ka

µ

[
aM ‖ B ‖ H +

∫ a

0
[N1mg(s) +Nmf (s)] ds

]
<

∫ ∞
C

ds

W (s)
, (2.6)

where

C =
1

µ

[
Ka

(
NY c2 +M(‖ g(0, ϕ)‖+

n∑
i=1

d2i ) +N ‖ z ‖

)
+ ‖ y ‖B,a

]
.

Then there exists a mild solution of (2.1)-(2.4).

Proof. We define the map Γ on the space F(a) by (Γu)0 = 0 and

Γu(t) =− C(t)g(0, ϕ) + S(t)z + g(t, ut + yt)

+

j−1∑
i=0

[
S(t− ti+1)B(u(t−i+1) + y(t−i+1))

− S(t− ti)B(u(t+i ) + y(t+i ))
]
− S(t− tj)B(u(t+j ) + y(t+j ))

+

∫ t

0
C(t− s)B(u(s) + y(s))ds+

∫ t

0
AS(t− s)g(s, us + ys)ds

+

∫ t

0
S(t− s)f(s, us + ys)ds+

∑
0<ti<t

C(t− ti)I1i (uti + yti),

if t ∈ [tj , tj+1] for some j = 0, · · · , n. From (H3), (H4) and Remark 2.10 we
infer that Γu ∈ F(a). In order to apply Theorem [8, Theorem 6.5.4], we need to
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obtain an a priori bound for the solutions of the integral equation u = λΓ(u),
λ ∈ (0, 1). To this end, let uλ be a solution of u = λΓ(u), λ ∈ (0, 1).
Using the notation βλ(t) = ‖uλt +yt ‖B≤ Ka ‖ uλ ‖t +‖ys‖B,a, we observe that

‖ uλ(t) ‖≤ M ‖ g(0, ϕ)‖+N ‖ z ‖ +NY c1βλ(t) +NY c2 + 3N ‖ B ‖ Hβλ(t)

+M ‖ B ‖ H
∫ t

0
βλ(s)ds+M

∑
0<ti<t

d1iβλ(ti) +M
∑

0<ti<t

d2i

+

∫ t

0
‖ AS(t− s) ‖L(Y,X)‖ g(s, xs + ys) ‖Y ds

+N

∫ t

0
mf (s)W (βλ(s))ds

≤

(
NY c1 + 3N ‖ B ‖ H +M

n∑
i=1

d1i

)
βλ(t) +NY c2 +M ‖ g(0, ϕ)‖

+N ‖ z ‖ +M
∑

0<ti<t

d2i +M ‖ B ‖ H
∫ t

0
βλ(s)ds

+

∫ t

0
[N1mg(s) +Nmf (s)]W (βλ(s))ds

which yields

βλ(t) ≤ Ka

µ

(
NY c2 +M ‖ g(0, ϕ)‖+N ‖ z ‖ +M

∑
0<ti<t

d2i

)
+

1

µ
‖ys‖B,a

+
Ka

µ

(
M ‖ B ‖ H

∫ t

0
βλ(s)ds+

∫ t

0
[N1mg(s)+Nmf (s)]W (βλ(s))ds

)
,

for t ∈ I. Denoting by αλ(t) the right-hand side of the previous inequality, we
see that

α′λ(t) ≤ Ka

µ

[
M ‖ B ‖ Hαλ(t) + (N1mg(t) +Nmf (t))W (αλ(t))

]
,

and subsequently, upon integrating over [0, t], we obtain∫ αλ(t)

C

ds

s+W (s)
≤ Ka

µ

[
aM ‖ B ‖ H +

∫ t

0
[N1mg(s) +Nmf (s)]ds

]
<

∫ ∞
C

ds

s+W (s)
,

since αλ(0) = C. Now, (2.6) enables us to conclude that the set of functions
{αλ : λ ∈ (0, 1)} is uniformly bounded on [0, a] and, in turn, that {uλ : λ ∈
(0, 1)} is uniformly bounded on [0, a].
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To prove that Γ is completely continuous, we introduce the decomposition
Γ =

∑4
i=1 Γi, where (Γiu)0 = 0 and

Γ1u(t) =− C(t)g(0, ϕ) + S(t)z + g(t, ut + yt)

+

j−1∑
i=0

[
S(t− ti+1)B(u(t−i+1) + y(t−i+1))− S(t− ti)B(u(t+i ) + y(t+i ))

]
− S(t− tj)B(u(t+j ) + y(t+j )) +

∑
0<ti<t

C(t− ti)I1i (uti + yti),

Γ2u(t) =

∫ t

0
AS(t− s)g(s, us + ys)ds,

Γ3u(t) =

∫ t

0
S(t−s)f(s, us + ys)ds+

∫ t

0
C(t− s)B(u(s) + y(s))ds, for t ∈ I.

From the assumptions and Lemma 1.1, it is easy to see that the map Γ1 is
completely continuous. From [17, Theorem 2.1], Γ2 is completely continuous.
Moreover, from [15, Lemma 3.1] we infer that Γ3 is also completely continuous.
Finally, from [8, Theorem 6.5.4] we infer the existence of a fixed point u of
Γ. It is clear that the function x = u + y is a mild solution of (2.5). This
completes the proof. �

In applications the operator S(t) is often compact. This motivates the next
result.

Corollary 2.13. Let assumptions (H1)-(H4) hold. If S(t) is compact, for
every t ≥ 0, and conditions (b), (c) and (d) of Theorem 2.12 hold, then there
exists a mild solution of (2.1)-(2.4).

In the next results we establish conditions that guarantee a mild solution
satisfies (2.3).

Proposition 2.14. Assume that the hypotheses of Theorem 2.12 are fulfilled
and that ϕ(0) ∈ E. If x(·) is a mild solution of (2.1)-(2.4), then condition
(2.3) holds.

Proof. Clearly, 1
t

∫ t
0 S(t − s)f(s, xs)ds → 0, 1

t

∫ t
0 S(t − s)Bx′(s)ds → 0 as

t→ 0+. In addition, for δ > 0 we can write∫ t

0
AS(t− s)g(s, xs)ds =

(
I − 1

δ
S(δ)

)∫ t

0
AS(t− s)g(s, xs) ds

+
1

δ

∫ t

0
S(t− s)AS(δ)g(s, xs)ds.
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Let r, r∗ be positive constants such that ‖xs‖B ≤ r, for all s ∈ I, and V (r) ⊂
Br∗(0, X). Since AS(t− s)g(s, xs) ∈ V (r) for every s ∈ I, it follows from the
mean value theorem that(

I − 1

δ
S(δ)

)1

t

∫ t

0
AS(t− s)g(s, xs) ds ∈

(
I − 1

δ
S(δ)

)
c(V (r)).

Since (I − 1
δS(δ))x → 0, δ → 0, for each x ∈ X and c(V (r)) is compact in

X, we have that (I − 1
δS(δ))x → 0, δ → 0, uniformly for x ∈ c(V (r)). This,

together with the estimate∥∥∥1

δ

∫ t

0
S(t− s)AS(δ)g(s, xs) ds

∥∥∥ ≤ Nr∗

δ

∫ t

0
(t− s) ds ≤ Nr∗

2δ
t2,

enables us to conclude that 1
t

∫ t
0 AS(t− s)g(s, xs)ds→ 0, t→ 0+. From these

remarks we see that

lim
t→0+

x(t)− g(t, xt)− ϕ(0) + g(0, ϕ)

t

= lim
t→0+

1

t
(S(t)z − (C(t)− I)(g(0, ϕ) + ϕ(0)) )

+ lim
t→0+

1

t

(∫ t

0
S(t− s)f(s, xs)ds+

∫ t

0
AS(t− s)g(s, xs)ds

)
= z,

which shows the assertion. �

Remark 2.15. In the sequel of this paper, Ttϕ : (−∞, 0]→ X is the function
given by Ttϕ(θ) = ϕ(0), for θ ∈ [−t, 0] and Ttϕ(θ) = ϕ(t+θ), for θ ∈ (−∞,−t].

Theorem 2.16. Assume that (H1), (H3) and (H4) hold and that f satisfies
condition (a) of Theorem 2.12. Suppose that the function g(·, ϕ) is bounded
on I and that there exist positive constants Lg, L

1
i , i = 1, ..., n, such that

‖ g(t, ψ1)− g(t, ψ2) ‖Y ≤ Lg ‖ ψ1 − ψ2 ‖B, (t, ψi) ∈ I × B,
‖ I1i (ψ1)− I1i (ψ2) ‖ ≤ L1

i ‖ ψ1 − ψ2 ‖B, ψi ∈ B,

and

Ka

[
Lg(NY + aN1) +

1

Ka
(3N + aM) ‖ B ‖ +M

n∑
i=1

L1
i

+N lim inf
ξ→∞

Wf (ξ)

ξ

∫ a

0
mf (s) ds

]
< 1.
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Then there exists a mild solution of (2.1)-(2.4). Moreover, if AS(h)g(t, Ttϕ)→
0, as h → 0, uniformly for t ∈ I and ϕ(0) ∈ E, then each mild solution of
(2.1)-(2.4) satisfies (2.3).

Proof. Let Γ be defined as in the proof of Theorem 2.12. We claim that there
exists an r > 0 such that Γ(Br(0,F(a))) ⊆ Br(0,F(a)). If we assume that
this assertion is false, then for each r > 0 we can choose ur ∈ Br(0,F(a)),
j ∈ {0, ..., n} and tr ∈ [tj , tj+1] such that r <‖ Γur(tr) ‖. Consequently,

r < ‖ g(tr, ϕ)− C(tr)g(0, ϕ) ‖ +NY ‖ g(tr, utr + ytr)− g(tr, ϕ) ‖Y +N ‖ z ‖

+ (3N + aM) ‖ B ‖ (r+ ‖ y ‖a) +N1

∫ a

0
‖ g(s, urs + ys)− g(s, ys) ‖Y ds

+N1

∫ a

0
‖ g(s, ys) ‖Y ds+N

∫ a

0
mf (s)Wf (‖ urs + ys ‖B) ds

+M
n∑
i=1

[
‖ I1i (urti + yti)− I1i (yti) ‖ + ‖ I1i (yti) ‖

]
≤ ‖ g(tr, ϕ)− C(tr)g(0, ϕ) ‖ +KaNY Lgr +NY Lg ‖ ys − ϕ ‖B,a +N ‖ z ‖

+ (3N + aM) ‖ B ‖ (r+ ‖ y ‖a) + aKaLgrN1 +N1

∫ a

0
‖ g(s, ys) ‖Y ds

+N

∫ a

0
mf (s)Wf (Kar+ ‖ ys ‖B,a) ds+M

n∑
i=1

[
L1
iKar+ ‖ I1i (yti) ‖

]
and hence,

1 ≤ Ka

[
Lg(NY + aN1) +

1

Ka
(3N + aM) ‖ B ‖ +M

n∑
i=1

L1
i

+N lim inf
ξ→∞

Wf (ξ)

ξ

∫ a

0
mf (s) ds

]
,

which is contrary to our assumptions.
Let r > 0 with Γ(Br(0,F(a))) ⊆ Br(0,F(a)) and consider the decomposi-

tion Γ = Γ1 + Γ2, where

Γ1u(t) =− C(t)g(0, ϕ) + S(t)z + g(t, ut + yt)

+

j−1∑
i=0

[
S(t−ti+1)B(u(t−i+1) + y(t−i+1))−S(t−ti)B(u(t+i )+y(t+i ))

]
− S(t− tj)B(u(t+j ) + y(t+j )) +

∫ t

0
C(t− s)B(u(s) + y(s))ds
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+

∫ t

0
AS(t− s)g(s, us + ys) ds+

∑
0<ti<t

C(t− ti)I1i (uti + yti),

Γ2u(t) =

∫ t

0
S(t− s)f(s, us + ys) ds, t ∈ I.

From [15, Lemma 3.1] we have that Γ2 is completely continuous. This fact
and the estimate

‖ Γ1u− Γ1v ‖ ≤ Ka

[
Lg(NY + aN1) +

1

Ka
(3N + aM) ‖ B ‖

+M
n∑
i=1

L1
i

]
‖ u− v ‖a,

together imply that Γ is condensing on Br(0,F(a)). Now, from [26, Corollary
4.3.2] we obtain the existence of a fixed point u of Γ. Clearly, x = u + y is a
mild solution of (2.1)-(2.4).

We next show that if ϕ(0) ∈ E, then each mild solution x satisfies (2.3). At
first, we estimate∥∥∥∥1

t

∫ t

0
AS(t− s)g(s, xs)ds

∥∥∥∥ ≤ N1

t

∫ t

0
‖g(s, xs)− g(s, Tsϕ)‖Y ds

+
1

t

∫ t

0
‖AS(t− s)g(s, Tsϕ)‖ ds.

Since ‖ xs − Tsϕ ‖B→ 0 as s → 0, and ‖AS(h)g(s, Tsϕ)‖ → 0, h → 0, (by
assumption), it follows that

lim
t→0+

1

t

∫ t

0
AS(t− s)g(s, xs) ds = 0.

Now, the proof can be completed proceeding as in the proof of Proposition
2.14 �

Remark 2.17. The condition AS(h)g(t, Ttϕ)→ 0, h→ 0, uniformly for t ∈ I,
can be dropped when the map AS : I → L(Y,X) is Lipschitz continuous [2,
Proposition 1.3.7].

In Theorem 2.19 below, we establish the existence of mild solutions using
the classical contraction principle. To prove this result, we need the following
lemma.

Lemma 2.18. Let 0 < c1 < 1 and c2 > 0. Let a0 ∈ C([a, b] : R) and
(an)n∈N be the sequence in a C([a, b] : R) defined by the recurrence relation

an+1(t) = c1an(t) + c1
∫ t
0 an(s)ds, n ∈ N. Then an(t)→ 0, uniformly on I.
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Proof. On the space C([a, b] : R) we define the map P : C([a, b] : R) →
C([a, b] : R) by

Px(t) = c1x(t) + c2

∫ t

0
x(s)ds.

Clearly, P is a bounded linear operator with σ(P ) = {c1}. Thus, r(P ) =
limn→∞ ‖ Pn ‖= c1 < 1 which implies that an+1 = Pn(a0)→ 0 as n→∞. �

Theorem 2.19. Assume that (H1), (H3) and (H4) hold. Suppose that the
function g(·, ϕ) is bounded on I and that there exist constants Lf , Lg, L

1
i , for

i = 1, ..., n, such that

‖ g(t, ψ1)− g(t, ψ2) ‖Y ≤ Lg ‖ ψ1 − ψ2 ‖B,
‖ f(t, ψ1)− f(t, ψ2) ‖ ≤ Lf ‖ ψ1 − ψ2 ‖B,
‖ I1i (ψ1)− I1i (ψ2) ‖ ≤ L1

i ‖ ψ1 − ψ2 ‖B,

for all t ∈ I and each ψ1, ψ2 ∈ B, i = 1, ..., n, and Ka[Lg(NY +aN1)+ 1
Ka

(3N+

aM)‖B‖ + M
∑n

i=1 L
1
i ] < 1. Then, there exists a unique mild solution x of

system (2.1)-(2.4). Furthermore, if ϕ(0) ∈ E and AS(h)g(t, Ttϕ)→ 0, h→ 0,
uniformly for t ∈ I, then x satisfies (2.3).

Proof. Let Γ be defined as in the proof of Theorem 2.12. For u, v ∈ F(a), we
have that

‖ Γu(t)− Γv(t) ‖ ≤ NY LgKa ‖ u− v ‖t +3N ‖ B ‖ ‖ u− v ‖t

+MKa

n∑
i=1

L1
i ‖ u− v ‖ti +M ‖ B ‖ t ‖ u− v ‖t

+N1LgKat ‖ u− v ‖t +NLfKat ‖ u− v ‖t
≤ (c1 + c2t) ‖ u− v ‖t,

where c1 = Ka(NY Lg+M
∑n

i=1 L
1
i )+3N ‖ B ‖ and c2 = Ka(N1Lg+NLf )+

M ‖ B ‖ . Proceeding as above, we get

‖ Γ2u(t)−Γ2v(t) ‖ ≤ c1 ‖ Γu(t)−Γv(t) ‖+M ‖ B ‖
∫ t

0
‖ Γu(s)−Γv(s) ‖ ds

+N1Lg

∫ t

0
‖ (Γu)s − (Γv)s ‖ ds

+NLf

∫ t

0
‖ (Γu)s − (Γv)s ‖ ds
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≤ c1(c1 + c2t) ‖ u− v ‖t

+M ‖ B ‖
∫ t

0
(c1 + c2s) ‖ u− v ‖s ds

+N1LgKa

∫ t

0
(c1 + c2s) ‖ u− v ‖s ds

+NLfKa

∫ t

0
(c1 + c2s) ‖ u− v ‖s ds

≤ c1(c1 + c2t) ‖ u− v ‖t +
[
M ‖ B ‖ +N1LgKa

+NLfKa

] ∫ t

0
(c1 + c2s)ds ‖ u− v ‖t

≤
[
c1(c1 + c2t) + c2

∫ t

0
( c1 + c2s )ds

]
‖ u− v ‖t .

Repeating the argument inductively, we obtain that

‖ Γnu− Γnv ‖t≤ an(t) ‖ u− v ‖t,
where the functions an satisfy the recurrence relation

an+1(t) = c1an(t) + c2

∫ t

0
an(s)ds, t ∈ I, n ∈ N.

Now, from Lemma 2.18, we conclude that an(t)→ 0 uniformly for t ∈ I which
implies that Γn is a contraction for n sufficiently large. This shows that Γ
has a unique fixed point and, consequently, that there exists a unique mild
solution of (2.1)-(2.4). The assertion related condition (2.3) is proved arguing
as in the proof of Proposition 2.14. The proof is complete. �

In the next result, we show that under suitable conditions a mild solution
of (2.1)-(2.4) satisfies condition (1.2). To establish this property, we select
z = ξ − η where η ∈ X is an element related to the function g in a form to be
specified in the statement of Theorem 2.20. We also introduce the following
subspaces of B
Λ1 = {ϕ ∈ B : t→ Ttϕ is continuous on [0,∞) },
Λ2 = {ϕ ∈ B : ‖ Ttϕ− ϕ ‖B≤ Lϕt, 0 ≤ t ≤ tϕ and some Lϕ > 0, tϕ > 0},
Λ3 = {ϕ ∈ B : t→ Ttϕ is differentiable at t = 0 }.

It is easy to see that if ϕ ∈ Λ3 with d
dtTtϕ |t=0= ψ and ψ(0) ∈ E, then

d
dtyt |t=0= ψ. Similarly, if ϕ ∈ Λ2 and ϕ(0) ∈ E, then the function t → yt is
Lipschitz continuous.
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Now we consider the following general assumptions.

(H5) For each r > 0, AS(t)g(s, ψ)→ 0 as t→ 0 uniformly for 0 ≤ s ≤ t and
ψ ∈ Br(0,B).

(H6) Let x : (−∞, σ + b] → X, b > 0, be the function in axiom A and
assume that x(θ) = 0 for θ < σ and ‖ x(θ) ‖≤ n, for every θ ≤ σ + b.
Then ‖ xt ‖B ≤ Kn(t − σ) ‖ x(t) ‖ +Mn(t − σ), where Kn,Mn :
[0,∞) → [1,∞) are continuous, Mn(0) = 0,Kn(0) = 1 and Kn,Mn

are independent of x(·).

We observe that assumption (H6) is satisfied, for instance, by the spaces
PC0 × Lp(ρ,X), p > 1. We also point out that condition (H5) holds in the
following cases.

(i) ‖ AS(t) ‖Y→ 0 as t→ 0+ and mg ∈ L∞(I).
(ii) The set g(I ×Br(0,B)) is relatively compact in E.

(iii) The function s → g(s, xs), belongs to PC(E) for all the functions
involved in assumption H3(ii). Here, PC(E) is the space formed by
all normalized piecewise continuous functions u : [0, a]→ E such that
u is continuous at t 6= ti, i = 1, . . . , n, endowed with the norm of the
uniform convergence topology.

(iv) The set g(I ×Br(0,B)) is [D(A)]-bounded.

In the next result, for x ∈ X, we use the notation χx for the function
χx : (−∞, 0]→ X given by χx(θ) = 0 for θ < 0 and χx(0) = x.

Theorem 2.20. Assume that (H1), (H3), (H4) and (H5) hold, ϕ(0) ∈ E and
that g is differentiable at (0, ϕ). Let x be a mild solution of (2.1)-(2.4) which
satisfies the condition (2.3) with z = ξ−η. If either of the following conditions
hold

(i) ϕ ∈ Λ2, D2g(0, ϕ) ≡ 0 and ξ = η = D1g(0, ϕ);
(ii) the assumption (H6) holds and χξ ∈ B. In addition, ϕ ∈ Λ3 with

d
dtTtϕ |t=0= ψ, ‖ D2g(0, ϕ) ‖ K(0) < 1 and η = D1g(0, ϕ)+D2g(0, ϕ)(ψ+
χξ);

then x satisfies the initial condition (1.2).

Proof. Since d
dtC(t)ϕ(0) |t=0= 0, we only need to prove that the function

u(t) = x(t) − C(t)ϕ(0) has derivative ξ at t = 0. In the sequel, we use the

abbreviations g̃(s) = g(s, xs) and f̃(s) = f(s, xs), the notation introduced in
(1.9) and the relation (2.5). Proceeding as in the previous results, we write
x(t) = u(t) + y(t). Using these notations, for 0 < t < t1 we have that
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u(t) = −C(t)g(0, ϕ) + S(t)z + g(t, xt) +

∫ t

0
AS(t− s)g̃(s)ds

+

∫ t

0
S(t− s)Bx′(s)ds+

∫ t

0
S(t− s)f̃(s)ds

= S(t)z + g(t, xt)− g(0, ϕ) +

∫ t

0
AS(t− s)[g̃(s)− g̃(0)]ds

+

∫ t

0
S(t− s)Bx′(s)ds+

∫ t

0
S(t− s)f̃(s)ds

and hence

u(t) = S(t)z +D1g(0, ϕ)t+D2g(0, ϕ)(xt − ϕ)

+ ‖ (t, xt − ϕ) ‖ R(g(0, ϕ), t, xt − ϕ)

+

∫ t

0
AS(t− s)[g̃(s)− g̃(0)]ds

+

∫ t

0
S(t− s)Bx′(s)ds+

∫ t

0
S(t− s)f̃(s)ds. (2.7)

It is follows from (2.7) that u(t) → 0 as t → 0 and from A(iii) we infer
that ut → 0, as t → 0. Since ‖ xt − ϕ ‖B ≤ ‖ ut ‖B + ‖ yt − ϕ ‖B → 0,
as t → 0, we know that for ε > 0 there exists 0 < δ(ε) < t1 such that
‖ R(g(0, ϕ), t, xt − ϕ) ‖≤ ε for all t ∈ [0, δ(ε)]. From (2.7) we see that

‖ u(t)

t
‖≤ N ‖ z ‖ + ‖ D1g(0, ϕ) ‖ + ‖ D2g(0, ϕ) ‖

(
‖ ut
t
‖B + ‖ yt − ϕ

t
‖B
)

+ ε

(
1+ ‖ ut

t
‖B + ‖ yt − ϕ

t
‖B
)

+
1

t

∫ t

0
‖ AS(t− s)[g̃(s)− g̃(0)] ‖ ds

+N

∫ t

0
‖ Bx′(s) ‖ ds+N

∫ t

0
‖ f̃(s) ‖ ds,

for every t ∈ [0, δ(ε)]. Choosing ε > 0 sufficiently small, applying (H5) and
(A)(iii), we can conclude from the above estimate that in both cases, (i) and
(ii), the set {utt : t ∈ (0, t1]} is bounded in B.

If condition (i) is valid, then from (2.7) we see that
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u(t) =D1g(0, ϕ)t+ ‖ (t, xt − ϕ) ‖ R(g(0, ϕ), t, xt − ϕ)

+

∫ t

0
AS(t− s)[g̃(s)− g̃(0)]ds

+

∫ t

0
S(t− s)Bx′(s)ds+

∫ t

0
S(t− s)f̃(s)ds. (2.8)

Proceeding as before we obtain

‖ u(t)

t
− ξ ‖≤ ε

[
1+ ‖ ut + yt − ϕ

t
‖
]

+
1

t

∫ t

0
‖ AS(t− s)[g̃(s)− g̃(0)] ‖ ds

+N

∫ t

0
‖ Bx′(s) ‖ ds+N

∫ t

0
‖ f̃(s) ‖ ds

for all t ∈ [0, δ(ε)], which enables us to conclude that ‖ u(t)
t − ξ ‖→ 0 as t→ 0

since ε is arbitrary. Therefore, u′(0) = ξ and x′(0) = u′(0) + y′(0) = ξ. This
establishes the first assertion.

Assume that condition (ii) holds. In this case, for t ∈ [0, δ(ε)] and n large
enough, we get∥∥∥u(t)

t
− ξ
∥∥∥ ≤∥∥∥S(t)

t
z − z

∥∥∥+
∥∥∥D2g(0, ϕ)

[
ut + yt − ϕ

t
− ψ − χξ

] ∥∥∥
+

[
1 +

∥∥∥ut + yt − ϕ
t

∥∥∥
B

]
ε+

∫ t

0

∥∥∥AS(t− s)[g̃(s)− g̃(0)]
∥∥∥
Y
dθ

+ tN

∫ t

0

∥∥∥Bx′(s)∥∥∥ds+ tN

∫ t

0

∥∥∥f̃(θ)
∥∥∥dt,

≤ ζ1(t) + ‖D2g(0, ϕ)‖
∥∥∥ut
t
− Ttχξ

∥∥∥
B

+ ‖D2g(0, ϕ)‖‖Ttχξ − χξ‖B

+ ‖D2g(0, ϕ)‖
∥∥∥yt − ϕ

t
− ψ

∥∥∥
B

+
(

1 +
∥∥∥ut
t

∥∥∥
B

+
∥∥∥yt − ϕ

t

∥∥∥
B

)
ε

≤ ζ2(t) +Mn(t)‖D2g(0, ϕ)‖+Kn(t)‖D2g(0, ϕ)‖
∥∥∥u(t)

t
− ξ
∥∥∥

+
(

1 +
∥∥∥ut
t

∥∥∥
B

+
∥∥∥yt − ϕ

t

∥∥∥
B

)
ε,

where ζi(t)→ 0 as t→ 0 for i = 1, 2. Since Kn is continuous and Kn(0) = 1,
we can assume that µ = Kn

δ(ε) ‖ D2g(0, ϕ) ‖< 1, which implies that∥∥∥u(t)

t
− ξ
∥∥∥ ≤ ζ3(t) + (1− µ)−1

(
1 +

∥∥∥ut
t

∥∥∥
B

+
∥∥∥yt − ϕ

t

∥∥∥
B

)
ε, t ∈ [0, δ(ε)],

where ζ3(t) → 0 as t → 0. Thus, d+

dt u(t) |t=0= ξ and d+

dt x(t) |t=0=
d+

dt (u(t) +
y(t)) |t=0= ξ. This completes the proof. �
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We conclude this section with a discussion about the existence of mild solu-
tions for (1.1)-(1.4). We begin by introducing some appropriate terminology.
A normalized piecewise continuous function x : [σ, τ ] → X is said to be nor-
malized piecewise smooth on [σ, τ ] if x is continuously differentiable except on
a finite set G, the left derivative exists on (σ, τ ] and the right derivative exists
on [σ, τ). In this case, we represent by x′(t) the left derivative at t ∈ (σ, τ ]
and by x′(σ) the right derivative at σ. We denote by PC1([σ, τ ], X) the space
of normalized piecewise smooth functions from [σ, τ ] into X and by PC1 the
space formed by all normalized piecewise smooth functions x : [0, a] → X
such that G = {ti : i = 1, ..., n}. It is clear that PC1 endowed with the norm
‖x‖1 = ‖x‖∞ + ‖x′‖∞ is a Banach space.

Lemma 2.21. A set F ⊆ PC1 is relatively compact in PC1 if, and only if,

each set F̃i, for i = 0, ..., n, is relatively compact in C1([ti, ti+1], X).

In this statement the derivative of a function x ∈ F̃i is taken to be the right
derivative x′R(ti) of x(·) at ti and the left derivative x′L(ti+1) at ti+1. It is
easy to see that F is relatively compact in PC1 if, and only if, the following
conditions hold:

(i) The set {x(t+i ), x(t−i ) : x ∈ F}, i = 0, ..., n, is relatively compact in X.
(ii) The sets {x′(t) : x ∈ F}, for t 6= ti, i = 0, ..., n + 1, {x′R(ti) : x ∈ F},

for i = 0, ..., n, and {x′L(ti) : x ∈ F}, for i = 1, ..., n+ 1, are relatively
compact in X.

(iii) The sets {(̃x′)i : x ∈ F} are equicontinuous on each interval [ti, ti+1].

To establish our results we introduce the following conditions.

(H7) The function f : I × B ×X → X satisfies the following conditions:
(i) The function f(t, ·, ·) : B ×X → X is continuous a.e. t ∈ I.
(ii) If x : (−∞, a] → X is such that x0 = ϕ and x|I ∈ PC1, then the

function I → X, t 7→ f(t, xt, x
′(t)), is strongly measurable.

(iii) There exist a function mf ∈ L1(I, [0,∞)) and a continuous non-
decreasing function Wf : [0,∞)→ (0,∞) such that ‖f(t, ψ, x)‖ ≤
mf (t)Wf (‖ψ‖B + ‖x‖) , for all (t, ψ, x) ∈ I × B ×X.

(H8) If x : (−∞, a] → X is a function such that x0 = ϕ, x|I ∈ PC1 and
x′(0) = ξ, then the function t 7→ g(t, xt) is of class C1 on I and
d
dtg(t, xt)|t=0 = η is independent of x.

(H9) For every t ∈ I, AC(t) ∈ L(Y,X) and the operator function AC(·) :
I → L(Y,X) is strongly continuous. We denote by

N2 = sup
0≤t≤a

‖AC(t)‖L(Y,X).
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Remark 2.22. If assumption (H7) holds, then Y ⊆ D(A) and (H1) is also
valid. In addition, if (H7) is satisfied and h : I → Y is integrable, then the

function t 7→
∫ t
0 AS(t− s)h(s)ds is of class C1 and

d

dt

∫ t

0
AS(t− s)h(s) ds =

∫ t

0
AC(t− s)h(s) ds.

Remark 2.23. The reader can observe in the second example of Section 3,
see (3.5), that assumption (H8) is satisfied by a large class of functions.

Definition 2.24. A function x : (−∞, a] → X is called a mild solution of
(1.1)-(1.4) if x0 = ϕ, x′(0) = ξ, x(·)|I ∈ PC1 and

x(t) = C(t)(ϕ(0)− g(0, ϕ)) + S(t)(ξ − η) + g(t, xt) +

∫ t

0
S(t− s)Bx′(s)ds

+

∫ t

0
AS(t− s)g(s, xs)ds+

∫ t

0
S(t− s)f(s, xs, x

′(s))ds

+
∑

0<ti<t

C(t− ti)I1i (xti) +
∑

0<ti<t

S(t− ti)I2i (xti), t ∈ I.

Next we need modify some of our previous notations. The space F(a) is
collection of the functions u : (−∞, a] → X such that u0 = 0, u′(0) = 0 and
u |[0,a]∈ PC1. We consider F(a) endowed with the norm ‖u‖1 = ‖u ‖∞
+‖u′ ‖∞, and we denote by P : F(a) → C(I,X) the function given by
P (u)(t) = d

dtg(t, ut + yt).

Theorem 2.25. Assume that (H3), (H7), (H8) and (H9) are satisfied,
ϕ(0) ∈ E, and the following conditions hold:

(a) For each r > 0, the set U(r) = {f(t, ut + yt, u
′(t) + y′(t)) : t ∈ I, u ∈

Br(0,F(a))} is relatively compact in X.
(b) For each r > 0, the set g(I × Br(0,B)) is relatively compact in Y.

The map P is completely continuous and there are constants cP , dP
such that ‖P (u)‖∞ ≤ cP ‖u‖1 + dP , for all u ∈ F(a). The map B is
completely continuous.

(c) The maps I1i : B → E, for = 1, ..., n, are completely continuous and

there are constants dji , for j = 1, 2, such that ‖ I1i (ψ) ‖E≤ d1i ‖ ψ ‖B
+d2i , i = 1, 2, ..., n, for all ψ ∈ B.

(d) The maps I2i : B → X, for i = 1, ..., n, are completely continuous and

there are constants eji , for j = 1, 2, such that ‖ I2i (ψ) ‖≤ e1i ‖ ψ ‖B
+e2i , i = 1, ..., n, for every ψ ∈ B.
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If

cP (1 + a) + (M +N) ‖ B ‖ a+Ka

n∑
i=1

((M +N1)d
1
i + (M +N)e1i )

+Ka lim inf
ξ→∞

W (ξ)

ξ

∫ a

0
((N1 +N2)mg(s) + (M +N)mf (s))ds < 1, (2.9)

then there exists a mild solution of (1.1)-(1.4).

Proof. For u ∈ F(a), we define Γu by (Γu)0 = 0 and

Γu(t) =− C(t)g(0, ϕ)− S(t)η + g(t, ut + yt) +

∫ t

0
S(t− s)B(u′(s) + y′(s))ds

+

∫ t

0
AS(t− s)g(s, us + ys)ds+

∫ t

0
S(t− s)f(s, us + ys, u

′(s)

+ y′(s))ds+
∑

0<ti<t

C(t− ti)I1i (uti + yti) +
∑

0<ti<t

S(t− ti)I2i (uti + yti),

for t ∈ I. It is easy to see that Γu ∈ PC1 and from Remark 2.22 we see that

d

dt
Γu(t) =AS(t)g(0, ϕ)− C(t)η + P (u)(t) +

∫ t

0
C(t− s)B(u′(s) + y′(s))ds

+

∫ t

0
AC(t− s)g(s, us + ys)ds

+

∫ t

0
C(t− s)f(s, us + ys, u

′(s) + y′(s))ds

+
∑

0<ti<t

AS(t− ti)I1i (uti + yti)

+
∑

0<ti<t

C(t− ti)I2i (uti + yti). (2.10)

It follows from this expression that Γ is a map from F(a) into F(a). Moreover,
the Lebesgue dominated convergence theorem and our assumptions on f and
g imply that Γ is continuous.

On the other hand, for u ∈ F(a) with ‖u‖1 ≤ r, we have

‖Γu(t)‖ ≤ c+ cPa‖u‖1 +N ‖ B ‖ ra+N1

∫ t

0
mg(s)Wg(‖us + ys‖B)ds

+N

∫ t

0
mf (s)Wf (‖us + ys‖B + ‖u′(s) + y′(s)‖)ds

+M
∑

0<ti<t

d1i ‖uti + yti‖B +N
∑

0<ti<t

e1i ‖uti + yti‖B
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and hence

‖Γu(t)‖ ≤ c+ (cP +N ‖ B ‖)ar + rKa

n∑
i=1

(Md1i +Ne1i )

+

∫ t

0
(N1mg(s) +Nmf (s))W (Kar + c)ds, (2.11)

where c denotes a generic constant. Similarly, it follows from (2.10) that∥∥∥ d
dt

Γu(t)
∥∥∥ ≤ c+ cP r +M ‖ B ‖ ra+ rKa

∑
0<ti<t

(N1d
1
i +Me1i )

+

∫ t

0
(N2mg(s) +Mmf (s))W (Kar + c)ds. (2.12)

Therefore, adding (2.11) and (2.12) yields

‖Γu(t)‖1 ≤ c+ (a+ 1)cP r + (M +N) ‖ B ‖ ra

+ rKa

n∑
i=1

(
(M +N1)d

1
i + (M +N)e1i

)
+

∫ a

0
((N1 +N2)mg(s) + (M +N)mf (s))W (Kar + c) ds.

If we assume that for each r > 0, there is ur ∈ Br(0,F(a)) such that ‖Γur‖1 >
r, then replacing u by ur in the above estimate we obtain

1 ≤(a+ 1)cP + (M +N) ‖ B ‖ a+Ka

n∑
i=1

((M +N1)d
1
i + (M +N)e1i )

+Ka lim inf
ξ→∞

W (ξ)

ξ

∫ a

0
((N1 +N2)mg(s) + (M +N)mf (s)) ds,

which is absurd. Thus, there exists r > 0 such that Γ(Br(0,F(a)) ⊆ Br(0,F(a)).
To prove that Γ is completely continuous, we consider the decomposition

Γ = Γ1 + Γ2, where (Γiu)0 = 0 and

Γ1u(t) =− C(t)g(0, ϕ)− S(t)η + g(t, ut + yt)

+

∫ t

0
S(t− s)B(u′(s) + y′(s))ds+

∫ t

0
AS(t− s)g(s, us + ys)ds

+

∫ t

0
S(t− s)f(s, us + ys, u

′(s) + y′(s))ds,

Γ2u(t) =
∑

0<ti<t

C(t− ti)I1i (uti + yti) +
∑

0<ti<t

S(t− ti)I2i (uti + yti),
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for t ∈ I. From the assumptions and [15, Lemma 3.1] we can conclude that Γ1

is completely continuous. Similarly, using Lemma 2.21 instead of Lemma 1.1,
specifically the conditions (i), (ii) and (iii) following the statement of Lemma
2.21, and the conditions (c) and (d), we can show that Γ2 is also completely
continuous.

Schauder’s theorem now implies that Γ has a fixed point u ∈ F(a), which
establishes the existence of a mild solution. The proof is complete. �

We also obtain existence results by assuming that the involved functions
are Lipschitz.

Theorem 2.26. Assume that (H7), (H8), (H9) and condition (a) of Theorem
2.25 are satisfied. Further, suppose ϕ(0) ∈ E and the following conditions:

(a) The function g : I × B → Y satisfies the Lipschitz condition

‖ g(t, ψ1)− g(t, ψ2) ‖Y≤ Lg ‖ ψ1 − ψ2 ‖B, (t, ψi) ∈ I × B,

for some constant Lg > 0, and for each function x : (−∞, a] → X
such that x0 = ϕ, x|I ∈ PC1 and x′(0) = ξ, the function t 7→ g(t, xt)
is strongly measurable from I into Y.

(b) There exists a continuous function LP : I × [0,∞)→ (0,∞) such that

‖P (u)(t)− P (v)(t)‖ ≤ LP (t, r)‖u− v‖1,

for all u, v ∈ Br(0,F(a)), t ∈ I and each r > 0.

(c) There exist positive constants Lji for i = 1, 2, ..., n, j = 1, 2, such that

‖I1i (ψ1)− I1i (ψ2)‖Y ≤ L1
i ‖ψ1 − ψ2‖B, ψi ∈ B,

‖I2i (ψ1)− I2i (ψ2)‖ ≤ L2
i ‖ψ1 − ψ2‖B, ψi ∈ B.

If

lim inf
ξ→∞

[
sup
s∈I

LP (s, ξ) +

∫ a

0
LP (s, ξ)ds+

Ka(M +N)Wf (ξ)

ξ

∫ a

0
mf (s)ds

]
+ (M +N) ‖ B ‖ a+Ka

[
a(N1 +N2)Lg

+
∑

0<ti≤a
[(M +N1)L

1
i + (M +N)L2

i ]
]
< 1, (2.13)

then there exists a mild solution of (1.1)-(1.4).

Proof. Let Γ be defined as in the proof of Theorem 2.25. We claim that there
exists an r > 0 such that Γ(Br(0,F(a))) ⊆ Br(0,F(a)). Initially we observe
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that for ‖u‖1 ≤ r,

‖g(t, ut + yt)− g(0, ϕ)‖ = ‖
∫ t

0
Pu(s) ds‖

≤
∫ t

0
LP (s, r)ds‖u‖1 +

∫ t

0
‖P (0)(s)‖ds

and hence,

‖Γu(t)‖ ≤ c+

∫ t

0
LP (s, r)ds‖u‖1 +N ‖ B ‖ rt+N1Lg

∫ t

0
‖us‖Bds

+N

∫ t

0
mf (s)Wf (‖us + ys‖B + ‖u′(s) + y′(s)‖)ds

+M
∑

0<ti<t

L1
i ‖uti‖B +N

∑
0<ti<t

L2
i ‖uti‖B

≤ c+ r

∫ t

0
LP (s, r)ds+N ‖ B ‖ rt+ tN1LgKar

+NWf (Kar + c)

∫ t

0
mf (s)ds+ rKa

∑
0<ti<t

(ML1
i +NL2

i ),

where c denotes a generic constant. Similarly, it follows from (2.10) that∥∥∥ d
dt

Γu(t)
∥∥∥ ≤ c+ sup

s∈I
LP (s, r)r +M ‖ B ‖ rt+ tN2LgKar

+ rKa

∑
0<ti<t

(N1L
1
i +ML2

i ) +MWf (Kar + c)

∫ t

0
mf (s)ds.

Therefore, for t ∈ I, we see that

‖Γu(t)‖1 ≤ c+

[
sup
s∈I

LP (s, r) +

∫ a

0
LP (s, r)ds

]
r + (M +N) ‖ B ‖ ra

+ a(N1 +N2)LgKar + (M +N)Wf (Kar + c)

∫ a

0
mf (s)ds

+ rKa

n∑
i=1

[(M +N1)L
1
i + (M +N)L2

i ].

Now, from the last inequality and (2.13) we can prove that there exists r large
enough such that Γ(Br(0,F(a))) ⊆ Br(0,F(a)). Moreover, we can choose r
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so that

Θ = sup
s∈I

LP (s, r) +

∫ a

0
LP (s, r)ds+ (M +N) ‖ B ‖ a

+Ka

[
a(N1 +N2)Lg +

n∑
i=1

[(M +N1)L
1
i + (M +N)L2

i ]

]
< 1.

Consider the decomposition Γ = Γ1 + Γ2, where

Γ1x(t) =− C(t)g(0, ϕ)− S(t)η + g(t, xt + yt) +

∫ t

0
AS(t− s)g(s, xs + ys)ds

+
∑

0<ti<t

C(t− ti)I1i (xti + yti) +
∑

0<ti<t

S(t− ti)I2i (xti + yti),

Γ2x(t) =

∫ t

0
S(t− s)f(s, xs + ys)ds, t ∈ I.

From [15, Lemma 3.1], the map Γ2 is completely continuous. This property,
and the estimate

‖ Γ1u− Γ1v ‖1≤ Θ‖u− v‖1,

implies that Γ is condensing from Br(0,F(a)) into Br(0,F(a)). Now, the
assertion follows from an application of [26, Corollary 4.3.2]. The proof is
complete. �

The proof of the next result is standard. Hence the proof is omitted.

Theorem 2.27. Assume that (H8), (H9) and conditions (a), (b) and (c) of
Theorem 2.26 are fulfilled. Further, ϕ(0) ∈ E, the function f : I×B×X → X
satisfies the Lipschitz condition

‖ f(t, ψ1, x1)− f(t, ψ2, x2) ‖≤ Lf (‖ ψ1 − ψ2 ‖B +‖x1 − x2‖),

(t, ψi, xi) ∈ I × B × X for some constant Lf ≥ 0, and for each function
x : (−∞, a] → X such that x0 = ϕ, x|I ∈ PC1 and x′(0) = ξ, the function
t 7→ f(t, xt, x

′(t)) is integrable. If LP (s, r) ≤ LP for all (s, r), and

LP (1 + a) + (M +N) ‖ B ‖ a+Ka

[
a(N1 +N2)Lg

+
(

1 +
1

Ka

)
(M +N)Lfa+

n∑
i=1

(M +N1)L
1
i + (M +N)L2

i

]
< 1,

then there exists a unique mild solution of (1.1)-(1.4).
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3. Applications

The literature for neutral differential systems with x(t) ∈ Rk is extensive.
In this case our results are easily applicable. In fact, the operator A is a
matrix of order n × n which generates the uniformly continuous cosine func-

tion C(t) = cosh (tA1/2) =
∑∞

n=1
t2n

2n!A
n with associated sine function S(t) =

A−
1
2 sinh (tA1/2) =

∑∞
n=1

t2n+2

(2n+1)!A
n. We note the expressions cosh (tA1/2)

and sinh (t‖A‖1/2) are purely symbolic and do not assume the existence of
the square roots of A. In this case, we can take Y = X = Rk, from which
it follows that assumptions (H1), (H2) and (H9) are automatically satisfied.

Moreover, ‖C(t)‖ ≤ cosh (t‖A‖1/2) and ‖S(t)‖ ≤ ‖A‖1/2 sinh (t‖A‖1/2). The
next result is a consequence of Theorem 2.25.

Proposition 3.1. Assume that (H3), (H7), (H8) hold, with mf ,mg ∈ L∞(I).
Suppose further that the following conditions are satisfied:

(a) The map P is continuous and there exist constants cP , dP such that
‖Pu(t)‖ ≤ cp‖u‖1 + dP , for all (t, u) ∈ I ×F(a).

(b) The map Iji are continuous and there are constants dji , e
j
i such that

‖ I1i (ψ) ‖≤ d1i ‖ ψ ‖B +d2i and ‖ I2i (ψ) ‖≤ e1i ‖ ψ ‖B +e2i for every
i = 1, ..., n, and all ψ ∈ B.

If

cP (1 + a) + α ‖ B ‖ a+ αKa

[ n∑
i=1

((1+ ‖ A ‖)d1i + e1i )

+ lim inf
ξ→∞

W (ξ)

ξ

∫ a

0
(‖A‖mg(s) +mf (s))ds

]
< 1,

where α = cosh (a‖A‖
1
2 )+‖A‖

1
2 sinh (a‖A‖

1
2 ), then there exists a mild solution

of (1.1)-(1.4).

We next consider an application of the theory developed in Section 2. In the
sequel, X = L2([0, π]); B = PC0×L2(ρ ,X) and A : D(A) ⊆ X → X is the map
defined by Af = f ′′ with domain D(A) = {f ∈ X : f ′′ ∈ X, f(0) = f(π) = 0}.
Clearly A is the infinitesimal generator of a strongly continuous cosine function
(C(t))t∈R on X. Furthermore, A has a discrete spectrum, the eigenvalues are

−n2, n ∈ IN, with corresponding eigenvectors zn(θ) =
(
2
π

)1/2
sin(nθ); the set

{zn : n ∈ IN} is an orthonormal basis of X and the following properties hold:

(a) For ϕ ∈ D(A), Aϕ = −
∑∞

n=1 n
2 < ϕ, zn > zn.

(c) For ϕ ∈ X, C(t)ϕ =
∑∞

n=1 cos(nt) < ϕ, zn > zn and S(t)ϕ =∑∞
n=1

sin(nt)
n < ϕ, zn > zn. Consequently, ‖C(t)‖ = ‖S(t)‖ ≤ 1 for

all t ∈ R and S(t) is compact for every t ∈ R.



394 N. Annapoorani, K. Balachandran and J. K. Kim

(d) If Φ is the group of translations on X defined by Φ(t)x(ξ) = x̃(ξ + t),
where x̃ is the extension of x with period 2π, then C(t) = 1

2(Φ(t) +

Φ(−t)) and A = B2, where B is the generator of Φ and E = {x ∈
H1(0, π) : x(0) = x(π) = 0} (see [7] for details). In particular, we
observe that the inclusion ι : E → X is compact.

Consider the impulsive partial neutral differential equation

∂2

∂t2

[
u(t, τ)−

∫ t

−∞

∫ π

0
b(t− s, ϑ, τ)u(s, ϑ)dϑds

]
=

∂2

∂τ2
u(t, τ) + α

∂

∂t
u(t, ξ) +

∫ π

0
β(ξ)

∂

∂t
u(t, ξ)dξ

+

∫ t

−∞
c(t− s)u(s, τ)ds, (3.1)

for t ∈ I = [0, a], τ ∈ J = [0, π], subject to the conditions

u(t, 0) = u(t, π) = 0, t ∈ I, (3.2)

u(s, τ) = ϕ(s, τ),
∂

∂t
u(0, τ) = ξ(τ), s ∈ (−∞, 0], τ ∈ J, (3.3)

4u(ti, τ) =

∫ ti

−∞
γi(ti − s)u(s, τ)ds, (3.4)

where α is a prefixed number and we assume that ϕ ∈ B, with the identification
ϕ(s)(τ) = ϕ(s, τ), ϕ(0, ·) ∈ H1([0, π]), ξ ∈ X and 0 < t1 < ... < tn < a.

To treat this system, we assume that b, c, γi satisfy the following conditions:

(i) The functions b(·), ∂
∂ζ b(·),

∂2

∂ζ2
b(·), ∂

∂θ b(·) are continuous, b(θ, ϑ, π) =

b(θ, ϑ, 0) = 0 for every (θ, ϑ) ∈ (−∞, 0]× I and

Lg = max

{[∫ π

0

∫ 0

−∞

∫ π

0

1

ρ(s)

(
∂ib(s, ϑ, τ)

∂τ i

)2

dϑdsdτ

] 1
2

: i = 0, 1, 2

}
<∞,

L̃g =

∫ π

0

∫ 0

−∞

∫ π

0

1

ρ(s)

(
∂

∂s
b(s, ϑ, τ)

)2

dϑdsdτ <∞.

(ii) The functions c(·), γ1i , are continuous, Lf =
(∫ 0
−∞

c2(−θ)
ρ(θ) dθ

) 1
2
< ∞

and L1
i =

(∫ 0
−∞

γ2i (−θ)
ρ(θ) dθ

) 1
2
<∞ for every i = 1, ..., n.
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We now define the functions B : X → X, and f, g, Ii : B → X by

Bx(τ) = αu(t, τ) +

∫ π

0
β(s)u(t, s)ds,

g(ψ)(τ) =

∫ 0

−∞

∫ π

0
b(−s, ϑ, τ)ψ(s, ϑ) dϑds,

f(ψ)(τ) =

∫ 0

−∞
c(−s)ψ(s, τ) dθ,

Ii(ψ)(τ) =

∫ 0

−∞
γi(−s)ψ(s, τ) dθ.

Under these conditions, the maps B, f, g, I1i are bounded linear operators,
‖ B ‖L(X)≤| α | + ‖ β ‖L2(0,T ), ‖f‖ ≤ Lf , ‖g‖ ≤ Lg and ‖I1i ‖ ≤ L1

i . Moreover,
using (i) we can prove that g is D(A)-valued and that ‖ g ‖L(B,[D(A)])≤ Lg.
For this reason, we take Y = [D(A)]. It is follows from the introduction that
if ι : Y ↪→ X is the inclusion, then ‖ι(x)‖ ≤ ‖x‖A, the function t 7→ AS(t) is
uniformly continuous into L(Y,X), and ‖ AS(t) ‖L(Y,X)≤ 1 for t ∈ [0, a]. On
the other hand, if x : (−∞, a] → X given by x(t)(τ) = u(t, τ) is such that
x0 = ϕ and x is continuous on [0, t1), then the right derivative

d

dt
g(xt)|t=0(τ) =−

∫ 0

−∞

∫ π

0

∂b(−s, ϑ, τ)

∂s
ϕ(−s, ϑ)dϑds

+

∫ π

0
b(0, ϑ, τ)ϕ(0, ϑ)dϑ = η(τ), (3.5)

exists and is independent of x. Consequently, the impulsive neutral system
(3.1)-(3.4) can be written in the form (2.1)-(2.4) and the following result is
obtained from Theorem 2.19 and Theorem 2.20.

Proposition 3.2. Assume (3+a)[|α|+ ‖ β ‖L2(0,a)]+[1+(
∫ 0
−a ρ(θ) dθ)

1
2 ][Lg(1+

a) +
∑n

i=1 L
1
i ] < 1. Then there exists a unique mild solution of (2.1)-(2.4).

Moreover, if the function t→ Ttϕ is differentiable at zero with d
dtTtϕ |t=0= ψ,

x is a mild solution of (2.1)-(2.4) with z = ξ − g(ψ + χξ), then d
dtx(t)t=0 = ξ.
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