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Abstract. In the present paper, we use hybrid steepest descent method for finding a common

point of the solution set of split variational inclusion and the fixed points set of a finite family

of nonexpansive mappings in Hilbert spaces. Further, we prove that the sequences generated

by our iterative algorithm converge strongly to the common point, which is the unique

solution of a variational inequality. Our result improves and extends the corresponding

results announced by many others. At the end of the paper, we extend our result to the

more broad family of λ-strictly pseudo-contractive mappings.

1. Introduction

Let H1 and H2 be real Hilbert spaces with inner product 〈·, ·〉 and norm
‖ · ‖, respectively. Recall that a set-valued mapping B : H1 → H1 is said to
be monotone if

〈u− v, x− y〉 ≥ 0, whenever u ∈ B(x), v ∈ B(y).

It is said to be maximal monotone if its graph: graphB := {(x, y) ∈ H1×H1 :
y ∈ B(x)} is not properly contained in the graph of any other monotone
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operators. As we all know that, when B is maximal monotone, then for each
x ∈ H1 and λ > 0 there is a unique z ∈ H1 such that x ∈ (I + λB)z.

In 2011, Moudafi [12] proposed the following Split Monotone Variational
Inclusion Problem (SMVIP): find x∗ ∈ H1 such that

0 ∈ f(x∗) +B1(x∗) (1.1)

and such that

y∗ = Ax∗ ∈ H2 solves 0 ∈ g(y∗) +B2(y∗), (1.2)

where f : H1 → H1 and g : H2 → H2 are two given single-valued operators,
A : H1 → H2 is a bounded linear operator, B1 : H1 → 2H1 and B2 : H2 →
2H2 are two set-valued maximal monotone mappings. Moudafi proposed the
following iterative method for solving (1.1)-(1.2): let γ > 0 and x0 ∈ H1 be
arbitrary,

xk+1 = U(xk + γA∗(T − I)Axk), k ∈ N, (1.3)

where γ ∈ (0, 1/L) with L being the spectral radius of the operator A∗A, the

operator U := JB1
λ (I−λf) and T := JB2

λ (I−λg). He showed that the sequence
generated by (1.3) weakly converges to a solution of SMVIP(1.1)-(1.2).

If f ≡ 0 and g ≡ 0 then SMVIP (1.1)-(1.2) reduces to Split Variational
Inclusion Problem (SVIP): find x∗ ∈ H1 such that

0 ∈ B1(x∗) (1.4)

and such that
y∗ = Ax∗ ∈ H2 solves 0 ∈ B2(y∗). (1.5)

We denote the solution set of SVIP(1.4) and SVIP(1.5) by SOLVIP(B1) and
SOLVIP(B2), respectively. The set of solution of SVIP(1.4)-(1.5) is denoted
by Γ = {x∗ ∈ H1 : x∗ ∈ SOLVIP(B1) and Ax∗ ∈ SOLVIP(B2)}. The SVIP
has extensively been investigated in recent years, for example [3, 6, 8, 13] and
the references therein.

In 2012, Byrne et al. [2] introduced the following iterative method for
SVIP(1.4)-(1.5) and the sequence {xn} is generated by

xn+1 = JB1
λ (xn + βA∗(JB2

λ − I)Axn).

Motivated by Moudafi and Byrne, Kazmi and Rizvi proposed a viscous itera-
tion method as follows:{

un = JB1
λ (xn + γA∗(JB2

λ − I)Axn);

xn+1 = αnf(xn) + (1− αn)Sun, n ≥ 0,
(1.6)

where f : H1 → H1 be a contraction mapping, S : H1 → H1 be a non-
expansive mapping, λ > 0, γ ∈ (0, 1

‖A‖2 ) and αn ∈ (0, 1). Under certain

conditions, they proved that the sequence generated by the proposed iterative
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method converges strongly to a common solution of the split variational in-
clusion problem and fixed point problem for a nonexpansive mapping which
is the unique solution of the variational inequality problem.

On the other hand, let us recall some iterative methods for solving the fixed
point problems of nonexpansive mappings. In 2011, Yamada [15] considered
the variational inequality problem over the set of fixed point of nonexpansive
mapping and proved strong convergence of the sequence generated by the
hybrid steepest-decent method as follows:

xn+1 = Txn − µλnF (Txn), (1.7)

where x1 ∈ H1, {λn} ⊂ (0, 1), F : H1 → H1 is a strongly monotone and
Lipschitz continuous mapping and µ is a positive real number.

Motivated by the Krasnoselskij-Mann type algorithm and the steepest de-
scent method, a new explicit iterative algorithm is introduced by Buong and
Duong [1] as follows:

xk+1 = (1− β0
k)xk + β0

kT
k
0 T

k
N · · ·T k1 xk, (1.8)

where T ki = (1 − βik)I + βikTi for i = 1, 2, . . . , N , T k0 = I − λkµF and F is a
L-Lipschitz continuous and η-strongly monotone mapping. Under certain con-
ditions, they proved that the sequence {xk} converges strongly to the unique
solution of the following variational inequality :

〈F (x∗), x− x∗〉 ≥ 0, ∀x ∈
N⋂
i=1

Fix(Ti). (1.9)

In 2014, Zhou and Wang [17] introduced a new iterative algorithm and their
iterative algorithm is simpler than (1.8) given by Buong and Duong. Let {xn}
is generated by

xk+1 = (I − λkµF )T kN · · ·T k1 xk. (1.10)

They proved that the sequence {xk} defined by (1.10) converges strongly to
the unique solution of the variational inequality (1.9) in a faster rate of con-
vergence.

Motivated and inspired by the results of Zhou, Wang and Yamada, in this
paper, we consider a new iterative algorithm to solve the class of variational
inequalities (1.9). The iterative algorithm improves and extends the results of
Zhou, Wang and Yamada, and the corresponding results announced by many
others. At the end of this paper, we extend our iterative algorithm to the
more broad family of λ-strictly pseudo-contractive mappings.
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2. Preliminaries

We need some facts and tools in a real Hilbert space H which are listed as
definitions and lemmas below.

Definition 2.1. A mapping T : H → H is said to be

(i) nonexpansive, if ‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ H;
(ii) monotone, if 〈x− y, Tx− Ty〉 ≥ 0, ∀x, y ∈ H;

(iii) η(η > 0) strongly monotone, if 〈x−y, Tx−Ty〉 ≥ η‖x−y‖2, ∀x, y ∈ H.

Definition 2.2. A mapping T : H → H is said to be an averaged mapping if
it can be written as the average of the identity mapping I and a nonexpansive
mapping S : H → H; that is,

T ≡ (1− α)I + αS,

where α ∈ (0, 1). More precisely, when the last equality holds, we say that T is
α-averaged. We know that, firmly nonexpansive mappings are (1/2)-averaged
mappings.

It is well known that every nonexpansive mapping T : H → H satisfies, for
all (x, y) ∈ H ×H, the inequality

〈(x− Tx)− (y − Ty), T y − Tx〉 ≤ 1

2
‖(Tx− x)− (Ty − y)‖2 (2.1)

and therefore, we get, for all (x, y) ∈ H × Fix(T ),

〈x− Tx, y − Tx〉 ≤ 1

2
‖Tx− x‖2 (2.2)

see e.g., ([4], Theorem 3.1) and ([5], Theorem 2.1).

Lemma 2.3. ([10]) Averaged mappings have the following properties:

(i) The composite of finitely many averaged mappings is averaged. That
is, if each of the mappings {Ti}Ni=1 is averaged, then so is the composite
T1 · · ·TN . In particular, if T1 is α1-averaged and T2 is α2-averaged,
where α1, α2 ∈ (0, 1), then both T1T2 and T2T1 are α-averaged, where
α = α1 + α2 − α1α2.

(ii) If the mappings {Ti}Ni=1 are averaged and have a common fixed point,
then

N⋂
i=1

Fix(Ti) = Fix(T1 · · ·TN ).

In particular, if N = 2, we have Fix(T1)
⋂
Fix(T2) = Fix(T1T2) =

Fix(T2T1).
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Lemma 2.4. ([11]) Let C be a closed convex subset of a real Hilbert space H.
Given x ∈ H and z ∈ C. Then z = PCx if and only if the following inequality
holds:

〈x− z, y − z〉 ≤ 0,

for every y ∈ C.

Lemma 2.5. In a real Hilbert space H, there holds the following inequality:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, ∀x, y ∈ H.

Lemma 2.6. ([9]) Let B : H → 2H be a multi-valued maximal monotone
mapping. Then the resolvent mapping JBλ : H → H is defined by

JBλ (x) := (I + λB)−1(x), ∀x ∈ H,

for some λ > 0. The resolvent operator JBλ is single-valued and firmly nonex-

pansive. It is easy to be deduced that JBλ is nonexpansive and 1
2 -averaged.

Lemma 2.7. ([7]) Let H be a Hilbert space, C a closed convex subset of H and
T : C → C a nonexpansive mapping with Fix(T ) 6= ∅. If {xn} is a sequence
in C weakly converging to x ∈ C and {(I−T )xn} converges strongly to y ∈ C,
then (I − T )x = y. In particular, if y = 0, then x ∈ Fix(T ).

Lemma 2.8. ([16]) Let F : H → H be a k-Lipschitz continuous and η-strongly
monotone mapping with k > 0 and η > 0. For each λ ∈ (0, 1) and a fixed

µ ∈ (0, 2η
k2

), write T λ := (I − λµF ) and τ = 1 −
√

1− µ(2η − µk2) ∈ (0, 1).
Then we have

‖T λx− T λy‖ ≤ (1− λτ)‖x− y‖,
for all x, y ∈ H, i.e., T λ : H → H is a contraction on H with contractive
coefficient (1− λτ).

Lemma 2.9. ([14]) Assume {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− γn)an + δn, n ≥ 0,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that

(i)
∑∞

n=1 γn =∞,

(ii) lim supn→∞
δn
γn
≤ 0 or

∑∞
n=1 | δn |<∞.

Then limn→∞ an = 0.
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Lemma 2.10. ([18]) Assume S is a λ-strictly pseudo-contractive mapping
on a Hilbert space H. Define a mapping T by Tx = αx + (1 − α)Sx for
all x ∈ H and α ∈ [λ, 1). Then T is a nonexpansive mapping such that
Fix(T ) = Fix(S).

3. Main results

Now we state and prove our main results in this paper.

Theorem 3.1. Let H1 be a Hilbert space and F : H1 → H1 be a k-Lipschitz
continuous and η-strongly monotone mapping with k > 0 and η > 0. Let
{Ti}Ni=1 be N nonexpansive self-mappings of H1. Assume that Ω =

⋂N
i=1 Fix(Ti)

∩Γ 6= ∅. For any point x0 ∈ H1, define a sequence {xn} as following manner:

yn = JB1
λ (xn + βA∗(JB2

λ − I)Axn),

xn+1 = (I − µαnF )TnNT
n
N−1 · · ·Tn1 yn,

where Tni = (1 − γin)I + γinTi for i = 1, 2, · · · , N . Suppose that β ∈ (0, 1
‖A‖2 ),

αn ∈ (0, 1], 0 < µ < 2η
k2

and γin ∈ (a, b) for some a, b ∈ (0, 1). If the following
conditions are satisfied:

(i) limn→∞ αn = 0;
(ii)

∑∞
n=1 αn =∞;

(iii)
∑∞

n=1 |γin+1 − γin| <∞, for i = 1, · · · , N and
∑∞

n=1 |αn − αn−1| <∞.

Then the sequence {xn} converges strongly to the unique solution x∗ of the
variational inequality:

〈Fx∗, x− x∗〉 ≥ 0, ∀x ∈ Ω. (3.1)

Equivalently, we have PΩ(I − µF )x∗ = x∗.

Proof. Since our methods easily deduce the general case, we prove Theorem
3.1 for N = 2.

Step 1. We show that {xn} is bounded. Take p ∈ Ω, then we have p = JB1
λ p,

Ap = JB2
λ (Ap) and Tni p = p, for all i = 1, 2. By Lemma 2.8,

‖xn+1 − p‖ = ‖(I − µαnF )Tn2 T
n
1 yn − p‖

≤ (1− αnτ)‖yn − p‖+ µαn‖Fp‖.
(3.2)
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On the other hand, since JB1
λ is firmly-nonexpansive, so we have

‖yn − p‖2 = ‖JB1
λ

(
xn + βA∗(JB2

λ − I)Axn
)
− p‖2

≤ ‖xn + βA∗(JB2
λ − I)Axn − p‖2

= ‖xn − p‖2 + β2‖A∗(JB2
λ − I)Axn‖2

+ 2β〈xn − p,A∗(JB2
λ − I)Axn〉

≤ ‖xn − p‖2 + β2‖A‖2‖(JB2
λ − I)Axn‖2

+ 2β〈xn − p,A∗(JB2
λ − I)Axn〉

(3.3)

and using (2.2) we estimate

2β〈xn − p,A∗(JB2
λ − I)Axn〉

= 2β〈A(xn − p), (JB2
λ − I)Axn〉

= 2β{〈JB2
λ Axn −Ap, (JB2

λ − I)Axn〉 − ‖(JB2
λ − I)Axn‖2}

≤ 2β

{
1

2
‖(JB2

λ − I)Axn‖2 − ‖(JB2
λ − I)Axn‖2

}
≤ −β‖(JB2

λ − I)Axn‖2.

(3.4)

By (3.3) and (3.4), we get

‖yn − p‖2 ≤ ‖xn − p‖2 + β(β‖A‖2 − 1)‖(JB2
λ − I)Axn‖2. (3.5)

Since β ∈ (0, 1
‖A‖2 ), we have

‖yn − p‖2 ≤ ‖xn − p‖2. (3.6)

Now, by using (3.6), the inequality (3.2) becomes

‖xn+1 − p‖ ≤ (1− αnτ)‖xn − p‖+ µαn‖Fp‖

≤ max
{
‖xn − p‖,

µ

τ
‖Fp‖

}
...

≤ max
{
‖x1 − p‖,

µ

τ
‖Fp‖

}
.

Therefore, {xn} is bounded. Subsequently, we deduce that {yn}, {Tni yn} and
{FTn2 Tn1 yn} are bounded.

Step 2. We show that limn→∞ ‖xn+1 − xn‖ = 0. Noting that

‖xn+1 − xn‖ = ‖(I − µαnF )Tn2 T
n
1 yn − (I − µαn−1F )Tn−1

2 Tn−1
1 yn−1‖

≤ (1− αnτ)‖Tn2 Tn1 yn − Tn−1
2 Tn−1

1 yn−1‖
+ µ|αn − αn−1|‖FTn−1

2 Tn−1
1 yn−1‖.

(3.7)
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Noting that Tn1 and Tn2 are γ1
n−averaged and γ2

n−averaged respectively, by
Lemma 2.3, we see that Tn2 T

n
1 is tn-averaged for every n, where tn = γ1

n+γ2
n−

γ1
nγ

2
n. Let a∗ = 2a − a2 and b∗ = 2b − b2. Since tn = 1 − (1 − γ1

n)(1 − γ2
n),

we can see that 0 < a∗ ≤ tn ≤ b∗ < 1 for all n, limn→∞ |tn+1 − tn| = 0 and∑∞
n=1 |tn+1−tn| <∞. So we can find {Sn} a family of nonexpansive mappings

such that

Tn2 T
n
1 = (1− tn)I + tnSn, n ≥ 0. (3.8)

So we have

‖Tn2 Tn1 yn − Tn−1
2 Tn−1

1 yn−1‖
= ‖(1− tn)yn + tnSnyn − (1− tn−1)yn−1 − tn−1Sn−1yn−1‖
≤ (1− tn)‖yn − yn−1‖+ |tn − tn−1|‖yn−1‖+ tn‖yn − yn−1‖

+ |tn − tn−1|‖Snyn−1‖+ tn−1‖Snyn−1 − Sn−1yn−1‖
= ‖yn − yn−1‖+ |tn − tn−1|(‖yn−1‖+ ‖Snyn−1‖)

+ tn−1‖Snyn−1 − Sn−1yn−1‖.

(3.9)

Since JB1
λ

(
I + βA∗(JB2

λ − I)A
)

is a nonexpansive mapping, we have

‖yn − yn−1‖

= ‖JB1
λ

(
I + βA∗(JB2

λ − I)A
)
xn − JB1

λ

(
I + βA∗(JB2

λ − I)A
)
xn−1‖

≤ ‖xn − xn−1‖.
(3.10)

By (3.8), we can deduce that Sn =
Tn
2 T

n
1 −(1−tn)I
tn

, it follows that

‖Snyn−1 − Sn−1yn−1‖

= ‖T
n
2 T

n
1 yn−1 − (1− tn)yn−1

tn
− Tn−1

2 Tn−1
1 yn−1 − (1− tn−1)yn−1

tn−1
‖

= ‖ 1

tn
Tn2 T

n
1 yn−1 −

1

tn−1
Tn2 T

n
1 yn−1 +

1

tn−1
Tn2 T

n
1 yn−1

− 1

tn−1
Tn−1

2 Tn−1
1 yn−1 −

1

tn
yn−1 +

1

tn−1
yn−1‖

≤ |tn − tn−1|
tntn−1

(‖Tn2 Tn1 yn−1‖+ ‖yn−1‖)

+
1

tn−1
(‖Tn2 Tn1 yn−1 − Tn2 Tn−1

1 yn−1‖

+ ‖Tn2 Tn−1
1 yn−1 − Tn−1

2 Tn−1
1 yn−1‖)

≤ |tn − tn−1|
tntn−1

(‖Tn2 Tn1 yn−1‖+ ‖yn−1‖) +
1

a∗
(‖Tn1 yn−1 − Tn−1

1 yn−1‖

+ ‖Tn2 Tn−1
1 yn−1 − Tn−1

2 Tn−1
1 yn−1‖).

(3.11)
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Noting that

‖Tn1 yn−1 − Tn−1
1 yn−1‖

= ‖(1− γ1
n)yn−1 + γ1

nT1yn−1 − (1− γ1
n−1)yn−1 − γ1

n−1T1yn−1‖
≤ |γ1

n − γ1
n−1|(‖yn−1‖+ ‖T1yn−1‖).

So, we can easily deduce that

‖Tn2 Tn−1
1 yn−1 − Tn−1

2 Tn−1
1 yn−1‖

≤ |γ2
n − γ2

n−1|(‖Tn−1
1 yn−1‖+ ‖T2T

n−1
1 yn−1‖).

Combining (3.7), (3.9), (3.10) and (3.11), by Lemma 2.9, we can derive that

lim
n→∞

‖xn+1 − xn‖ = 0.

Step 3. We show that limn→∞ ‖Tn2 Tn1 xn − xn‖ = 0. Note that

‖Tn2 Tn1 yn − xn‖ ≤ ‖Tn2 Tn1 yn − xn+1‖+ ‖xn+1 − xn‖
= µαn‖FTn2 Tn1 yn‖+ ‖xn+1 − xn‖.

Taking n approaches to infinity, we get

lim
n→∞

‖Tn2 Tn1 yn − xn‖ = 0. (3.12)

Next, we claim that ‖xn − yn‖ → 0 as n → ∞. By Lemma 2.5 and (3.5), we
have

‖xn+1 − p‖2 = ‖(I − µαnF )Tn2 T
n
1 yn − p‖2

= ‖(I − µαnF )Tn2 T
n
1 yn − (I − µαnF )Tn2 T

n
1 p− µαnFp‖2

≤ (1− αnτ)2‖yn − p‖2 − 2µαn〈Fp, xn+1 − p〉

≤ (1− αnτ)2(‖xn − p‖2 + β(β‖A‖2 − 1)‖(JB2
λ − I)Axn‖2)

− 2µαn〈Fp, xn+1 − p〉

≤ ‖xn − p‖2 + β(β‖A‖2 − 1)‖(JB2
λ − I)Axn‖2

+ 2µαn‖Fp‖‖xn+1 − p‖.
(3.13)

which is equivalent to

β(1− β‖A‖2)‖(JB2
λ − I)Axn‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 − 2µαn〈Fp, xn+1 − p〉
≤ ‖xn+1 − xn‖(‖xn − p‖+ ‖xn+1 − p‖)− 2µαn〈Fp, xn+1 − p〉.

Since 1− β‖A‖2 > 0, αn → 0 and ‖xn+1 − xn‖ → 0 as n→∞, so

lim
n→∞

‖(JB2
λ − I)Axn‖ = 0. (3.14)
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Furthermore, using (3.3), (3.5) and β ∈ (0, 1
‖A‖2 ), we observe that

‖yn − p‖2 = ‖JB1
λ

(
xn + βA∗(JB2

λ − I)Axn
)
− p‖2

= ‖JB1
λ

(
xn + βA∗(JB2

λ − I)Axn
)
− JB1

λ p‖2

≤ 〈yn − p, xn + βA∗(JB2
λ − I)Axn − p〉

=
1

2
{‖yn − p‖2 + ‖xn + βA∗(JB2

λ − I)Axn − p‖2

− ‖(yn − p)−
(
xn + βA∗(JB2

λ − I)Axn − p
)
‖2}

≤ 1

2
{‖yn − p‖2 + ‖xn − p‖2 + β(‖A‖2β − 1)‖(JB2

λ − I)Axn‖2

− ‖yn − xn − βA∗(JB2
λ − I)Axn‖2}

≤ 1

2
{‖yn − p‖2 + ‖xn − p‖2 −

(
‖yn − xn‖2

+ β2‖A∗(JB2
λ − I)Axn‖2 − 2β〈yn − xn, A∗(JB2

λ − I)Axn〉
)
}

≤ 1

2
{‖yn − p‖2 + ‖xn − p‖2 − ‖yn − xn‖2

+ 2β‖A(yn − xn)‖‖(JB2
λ − I)Axn‖}.

Hence, we obtain

‖yn − p‖2 ≤ ‖xn − p‖2 − ‖yn − xn‖2 + 2β‖A(yn − xn)‖‖(JB2
λ − I)Axn‖.

By (3.13), we observe that

‖xn+1 − p‖2 ≤ (1− αnτ)2‖yn − p‖2 − 2µαn〈Fp, xn+1 − p〉
≤ (1− αnτ)2(‖xn − p‖2 − ‖yn − xn‖2

+ 2β‖A(yn − xn)‖‖(JB2
λ − I)Axn‖)− 2µαn〈Fp, xn+1 − p〉

≤ ‖xn − p‖2 − ‖yn − xn‖2 + 2β‖A(yn − xn)‖‖(JB2
λ − I)Axn‖

− 2µαn〈Fp, xn+1 − p〉.

It follows that

‖yn − xn‖2 ≤ ‖xn+1 − xn‖(‖xn − p‖+ ‖xn+1 − p‖)

+ 2β‖A(yn − xn)‖‖(JB2
λ − I)Axn‖+ 2µαn‖Fp‖‖xn+1 − p‖.

Since αn → 0 as n→∞ and by (3.14), we can easily deduce that

lim
n→∞

‖yn − xn‖ = 0. (3.15)
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Therefore,

lim
n→∞

‖Tn2 Tn1 xn − xn‖ = lim
n→∞

(‖Tn2 Tn1 xn − Tn2 Tn1 yn‖+ ‖Tn2 Tn1 yn − xn‖)

= lim
n→∞

(‖xn − yn‖+ ‖Tn2 Tn1 yn − xn‖)

= 0.
(3.16)

Step 4. We show that lim supn→∞〈Fx∗, x∗ − xn〉 ≥ 0.
From [8, Theorem 3.2], we know that the solution of the variational inequal-

ity (3.1) is unique. We use x∗ to denote the unique solution of (3.1). Since
{xn}n≥0 is bounded, there exists a subsequence {xnj}j≥1 of {xn}n≥0 such that
xnj ⇀ x̂ as j →∞ and

lim sup
n→∞

〈Fx∗, x∗ − xn〉 = lim
j→∞
〈Fx∗, x∗ − xnj 〉.

Since {γin} is bounded for i = 1, 2, we can assume that γinj
→ γi∞ as j → ∞,

where 0 < a ≤ γi∞ ≤ b < 1 for i = 1, 2. Define T∞i = (1− γi∞)I + γi∞Ti (i =
1, 2). Then we have Fix(T∞i ) = Fix(Ti) for i = 1, 2. Note that

‖Tnj

i x− T∞i x‖ ≤ |γinj
− γi∞|(‖x‖+ ‖Tix‖).

Hence, we deduce that

lim
j→∞

sup
x∈D
‖Tnj

i x− T∞i x‖ = 0, (3.17)

where D is an arbitrary bounded subset of H. Since Fix(T∞1 )
⋂
Fix(T∞2 ) =

Fix(T1)
⋂
Fix(T2) 6= ∅ and T∞i is γi∞-averaged for i = 1, 2, by Lemma 2.3, we

know that Fix(T∞2 T∞1 ) = Fix(T∞2 )
⋂
Fix(T∞1 ). Combine (3.15), (3.16) and

(3.17), we obtain

‖xnj − T∞2 T∞1 xnj‖ ≤ ‖xnj − T
nj

2 T
nj

1 xnj‖+ ‖Tnj

2 T
nj

1 xnj − T∞2 T
nj

1 xnj‖
+ ‖T∞2 T

nj

1 xnj − T∞2 T∞1 xnj‖
≤ ‖xnj − T

nj

2 T
nj

1 xnj‖+ ‖Tnj

2 T
nj

1 xnj − T∞2 T
nj

1 xnj‖
+ ‖Tnj

1 xnj − T∞1 xnj‖
≤ ‖xnj − T

nj

2 T
nj

1 xnj‖+ sup
x∈D′

‖Tnj

2 x− T∞2 x‖

+ sup
x∈D′′

‖Tnj

1 x− T∞1 x‖,

where D′ is a bounded subset including {Tnj

1 xnj} and D′′ is a bounded subset
including {xnj}. Hence limj→∞ ‖xnj − T∞2 T∞1 xnj‖ = 0. From Lemma 2.7, we
have x̂ ∈ Fix(T∞2 T∞1 ) = Fix(T∞2 )

⋂
Fix(T∞1 ).



410 C. Zhang and Z. Xu

On the other hand, ynj = JB1
λ

(
xnj + βA∗(JB2

λ − I)Axnj

)
can be written as

xnj − ynj + βA∗(JB2
λ − I)Axnj

λ
∈ B1ynj .

(3.18)

By passing to limit j →∞ in (3.18) and by taking into account (3.14), (3.15)
and the fact that the graph of maximal monotone operator is weakly-strongly
closed, we obtain 0 ∈ B1(x̂), i.e., x̂ ∈ SOLVIP(B1). Since {Axnj} weakly

converges to Ax̂. Again, by (3.14) and the fact that the resolvent JB2
λ is

nonexpansive and Lemma 2.7, we obtain that Ax̂ = Fix(JB2
λ ), i.e., Ax̂ ∈

SOLVIP(B2). Thus x̂ ∈ Ω. Using Lemma 2.4,

lim sup
n→∞

〈Fx∗, x∗ − xn〉 = lim
j→∞
〈Fx∗, x∗ − xnj 〉

= 〈Fx∗, x∗ − x̂〉 ≤ 0.
(3.19)

Step 5. We show that limn→∞ ‖xn+1 − x∗‖ = 0.
Using (3.6), we estimate

‖xn+1 − x∗‖2 = ‖(I − µαnF )Tn2 T
n
1 yn − x∗‖2

= ‖(I − µαnF )Tn2 T
n
1 yn − (I − µαnF )Tn2 T

n
1 x
∗ − µαnFx∗‖2

= ‖(I − µαnF )Tn2 T
n
1 yn − (I − µαnF )Tn2 T

n
1 x
∗‖2 + µ2α2

n‖Fx∗‖2

+ 2µαn〈Fx∗, (I − µαnF )Tn2 T
n
1 x
∗ − (I − µαnF )Tn2 T

n
1 yn〉

≤ (1− ταn)‖yn − x∗‖2 + 2µαn〈Fx∗, x∗ − xn〉
+ 2µαn‖Fx∗‖‖xn − Tn2 Tn1 yn‖+ 2µ2α2

n‖Fx∗‖‖FTn2 Tn1 yn‖
≤ (1− ταn)‖xn − x∗‖2 + 2µαn〈Fx∗, x∗ − xn〉

+ 2µαn‖Fx∗‖‖xn − Tn2 Tn1 yn‖+ 2µ2α2
n‖Fx∗‖‖FTn2 Tn1 yn‖

≤ (1− ταn)‖xn − x∗‖2 + ταncn,

where

cn =
2µ

τ
(〈Fx∗, x∗ − xn〉+ ‖Fx∗‖‖xn − Tn2 Tn1 yn‖) +

2µ2‖Fx∗‖‖FTn2 Tn1 yn‖
τ

αn.

From (3.12), (3.19), we know that lim supn→∞ cn ≤ 0. By Lemma 2.9, we
conclude that xn → x∗ as n→∞, completing the proof. �

4. An extension of our result

In this section, we extend our result to the more broad family of λ-strictly
pseudo-contractive mappings. Now let us recall that a mapping S : H → H
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is said to be λ-strictly pseudo-contractive if there exists a constant λ ∈ [0, 1)
such that

‖Sx− Sy‖2 ≤ ‖x− y‖2 + λ‖(I − S)x− (I − S)y‖2, ∀x, y ∈ H.

Let {Si}Ni=1 be a family of λi-strictly pseudo-contractive self-mappings of H
with 0 ≤ λi < 1. For i = 1, 2, . . . , N , define

T̂i = ωiI + (1− ωi)Si, (4.1)

where 0 ≤ λi ≤ ωi < 1. By virtue of Lemma 2.10, we know that {T̂i}Ni=1 is
a family of N nonexpansive mappings. Thus we extend Theorem 3.1 to the
family of λi-strictly pseudo-contractions.

Theorem 4.1. Let H1 be a real Hilbert space, F : H1 → H1 be a k-Lipschitizian
continuous and η-strongly monotone operator on H1 with k > 0 and η > 0.
Let {Si}Ni=1 be N λi-strictly pseudo-contractive mappings on H such that

Ω =
⋂N
i=1 Fix(Si)

⋂
Γ 6= ∅. Suppose 0 < µ < 2η

k2
, αn ∈ (0, 1), γin ∈ (a, b)

for some a, b ∈ (0, 1) and 0 ≤ λi ≤ ωi < 1 for i = 1, 2, . . . , N . If the condition
(i)-(iii) of Theorem 3.1 are satisfied, the sequence {xk}k≥0 defined by Theorem
3.1 with Ti replaced by (4.1), converges strongly to the unique solution x∗ of
the following variational inequality:

〈Fx∗, x− x∗〉 ≥ 0, ∀x ∈
N⋂
i=1

Fix(Si) ∩ Γ.
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