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Abstract. In this paper, by using fixed point index theorems, the existence of positive

solutions are obtained for discrete nonlinear fourth-order m-point boundary value problems

with variable coefficients.

1. Introduction

The theory of nonlinear difference equations has been widely used to study
discrete models in many fields such as computer science, economics, neural
network, ecology, cybernetics, etc. In recent years, a great deal of work has
been done in the study of the existence of solutions for discrete boundary value
problem. For the background and recent results, we refer the reader to the
monographs [1-4,8,13,14,16-18] and the references therein.
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Anderson and Minhós [1] studied the existence, multiplicity, and nonex-
istence of nontrivial solutions for fourth-order boundary value problem with
explicit parameters β and λ given by{

44u(t− 2)− β42u(t− 1) = λf(t, u(t)), t ∈ Z[a+ 1, b+ 1],
u(a) = 42u(a− 1) = 0, u(b+ 2) = 42u(b+ 1) = 0.

(1.1)

In this paper, we consider more general m-point boundary value problem
with variable coefficients as follows:
44u(t− 2) +B(t)42u(t− 1)−A(t)u(t) = f(t, u(t)), t ∈ Z[a+ 1, b+ 1],

u(a) =
∑m−2

i=1 aiu(li), u(b+ 2) =
∑m−2

i=1 biu(li),

42u(a− 1) =
∑m−2

i=1 ai42u(li − 1), 42u(b+ 1) =
∑m−2

i=1 bi42u(li − 1),
(1.2)

where 4 denotes the forward difference operator defined by

4u(t) = u(t+ 1)− u(t),4nu(t) = 4(4n−1u(t)), Z[a+ 1, b+ 1]

is the discrete interval given by {a+ 1, a+ 2, · · · , b+ 1} with a and b (a < b)
integers, li ∈ Z[a+ 1, b+ 1], ai, bi ∈ [0,+∞) for i = 1, 2, · · · ,m− 2 are given
constants, A(t), B(t) : Z[a + 1, b + 1] → (−∞,+∞), f : Z[a + 1, b + 1] ×
[0,+∞)→ [0,+∞) is continuous.

The study of multipoint BVPs for linear second-order ordinary differential
equations was initiated by Il’in and Moiseev [9]. Then Gupta [6] studied three-
point BVPs for nonlinear ordinary differential equations. Since then, the more
general nonlinear multipoint BVPs for ordinary differential equations have
been studied by many authors, for example, see [11,12,15,19]. However, few
results have been seen in literature for fourth-order difference equations with
multi-point boundary condition. So, in this paper, motivated by [1,5,10-12],
we aim to study the existence of positive solutions for BVP (1.2).

By a solution u of BVP (1.2), we mean a real sequence u which is defined
on Z[a− 1, b+ 3] and satisfies the difference equation as well as the boundary

conditions in (1.2). A solution {u(t)}b+3
t=a−1 of (1.2) is called to be positive if

u(t) > 0 for t ∈ Z[a+ 1, b+ 1] .
Let α = mint∈Z[a+1,b+1]A(t), β = mint∈Z[a+1,b+1]B(t). We make the follow-

ing assumptions for convenience:

(H1) β < 8 sin2 π

2(b− a+ 2)
, α ≥ 0, α+ 4β sin2 π

2(b− a+ 2)
< 16 sin4 π

2(b− a+ 2)
,

(H1a) β < 4 sin2 π

2(b− a+ 2)
, α ≥ 0, α+ 4β sin2 π

2(b− a+ 2)
< 16 sin4 π

2(b− a+ 2)
.

The proofs of the main theorems of this paper are based on the fixed point
index theory. Let E be a real Bananch space with cone P . Assume Ω is a
bounded open subset of E with boundary ∂Ω, and P ∩Ω = ∅. Let A : P ∩Ω→
P be a completely continuous operator. If Ax 6= x for all x ∈ P ∩Ω, then the
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fixed point index i(A,P ∩ Ω, P ) has definition. One important fact is that if
i(A,P ∩ Ω, P ) 6= 0, then A has a fixed point in P ∩ Ω. The following three
well-known lemmas in [7] are needed in our argument.

Lemma 1.1. Let A : P → P be a completely continuous operator. If µAx 6= x
for all x ∈ P ∩ ∂Ω, 0 < µ ≤ 1, then the fixed point index i(A,Pr, P ) = 1.

Lemma 1.2. Let A : P → P be a completely continuous operator. If
infx∈∂Pr ‖Ax‖ > 0 and µAx 6= x for x ∈ ∂Pr, µ ≥ 1, then the fixed point
index i(A,Pr, P ) = 0.

Lemma 1.3. Let A : P → P be a completely continuous operator, x0 ∈
P\{θ}. If x − Ax 6= µx0 for x ∈ P ∩ ∂Ω, µ ≥ 0, then the fixed point index
i(A,P ∩ Ω, P ) = 0.

2. Preliminaries

In order to obtain our main results, we present some preliminary results in
this section. Let

X = {u : Z[a+ 1, b+ 1]→ R}, X+ = {u ∈ X : u(t) ≥ 0, t ∈ Z[a+ 1, b+ 1]}.
It is well known that X is a Banach space equipped with the norm

‖u‖∞ = max
t∈Z[a+1,b+1]

{|u(t)|}.

Let

E =

{
u : Z[a, b+ 2]→ R, u(a) =

m−2∑
i=1

aiu(li), u(b+ 2) =

m−2∑
i=1

biu(li)

}
,

E+ = {u ∈ E : u(t) ≥ 0, t ∈ Z[a, b+ 2]}.
For any u ∈ E, set

‖u‖∞ = max
t∈Z[a+1,b+1]

{|u(t)|},

‖u‖λ = max
t∈Z[a+1,b+1]

{|42u(t− 1)|+ λ|u(t)|}(λ ≥ 0)

and
‖u‖E = max{‖u‖∞, ‖42u‖∞},

where
‖42u‖∞ = max

t∈Z[a+1,b+1]
|42u(t− 1)|.

It is easy to verity that ‖ · ‖∞, ‖ · ‖λ(λ > 0) and ‖ · ‖E are all norms on E.
Obviously, (E, ‖ · ‖∞), (E, ‖ · ‖λ)(λ > 0) and (E, ‖ · ‖E) are all Banach spaces.
From the following remark 2.1, we know that ‖u‖0 = ‖42u‖∞ is also a norm
on E.
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Lemma 2.1. Let (H1) holds. Then there exist unique ϕi, ψi, i = 1, 2 satisfy-
ing {

−42ϕi(t− 1) + λiϕi(t) = 0, t ∈ Z[a+ 1, b+ 1],
ϕi(a) = 0, ϕi(b+ 2) = 1;{
−42ψi(t− 1) + λiψi(t) = 0, t ∈ Z[a+ 1, b+ 1],
ψi(a) = 1, ψi(b+ 2) = 0;

respectively. And on Z[a, b+ 2], ϕi ≥ 0, ψ ≥ 0, i = 1, 2, where λ1, λ2 are the
roots of the polynomial P (λ) = λ2 + βλ− α, namely,

λ1 =
−β +

√
β2 + 4α

2
, λ2 =

−β −
√
β2 + 4α

2
.

Proof. We can obtain by calculation that ϕi, ψi, i = 1, 2 are explicitly given
by

(i) ϕi(t) =
sin(t− a)θ

sin(b+ 2− a)θ
, ψi =

sin(b+ 2− t)θ
sin(b+ 2− a)θ

,

where θ := arctan

√
−λi(λi+4)

λi+2 ∈ (0, π
b+2−a), when −4 sin2 π

2(b+2−a) < λi < 0;

(ii) ϕi(t) =
t− a

b+ 2− a
, ψi(t) =

b+ 2− t
b+ 2− a

,when λi = 0;

(iii) ϕi(t) =
γt−a − γa−t

γb+2−a − γa−b−2
, ψi(t) =

γb+2−t − γt−b−2

γb+2−a − γa−b−2
,

where γ :=
λi+2+

√
λi(λi+4)

2 , when λi > 0.
It is obviously that on Z[a, b+2], ϕ1, ϕ2, ψ1, ψ2 ≥ 0 and4ϕ1(a), 4ϕ2(a) >

0. The proof is complete. �

Let Gi(t, s)(i = 1, 2) be the Green’s function of the linear boundary value
problem {

−42u(t− 1) + λiu(t) = 0, t ∈ Z[a+ 1, b+ 1],

u(a) = u(b+ 2) = 0.

Then Gi(t, s)(i = 1, 2) can be expressed by

Gi(t, s) =
1

4ϕi(a)

{
ϕi(t)ψi(s), a ≤ t ≤ s ≤ b+ 2,
ϕi(s)ψi(t), a ≤ s ≤ t ≤ b+ 2.

(2.1)

Lemma 2.2. Gi(t, s), ϕi, ψi(i = 1, 2) have the following properties:
(i) Gi(t, s) > 0, ∀t, s ∈ Z[a+ 1, b+ 1];
(ii) δiGi(t, t)Gi(s, s) ≤ Gi(t, s) ≤ CiGi(s, s), ∀t, s ∈ Z[a+ 1, b+ 1];
(iii) δiGi(t, t) ≤ ϕi(t), ψi(t) ≤ Ci, ∀t, s ∈ Z[a+ 1, b+ 1],
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where Ci = max{maxa+1≤t≤s≤b+2
ϕi(t)
ϕi(s)

, maxa≤s≤t≤b+1
ψi(t)
ψi(s)
} > 0 and

δi = min

{
min

a+1≤t≤s≤b+1

4ϕi(a)

ψi(t)ϕi(s)
, min
a+1≤s≤t≤b+1

4ϕi(a)

ϕi(t)ψi(s)
,

min
a+1≤t≤b+1

4ϕi(a)

ψi(t)
, min
a+1≤t≤b+1

4ϕi(a)

ϕi(t)

}
> 0.

The proof is simple and is omitted.
For convenience, let

∇k =

∣∣∣∣ −∑m−2
i=1 biψk(li) 1−

∑m−2
i=1 biϕk(li)

1−
∑m−2

i=1 aiψk(li) −
∑m−2

i=1 aiϕk(li)

∣∣∣∣ , k = 1, 2, (2.2)

Ak(h) =
1

∇k

∣∣∣∣∣
∑m−2

i=1

∑b+1
s=a+1 biGk(li, s)h(s) 1−

∑m−2
i=1 biϕk(li)∑m−2

i=1

∑b+1
s=a+1 aiGk(li, s)h(s) −

∑m−2
i=1 aiϕk(li)

∣∣∣∣∣ , k = 1, 2, h ∈ X,

(2.3)

Bk(h) =
1

∇k

∣∣∣∣∣ −
∑m−2

i=1 biψk(li)
∑m−2

i=1

∑b+1
s=a+1 biGk(li, s)h(s)

1−
∑m−2

i=1 aiψk(li)
∑m−2

i=1

∑b+1
s=a+1 aiGk(li, s)h(s)

∣∣∣∣∣ , k = 1, 2, h ∈ X.

(2.4)

Lemma 2.3. Let (H1) holds. Assume that

(H2k) ∇k 6= 0, k = 1, 2.

Then for any h ∈ X, the BVP{
−42u(t− 1) + λku(t) = h(t), t ∈ Z[a+ 1, b+ 1],

u(a) =
∑m−2

i=1 aiu(li), u(b+ 2) =
∑m−2

i=1 biu(li)
(2.5)

has a unique solution

u(t) = Ak(h)ψk(t) +Bk(h)ϕk(t) +

b+1∑
s=a+1

Gk(t, s)h(s), t ∈ Z[a, b+ 2].

Proof. It is easy to see that the linear boundary value problem

−42u(t− 1) + λku(t) = h(t), t ∈ Z[a+ 1, b+ 1], u(a) = u(b+ 2) = 0

has a unique solution u(t) =
∑b+1

s=a+1Gk(t, s)h(s), t ∈ Z[a, b+ 1]. And notice
that ϕk, ψk are two linearly independent solutions of the problem

−42u(t− 1) + λku(t) = 0.

The proof follows by routine calculations. �
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In the rest of the paper, we make the following assumption:

(H3k) ∇k < 0, 1−
m−2∑
i=1

aiψk(li) > 0, 1−
m−2∑
i=1

biϕk(li) > 0, k = 1, 2.

Lemma 2.4. Let (H1) and (H3k) hold. Then for any h : Z[a + 1, b + 1] →
[0,+∞), the unique solution u of the problem (2.5) satisfies u(t) ≥ 0, t ∈
Z[a, b+ 2].

Proof. Since ∇k < 0, and Gk ≥ 0 on Z[a, b + 2] × Z[a, b + 2], we obtain that
Ak(h) ≥ 0 and Bk(h) ≥ 0. By Lemma 2.3, u(t) ≥ 0, t ∈ Z[a, b+ 2]. �

Lemma 2.5. Let (H3k) holds. Then
(i) For any h ∈ X+, Ak(h), Bk(h) are two linear functionals and nonde-

creasing in h.
(ii) For any h ∈ X, |Ak(h)| ≤ Ak(1)‖h‖∞, |Bk(h)| ≤ Bk(1)‖h‖∞.

Now notice that

44u(t− 2) + β42u(t− 1)− αu(t) = (−42L+ λ2)(−42L+ λ1)u(t)

= (−42L+ λ1)(−42L+ λ2)u(t),

where Lu(t) = u(t− 1). Then we can easily get

Lemma 2.6. Let (H1), (H31) and (H32) hold. Then for any h ∈ X, the BVP
44u(t− 2) + β42u(t− 1)− αu(t) = h(t), t ∈ Z[a+ 1, b+ 1],

u(a) =
∑m−2

i=1 aiu(li), u(b+ 2) =
∑m−2

i=1 biu(li),

42u(a− 1) =
∑m−2

i=1 ai42u(li − 1), 42u(b+ 1) =
∑m−2

i=1 bi42u(li − 1)

(2.6)

has a unique solution {u(t)}b+3
t=a−1 with

u(t) = A2(v)ψ2(t) +B2(v)ϕ2(t) +

b+1∑
s=a+1

G2(t, s)v(s), t ∈ Z[a, b+ 2] (2.7)

and

u(a− 1) =

m−2∑
i=1

ai42u(li − 1)− u(a+ 1) + 2

m−2∑
i=1

aiu(li),

u(b+ 3) =
m−2∑
i=1

bi42u(li − 1)− u(b+ 1) + 2
m−2∑
i=1

biu(li),

where Gi, Ai, Bi(i = 1, 2) are defined as in (2.1), (2.3), (2.4) and

v(t) = A1(h)ψ1(t) +B1(h)ϕ1(t) +
b+1∑

s=a+1

G1(t, s)h(s), t ∈ Z[a, b+ 2]. (2.8)
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Moreover, if h ∈ X+, then u(t) ≥ 0, t ∈ Z[a, b+ 2].

Denote

G0(t, s) =
1

b+ 2− a

{
(t− a)(b+ 2− s), a ≤ t ≤ s ≤ b+ 2,
(s− a)(b+ 2− t), a ≤ s ≤ t ≤ b+ 2,

(2.9)

∇0 =

∣∣∣∣∣ −
∑m−2

i=1 bi
b+2−li
b+2−a 1−

∑m−2
i=1 bi

li−a
b+2−a

1−
∑m−2

i=1 ai
b+2−li
b+2−a −

∑m−2
i=1 ai

li−a
b+2−a

∣∣∣∣∣ , (2.10)

D0 =

1

|∇0|

(
m−2∑
i=1

b+1∑
s=a+1

biG0(li, s)

m−2∑
i=1

ai
li − a

b+ 2− a +

∣∣∣∣∣1−
m−2∑
i=1

bi
li − a

b+ 2− a

∣∣∣∣∣
m−2∑
i=1

b+1∑
s=a+1

aiG0(li, s)

)

+
1

|∇0|

(
m−2∑
i=1

b+1∑
s=a+1

aiG0(li, s)

m−2∑
i=1

bi
b+ 2− li
b+ 2− a +

∣∣∣∣∣1−
m−2∑
i=1

ai
b+ 2− li
b+ 2− a

∣∣∣∣∣
m−2∑
i=1

b+1∑
s=a+1

biG0(li, s)

)

+ max
t∈Z[a+1,b+1]

b+1∑
s=a+1

G0(t, s).

(2.11)

A simple computation shows that D0 > 1. By Lemma 2.3 with λk = 0 and
h(t) = −42u(t− 1), we have the following.

Lemma 2.7. Let (H1) holds. Assume that
(H4) ∇0 6= 0.
Then for any u ∈ E,

u(t) = A0(−42u)
b+ 2− t
b+ 2− a

+B0(−42u)
t− a

b+ 2− a

+
b+1∑

s=a+1

G0(t, s)(−42u(s− 1)), t ∈ Z[a, b+ 2], (2.12)

where

A0(−42u) =
1

∇0

∣∣∣∣∣
∑m−2

i=1

∑b+1
s=a+1 biG0(li, s)(−42u(s− 1)) 1−

∑m−2
i=1 bi

li−a
b+2−a∑m−2

i=1

∑b+1
s=a+1 aiG0(li, s)(−42u(s− 1)) −

∑m−2
i=1 ai

li−a
b+2−a

∣∣∣∣∣ ,
B0(−42u) =

1

∇0

∣∣∣∣∣ −
∑m−2

i=1 bi
b+2−li
b+2−a

∑m−2
i=1

∑b+1
s=a+1 biG0(li, s)(−42u(s− 1))

1−
∑m−2

i=1 ai
b+2−li
b+2−a

∑m−2
i=1

∑b+1
s=a+1 aiG0(li, s)(−42u(s− 1))

∣∣∣∣∣ .
Hence,

‖u‖∞ ≤ D0‖42u‖∞, ∀u ∈ E. (2.13)
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Remark 2.1. Let (H4) holds, then it follows from (2.13) that ‖u‖0 = ‖42u‖∞
is a norm on E. Moreover, for given λ ≥ 0, the norm ‖ · ‖λ is equivalent to
the norm ‖ · ‖E , that is,

(1 + λ)−1‖u‖λ ≤ ‖u‖E ≤ D0‖u‖λ, ∀u ∈ E. (2.14)

In fact, ∀u ∈ E, t ∈ Z[a+ 1, b+ 1],

|42u(t− 1)|+ λ|u(t)| ≤ ‖42u‖∞ + λ‖u‖∞ ≤ (1 + λ)‖u‖E .

Thus,

‖u‖λ ≤ (1 + λ)‖u‖E .
On the other hand, ∀u ∈ E, t ∈ Z[a+ 1, b+ 1],

|42u(t− 1)| ≤ |42u(t− 1)|+ λ|u(t)| ≤ ‖u‖λ,

and so ‖42u‖∞ ≤ ‖u‖λ. By (2.13), we have

‖u‖∞ ≤ D0‖42u‖∞ ≤ D0‖u‖λ.

Hence, ‖u‖E ≤ D0‖u‖λ. Then ‖ · ‖E is equivalent to the norm ‖ · ‖λ.

For any h ∈ X, the linear BVP (2.6) has a unique solution {u}b+3
t=a−1. Let

(Th)(t) = u(t), t ∈ Z[a, b + 2]. From Lemma 2.6, the operator T can be
expressed by

(Th)(t) = A2(v)ψ2(t)+B2(v)ϕ2(t)+
b+1∑

s=a+1

G2(t, s)v(s), t ∈ Z[a, b+2], (2.15)

where v is defined by (2.8). And Th ∈ E+ for h ∈ X+.
For k = 1, 2, let

Ek = max
t∈Z[a+1,b+1]

ψk(t), Fk = max
t∈Z[a+1,b+1]

ϕk(t), (2.16)

Mk = max
t∈Z[a+1,b+1]

b+1∑
s=a+1

Gk(t, s), (2.17)

Dk = Ak(1)Ek +Bk(1)Fk +Mk. (2.18)

Lemma 2.8. Assume that (H1), (H31), (H32) and (H4) hold, then T : (X, ‖ ·
‖∞)→ (E, ‖ · ‖λ1) is linear completely continuous, and ‖T‖ ≤ D2.

Proof. It follows from (2.15) that T maps X into E and is linear. Since E is
finite dimensional, we only need to prove that T : (X, ‖ · ‖∞)→ (E, ‖ · ‖λ1) is

continuous. For any {h(t)}b+1
t=a+1 ∈ X, let

{u(t)}b+2
t=a = {(Th)(t)}b+2

t=a,
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u(a− 1) =

m−2∑
i=1

ai42u(li − 1)− u(a+ 1) + 2

m−2∑
i=1

aiu(li),

u(b+ 3) =
m−2∑
i=1

bi42u(li − 1)− u(b+ 1) + 2
m−2∑
i=1

biu(li).

Then

u(a) =
m−2∑
i=1

aiu(li), u(b+ 2) =
m−2∑
i=1

biu(li),

42u(a− 1) =

m−2∑
i=1

ai42u(li − 1), 42u(b+ 1) =

m−2∑
i=1

bi42u(li − 1).

Let v(t) = −42u(t − 1) + λ2u(t), t ∈ Z[a, b + 2]. Then v(a) =
∑m−2

i=1 aiv(li),

v(b+ 2) =
∑m−2

i=1 biv(li). Hence, {v(t)}b+2
t=a satisfies the following BVP:{

−42v(t− 1) + λ2v(t) = h(t), t ∈ Z[a+ 1, b+ 1],

v(a) =
∑m−2

i=1 aiv(li), v(b+ 2) =
∑m−2

i=1 biv(li).

From Lemma 2.3, we obtain

v(t) = A1(h)ψ1(t) +B1(h)ϕ1(t) +

b+1∑
s=a+1

G1(t, s)h(s), t ∈ Z[a, b+ 2].

That is,

−42u(t− 1) + λ2u(t) = A1(h)ψ1(t) +B1(h)ϕ1(t)

+
b+1∑

s=a+1

G1(t, s)h(s), t ∈ Z[a, b+ 2]. (2.19)

Similarly, we also have

−42u(t− 1) + λ1u(t) = A2(h)ψ2(t) +B2(h)ϕ2(t)

+
b+1∑

s=a+1

G2(t, s)h(s), t ∈ Z[a, b+ 2]. (2.20)

By (2.19) and (2.15), we have

42u(t− 1) = λ2u(t)−A1(h)ψ1(t)−B1(h)ϕ1(t)−
b+1∑

s=a+1

G1(t, s)h(s)

= λ2

(
A2(v)ψ2(t) +B2(v)ϕ2(t) +

b+1∑
s=a+1

G2(t, s)v(s)

)
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−A1(h)ψ1(t)−B1(h)ϕ1(t)−
b+1∑

s=a+1

G1(t, s)h(s), t ∈ Z[a, b+ 2].

It follows from (2.16)-(2.18) and Lemma 2.5 that∣∣∣∣∣A1(h)ψ1(t) +B1(h)ϕ1(t) +

b+1∑
s=a+1

G1(t, s)h(s)

∣∣∣∣∣
≤ (A1(1)E1 +B1(1)F1 +M1)‖h‖∞ = D1‖h‖∞,∣∣∣∣∣A2(v)ψ2(t) +B2(v)ϕ2(t) +

b+1∑
s=a+1

G2(t, s)v(s)

∣∣∣∣∣
≤ (A2(1)E2 +B2(1)F2 +M2)‖v‖∞ = D1D2‖h‖∞.

Thus, we get

|42u(t− 1)| ≤ (|λ2|D2 + 1)D1‖h‖∞, t ∈ Z[a+ 1, b+ 1].

Then, ‖42u‖∞ ≤ (|λ2|D2 + 1)D1‖h‖∞. By (2.13), we have

‖Th‖E = ‖u‖E = max{‖u‖∞, ‖42u‖∞}
≤ D0‖42u‖∞ ≤ (|λ2|D2 + 1)D1‖h‖∞,

which implies that T : (X, ‖ · ‖∞)→ (E, ‖ · ‖E) is continuous. Since the norms
‖ · ‖E and ‖ · ‖λ1 are equivalent from Remark 2.1, T : (X, ‖ · ‖∞)→ (E, ‖ · ‖λ1)
is also continuous.

Now, we show that ‖T‖ ≤ D2. For any h ∈ X+, let u = Th, by Lemma
2.6, u(t) ≥ 0, t ∈ Z[a, b + 2]. It follows from (H1) that λ1 ≥ 0 ≥ λ2. From
(2.19) and Lemma 2.5, we obtain that 42u(t− 1) ≤ 0, t ∈ Z[a, b+ 2]. Thus,
by (2.20), we immediately have

| − 42u(t− 1)|+ |λ1u(t)| = −42u(t− 1) + λ1u(t)

= A2(h)ψ2(t) +B2(h)ϕ2(t) +
b+1∑

s=a+1

G2(t, s)h(s), t ∈ Z[a, b+ 2].

For any h ∈ X, let h = h1 − h2, u1 = Th1, u2 = Th2, where h1 and h2 are the
positive and negative part of h, respectively. Let u = Th. Then u = u1 − u2.
From the discuss above, we have uk(t) ≥ 0, 42uk(t−1) ≥ 0, t ∈ Z[a, b+2], k =
1, 2. Hence

| − 42uk(t− 1)|+ |λ1uk(t)| = −42uk(t− 1) + λ1uk(t)

= A2(hk)ψ2(t) +B2(hk)ϕ2(t) +

b+1∑
s=a+1

G2(t, s)hk(s)

=: Hhk, t ∈ Z[a, b+ 2], k = 1, 2.

Then

|42u(t− 1)|+ λ1|u(t)| = |42u1(t− 1)−42u2(t− 1)|+ λ1|u1(t)− u2(t)|
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≤ |42u1(t− 1)|+ λ1|u1(t)|+ |42u2(t− 1)|+ λ1|u2(t)|

= Hh1 +Hh2 = H|h|

≤ (A2(1)E2 +B2(1)F2 +M2)‖h‖∞ = D2‖h‖∞.
Thus ‖Th‖λ1 ≤ D2‖h‖∞, and so ‖T‖ ≤ D2. The proof is completed. �

In the rest of the paper, we make the following notations:

f
0,ξ

= lim inf
x→0+

min
t∈Z[a+1,b+1]

f(t, x)

xξ
, f0,η = lim sup

x→0+
max

t∈Z[a+1,b+1]

f(t, x)

xη
;

f∞,ξ = lim inf
x→+∞

min
t∈Z[a+1,b+1]

f(t, x)

xξ
, f∞,η = lim sup

x→+∞
max

t∈Z[a+1,b+1]

f(t, x)

xη
;

λ∗ = 16 sin4 π

2(b− a+ 2)
− 4β sin2 π

2(b− a+ 2)
− α; (2.21)

K = max
t∈Z[a+1,b+1]

[A(t)− α+B(t)− β]; (2.22)

Vk = Ak(1) +Bk(1) +
b+1∑

s=a+1

Gk(s, s), k = 1, 2; (2.23)

Uk = min
t∈Z[a+1,b+1]

Gk(t, t), k = 1, 2. (2.24)

3. Main results

Now with the aid of the lemmas in Section 2, we are in position to state
and prove our main results.

Theorem 3.1. Assume that (H1a), (H31), (H32) and (H4) hold, and L =
KD0D2 < 1. If one of the following conditions are satisfied

(i) f
0,ξ
∈ (λ∗,+∞], f∞,η ∈ [0, λ∗) with ξ = 1, η = 1;

(ii) f∞,ξ ∈ (λ∗,+∞], f0,η ∈ [0, λ∗) with ξ = 1, η = 1,

then, BVP (1.2) has at least one positive solution, where λ∗ = (1−L)(C1C2V1V2)−1,

C1, C2 are given in Lemma 2.2, V1, V2 are defined as in (2.23), λ∗,K are defined
as in (2.21), and D0, D2 are defined as in (2.11) and (2.18), respectively.

Proof. For any h ∈ X, consider the linear BVP:
44u(t− 2) +B(t)42u(t− 1)−A(t)u(t) = h(t), t ∈ Z[a+ 1, b+ 1],

u(a) =
∑m−2

i=1 aiu(li), u(b+ 2) =
∑m−2

i=1 biu(li),

42u(a− 1) =
∑m−2

i=1 ai42u(li − 1), 42u(b+ 1) =
∑m−2

i=1 bi42u(li − 1).
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It is easy to see that the above BVP is equivalent to the following BVP:
44u(t− 2) + β42u(t− 1)− αu(t)
= −(B(t)− β)42u(t− 1) + (A(t)− α)u(t) + h(t), t ∈ Z[a+ 1, b+ 1],

u(a) =
∑m−2

i=1 aiu(li), u(b+ 2) =
∑m−2

i=1 biu(li),

42u(a− 1) =
∑m−2

i=1 ai42u(li − 1), 42u(b+ 1) =
∑m−2

i=1 bi42u(li − 1),
(3.1)

For any v ∈ E, let (Gv)(t) = −(B(t) − β)42u(t − 1) + (A(t) − α)u(t), t ∈
Z[a+ 1, b+ 1]. Obviously, the operator G : E → X is linear. Owing to (2.14),
one has that for v ∈ E, t ∈ Z[a+ 1, b+ 1],

|(Gv)(t)| ≤ [(B(t)− β) + (A(t)− α)] max{‖v‖∞, ‖42v‖∞} ≤ KD0‖v‖λ1 .
Hence, ‖(Gv)‖∞ ≤ KD0‖v‖λ1 , and so ‖G‖ ≤ KD0. On the other hand,

{u(t)}b+3
t=a−1 is a solution of (3.1) if and only if u = {u(t)}b+2

t=a ∈ E satisfies
u = T (Gu+ h), i.e.,

(I − TG)u = Th. (3.2)

It follows from T : X → E and G : E → X that I − TG maps E into E.
By ‖T‖ ≤ D2 (see Lemma 2.8), ‖G‖ ≤ KD0 and condition KD0D2 < 1, we
obtain that (I−TG)−1, the inverse mapping of I−TG, exists and is bounded.

Let S = (I − TG)−1T. Then (3.2) is equivalent to u = Sh and S can be
expressed by

S = (I+TG+ · · ·+(TG)n+ · · · )T = T +(TG)T + · · ·+(TG)nT + · · · . (3.3)

The complete continuity of T together with the continuity of (I − TG)−1

implies that the operator S : X → E is completely continuous. For any
h ∈ X+, let u = Th. Then the definition of T and Lemma 2.6 yield that u ∈ E
and u(t) ≥ 0, t ∈ Z[a, b+ 2]. From (2.19), Lemma 2.5 and λ2 ≤ 0, we obtain
that 42u(t− 1) ≤ 0, t ∈ Z[a, b+ 2]. So we have

(Gu)(t) = −(B(t)− β)42u(t− 1) + (A(t)− α)u(t) ≥ 0, t ∈ Z[a+ 1, b+ 1].

Hence for any h ∈ X+, (GTh)(t) ≥ 0, t ∈ Z[a+1, b+1], and so (TG)(Th)(t) ≥
0, t ∈ Z[a, b+ 2]. It follows from mathematical induction that

(TG)n(Th)(t) ≥ 0, ∀h ∈ X+, t ∈ Z[a, b+ 2], n = 1, 2, · · · (3.4)

By (3.3) and (3.4), we have

(Sh)(t) = (Th)(t) + (TG)(Th)(t) + · · ·+ (TG)n(Th)(t) + · · ·
≥ (Th)(t), ∀h ∈ X+, t ∈ Z[a, b+ 2]. (3.5)

Then S : X+ → E+. On the other hand, we have that for any h ∈ X+,

(Sh)(t) ≤ (Th)(t) + ‖TG‖(Th)(t) + · · ·+ ‖(TG)n‖(Th)(t) + · · ·
≤ (1 + L+ · · ·+ Ln + · · · )(Th)(t)

= (1− L)−1(Th)(t), t ∈ Z[a, b+ 2]. (3.6)
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Thus,

‖Sh‖∞ ≤ (1− L)−1‖Th‖∞. (3.7)

Define operators f : X → X, p : E → X, respectively, by

(fu)(t) = f(t, u(t)), ∀u ∈ X, t ∈ Z[a+ 1, b+ 1];

p{u(t)}b+2
t=a = {u(t)}b+1

a+1, ∀{u(t)}b+2
t=a ∈ E.

The continuity of f means that f : X+ → X+ is continuous. It is easy to
see that {u(t)}b+3

t=a−1 is a positive solution of BVP (1.2) if and only if u =

{u(t)}b+2
t=a ∈ E+ is a nonzero solution of the operator equation u = Wu, where

W := Sfp. Obviously, W : E+ → E+ is completely continuous. We next show
that the operator W has at least fixed point in E+.

Set

P = {u ∈ E+ : u(t) ≥ σG2(t, t)‖u‖∞, t ∈ Z[a+ 1, b+ 1]},
where

σ = δ1δ2(1− L)(C1C2V2)−1

×

(
A2(G1(t, t)) +B2(G1(t, t)) +

b+1∑
s=a+1

G1(s, s)G2(s, s)

)
.

(3.8)

It is easy to see that P is a cone. Now, we show W (P ) ⊂ P .
For any u ∈ E+, then fpu ∈ X+. By the definition of T , we have

(T fpu)(t) = A2(w)ψ2(t) +B2(w)ϕ2(t)

+
b+1∑

s=a+1

G2(t, s)w(s), ∀u ∈ P, t ∈ Z[a, b+ 2],
(3.9)

where w(t) = A1(fpu)ψ1(t) + B1(fpu)ϕ1(t) +
∑b+1

k=a+1G1(t, k)(fpu)(k), t ∈
Z[a, b+ 2]. By Lemmas 2.2 and 2.5, we have

A2(w)ψ2(t) +B2(w)ϕ2(t)

≤ C2(A2(1) +B2(1))‖w‖∞

≤ C1C2(A2(1) +B2(1))

(
A1(fpu) +B1(fpu) +

b+1∑
k=a+1

G1(k, k)(fpu)(k)

)
,

b+1∑
s=a+1

G2(t, s)w(s) ≤ C1C2

b+1∑
s=a+1

G2(s, s)

(
A1(fpu) +B1(fpu) +

b+1∑
k=a+1

G1(k, k)(fpu)(k)

)
.

Then,

(T fpu)(t) ≤ C1C2V2

(
A1(fpu) +B1(fpu) +

b+1∑
k=a+1

G1(k, k)(fpu)(k)

)
, t ∈ Z[a+1, b+1].
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This gives

A1(fpu) +B1(fpu) +
b+1∑

k=a+1

G1(k, k)(fpu)(k)

≥ (C1C2V2)−1‖T fpu‖∞.

(3.10)

Similarly, we also have

(T fpu)(t) ≥ δ1δ2G2(t, t)

(
A2(G1(t, t)) +B2(G1(t, t)) +

b+1∑
s=a+1

G1(s, s)G2(s, s)

)

×

(
A1(fpu) +B1(fpu) +

b+1∑
s=a+1

G1(s, s)(fpu)(s)

)
. (3.11)

This together with (3.5), (3.10) and (3.7) gives

(Wu)(t) = (Sfpu)(t) ≥ (T fpu)(t) ≥ σG2(t, t)‖Sfpu‖∞, t ∈ Z[a+ 1, b+ 1].

Hence, W (P ) ⊂ P . Obviously, T (P ) ⊂ P .
Let ωk = mina+1≤t,s≤b+1Gk(t, s). Obviously, ωk > 0(k = 1, 2), and more-

over

u(t) ≥ σω2‖u‖∞, ∀u ∈ P, t ∈ Z[a+ 1, b+ 1]. (3.12)

Suppose that condition (i) holds. By f
0,1

> λ∗, we can choose ε > 0 such

that f
0,1

> λ∗ + ε. Then there exists r > 0 such that f(t, x) > (λ∗ + ε)x for

x ∈ (0, r], t ∈ Z[a+ 1, b+ 1]. Let Ωr = {u ∈ P : ‖u‖∞ ≤ r}. For any u ∈ ∂Ωr,
it follows from (3.12) that

f(t, u(t)) > (λ∗ + ε)u(t) > (λ∗ + ε)σω2r, t ∈ Z[a+ 1, b+ 1]. (3.13)

For any u ∈ ∂Ωr, by (3.5), (3.9) and (3.13), we have

‖Wu‖∞ ≥ (Wu)(a+ 1) ≥ (T fpu)(a+ 1) ≥
b+1∑

s=a+1

b+1∑
k=a+1

G2(a+ 1, s)G1(s, k)(fpu)(k)

≥ (λ∗ + ε)σω1ω
2
2r(b− a+ 1)2 > 0.

Therefore,

inf
u∈∂Ωr

‖Wu‖∞ > 0. (3.14)

Now we shall prove

Wu 6= µu, ∀u ∈ ∂Ωr, µ ∈ (0, 1]. (3.15)

Suppose the contrary, then there exist u0 ∈ ∂Ωr and µ0 ∈ (0, 1] such that
Wu0 = µ0u0. By (3.5), we have

u0(t) ≥ µ0u0(t) = (Wu0)(t) ≥ (T fpu0)(t) := v0(t), t ∈ Z[a, b+ 2]. (3.16)
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Let

v0(a− 1) =
m−2∑
i=1

ai42v0(li − 1)− v0(a+ 1) + 2
m−2∑
i=1

aiv0(li),

v0(b+ 3) =

m−2∑
i=1

bi42v0(li − 1)− v0(b+ 1) + 2

m−2∑
i=1

biv0(li).

Then, {v0(t)}b+3
t=a−1 satisfies BVP (2.6) with {h(t)}b+1

t=a+1 = {fpu0(t)}b+1
t=a+1.

That is,
44v0(t− 2) + β42v0(t− 1)− αv0(t) = f(t, u0(t)),
t ∈ Z[a+ 1, b+ 1],

v0(a) =
∑m−2

i=1 aiv0(li), v0(b+ 2) =
∑m−2

i=1 biv0(li),

42v0(a− 1) =
∑m−2

i=1 ai42v0(li − 1),

42v0(b+ 1) =
∑m−2

i=1 bi42v0(li − 1).
(3.17)

For x, y : Z→ Z, a simple computation shows

b+1∑
t=a+1

y(t)42x(t− 1)

= −x(a+ 1)y(a) + x(a)y(a+ 1) + x(b+ 2)y(b+ 1)

− x(b+ 1)y(b+ 2) +

b+1∑
t=a+1

x(t)42y(t− 1).

(3.18)

b+1∑
t=a+1

y(t)44x(t− 2)

= −y(a)42x(a) + y(a+ 1)42x(a− 1)− x(a+ 1)42y(a− 1)

+ x(a)42y(a) + x(b+ 2)42y(b)− x(b+ 1)42y(b+ 1)

+ y(b+ 1)42x(b+ 1)− y(b+ 2)42x(b) +
b+1∑
t=a+1

x(t)44y(t− 2).

(3.19)

Multiplying the first equation of (3.17) by e(t) := sin t−a
b−a+2π and summing

from a+ 1 to b+ 1, it follows from (3.18), (3.19) and the boundary conditions
in (3.17) that

e(a+ 1)42v0(a− 1) + v0(a)[42e(a) +βe(a+ 1)] + v0(b+ 2)[42e(b) +βe(b+ 1)]

+e(b+1)42v0(b+1)+

b+1∑
t=a+1

[44e(t−2)+β42e(t−1)−αe(t)]v0(t) =

b+1∑
t=a+1

f(t, u0(t))e(t).
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That is,

sin
π

b− a+ 2

(
m−2∑
i=1

(ai + bi)42v0(li − 1) + [−4 sin2 π

2(b− a+ 2)
+ β]

m−2∑
i=1

(ai + bi)v0(li)

)

+λ∗
b+1∑
t=a+1

v0(t)e(t) =
b+1∑
t=a+1

f(t, u0(t))e(t). (3.20)

It follows from Lemma 2.6 that v0(t) ≥ 0, t ∈ Z[a, b+ 2]. Similarly to (2.19),
we have

−42v0(t− 1) + λ2v0(t) = A1(fpu0)ψ1(t) +B1(fpu0)ϕ1(t)

+
b+1∑

s=a+1

G1(t, s)(fpu0)(s), t ∈ Z[a, b+2].

Bearing in mind that λ2 ≤ 0, we obtain that 42v0(t− 1) ≤ 0, t ∈ Z[a, b+ 2].
By (3.13), (3.20), (H1a) and (3.16), we get

(λ∗+ε)

b+1∑
t=a+1

u0(t)e(t) ≤
b+1∑

t=a+1

f(t, u0(t))e(t) ≤ λ∗
b+1∑

t=a+1

v0(t)e(t) ≤ λ∗
b+1∑

t=a+1

u0(t)e(t).

Since u0(t) ≥ σω2‖u0‖∞ = σω2r > 0, t ∈ Z[a+ 1, b+ 1], we have

b+1∑
t=a+1

u0(t)e(t) > 0.

Then λ∗+ε < λ∗, which is a contradiction. This proves (3.15). It follows from
(3.14), (3.15) and Lemma 1.2 that

i(W,Ωr, P ) = 0. (3.21)

From f∞,1 < λ∗, we can choose ε = (0, λ∗) such that f∞,1 < λ∗ − ε. Then
there exists R0 > 0 such that f(t, x) < (λ∗−ε)x for x > R0, t ∈ Z[a+1, b+1].
Let C = supt∈Z[a+1,b+1], x∈[0,R0] f(t, x). Obviously,

f(t, x) ≤ (λ∗ − ε)x+ C, ∀x ∈ [0,+∞), t ∈ Z[a+ 1, b+ 1].

Take R > max{r, ε−1C}, and let ΩR = {u ∈ P : ‖u‖∞ ≤ R}. We next show
Wu 6= µu, ∀u ∈ ∂ΩR, µ ≥ 0. In fact, if there exist u0 ∈ ∂ΩR and µ0 ≥ 1 such
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that Wu0 = µ0u0, then by (3.7) and (3.10), we obtain

(Wu0)(t)

= (Sfpu0)(t)

≤ (1− L)−1‖T fPu0‖∞

≤ (1− L)−1C1C2V2

(
A1(fpu0) +B1(fpu0) +

b+1∑
k=a+1

G1(k, k)(fpu0)(k)

)

≤ 1

λ∗
‖fpu0‖∞ ≤

(
1− ε

λ∗

)
‖u0‖∞ +

1

λ∗
C, t ∈ Z[a+ 1, b+ 1].

Then

u0(t) ≤ µ0u0(t) = (Wu0)(t) ≤
(

1− ε

λ∗

)
‖u0‖∞ +

1

λ∗
C, t ∈ Z[a+ 1, b+ 1],

which implies ‖u0‖∞ ≤
(

1− ε
λ∗

)
‖u0‖∞+ 1

λ∗
C. Thus R = ‖u0‖∞ ≤ C

ε , which

contradicts the choice of R. By Lemma 1.1, we have i(W,ΩR, P ) = 1. Taking
(3.21) into account, we have i(W,ΩR \ Ωr, P ) = 1. Then W has at least
one fixed point in ΩR \ Ωr, which means BVP (1.1) has at least one positive
solution. This completes the proof of (i).

The proof of (ii) is similar and will be omitted here. �

Theorem 3.2. Assume that (H1), (H31), (H32) and (H4) hold, and L =
KD0D2 < 1. If one of the following conditions are satisfied

(i) f∞,ξ ∈ (0,+∞], f0,η ∈ [0,+∞) with ξ > 1, η > 1;

(ii) f
0,ξ
∈ (0,+∞], f∞,η ∈ [0,+∞) with 0 < ξ < 1, 0 < η < 1,

then, BVP (1.2) has at least one positive solution.

Proof. According to the proof of Theorem 3.1, it suffices to prove that the
operator W has at least fixed point in E+.

First, suppose that the condition (i) holds. Define the cone P1 in E by

P1 = {u ∈ E+ : u(t) ≥ δ1δ2(1− L)U1U2(C1C2)−1‖u‖∞, t ∈ Z[a+ 1, b+ 1]},

where C1, C2, δ1, δ2 are given in Lemma 2.2, U1, U2 are defined as in (2.24).
By (3.5), (3.11), (3.10) and (3.7), we have, for u ∈ P1 and t ∈ Z[a+ 1, b+ 1],

(Wu)(t) = (Sfpu)(t) ≥ (T fpu)(t) ≥ δ1δ2(1− L)U1U2(C1C2)−1‖Wu‖∞.

Hence, W (P1) ⊂ P1.
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Let ũ1 = Sh1, where h1 = {1}b+1
a+1 ∈ X+. Then by (3.5), (3.6), (2.15),

Lemma 2.2 and Lemma 2.5, one has, for t ∈ Z[a, b+ 2],

δ1δ2U1U2V1V2 ≤ (Th1)(t) ≤ ũ1(t) = (Sh1)(t)

≤ (1− L)−1(Th1)(t)

≤ (1− L)−1C1C2V1V2.

Set
u1(t) ≡ δ1δ2U1U2V1V2

for t ∈ Z[a+ 1, b+ 1],

u1(a) = δ1δ2U1U2V1V2

m∑
i=1

ai

and

u1(b+ 2) = δ1δ2U1U2V1V2

m∑
i=1

bi.

Then u1 ∈ P1 \ {θ}, and

δ1δ2U1U2V1V2 = u1(t) ≤ (1− L)−1C1C2V1V2, t ∈ Z[a+ 1, b+ 1]. (3.22)

By f∞,ξ ∈ (0,+∞] with ξ > 1, there exist ε1 > 0 and ν1 > 0 such that

f(t, x) ≥ ν1x
ξ, t ∈ Z[a+ 1, b+ 1], x ≥ ε1. (3.23)

Choose ε2 such that

ε2 > max{ε1C1C2[δ1δ2(1− L)U1U2]−1,

ν
− 1
ξ−1

1 (1− L)−2C2
1C

2
2 (δ1δ2U1U2)

− 2ξ−1
ξ−1 (V1V2)

− 1
ξ−1 },

and let Ωε2 = {u ∈ P1 : ‖u‖∞ ≤ ε2}. If there exists u0 ∈ ∂Ωε2 such that
u0 −Wu0 = 0, then the conclusion holds, so suppose that u −Wu 6= 0,∀u ∈
∂Ωε2 . We claim that

u−Wu 6= su1, ∀u ∈ ∂Ωε2 , s ≥ 0. (3.24)

Suppose the contrary, then there exist u2 ∈ ∂Ωε2 and s0 ≥ 0 such that u2 −
Wu2 = s0u1. By the assumption that u−Wu 6= 0,∀u ∈ ∂Ωε2 , we obtain that
s0 > 0.

Notice that

u2(t) = Wu2(t) + s0u1(t) ≥ s0u1(t), t ∈ Z[a+ 1, b+ 1].

Let s∗ = sup{s : u2(t) ≥ su1(t), t ∈ Z[a+ 1, b+ 1]}. Then s0 ≤ s∗ < +∞ and
u2(t) ≥ s∗u1(t), t ∈ Z[a + 1, b + 1]. By u2 ∈ ∂Ωε2 and (3.22), we have, for
t ∈ Z[a+ 1, b+ 1],

u2(t) ≥ δ1δ2(1− L)U1U2(C1C2)−1ε2
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≥ C1C2ν
− 1
ξ−1

1 (1− L)−1(δ1δ2U1U2)
− ξ
ξ−1 (V1V2)

− 1
ξ−1

= ν
− 1
ξ−1

1 (1− L)−1(δ1δ2U1U2V1V2)
− ξ
ξ−1C1C2V1V2

≥ ν
− 1
ξ−1

1 (δ1δ2U1U2V1V2)
− ξ
ξ−1u1(t).

From the definition of s∗, it follows that

s∗ ≥ ν
− 1
ξ−1

1 (δ1δ2U1U2V1V2)
− ξ
ξ−1 . (3.25)

Taking into account that

u2(t) ≥ δ1δ2(1− L)U1U2(C1C2)−1ε2 > ε1, ∀t ∈ Z[a+ 1, b+ 1],

we have, by (3.5), (3.11), (3.23) and (3.25), for t ∈ Z[a+ 1, b+ 1],

u2(t)

= (Wu2)(t) + s0u1(t)

≥ δ1δ2U1U2V2 ×

(
A1(ν1u

ξ
2) +B1(ν1u

ξ
2) +

b+1∑
s=a+1

G1(s, s)(ν1u
ξ
2)(s)

)
+ s0u1(t)

≥ ν1δ1δ2U1U2V2 ×

(
A1(s∗uξ2) +B1(s∗uξ2) +

b+1∑
s=a+1

G1(s, s)(s∗uξ2)(s)

)
+ s0u1(t)

= ν1δ1δ2U1U2V1V2(s∗δ1δ2U1U2V1V2)ξ + s0u1(t)

= [ν1(s∗δ1δ2U1U2V1V2)ξ + s0]u1(t)

≥ (s∗ + s0)u1(t),

which contradicts the definition of s∗, and so (3.24) holds. It follows from
Lemma 1.3 that i(W,Ωε2 , P1) = 0.

On the other hand, by f0,η ∈ [0,+∞) with η > 1, there exist ε3 > 0 and
ν2 > 0 such that 0 ≤ f(t, x) ≤ ν2x

η, t ∈ Z[a + 1, b + 1], 0 ≤ x ≤ ε3. Choose
ε4 such that

0 < ε4 < min
{
ε2, ε3, [ν2(1− L)C1C2V1V2]

− 1
η−1

}
,

and let Ωε4 = {u ∈ P1 : ‖u‖∞ ≤ ε4}. We next show Wu 6= su, ∀u ∈ ∂Ωε4 , s ≥
1. In fact, if there exist u3 ∈ ∂Ωε4 and s1 ≥ 1 such that Wu3 = s1u3, then by
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(3.7) and (3.10), we obtain that for t ∈ Z[a+ 1, b+ 1],

(Wu3)(t) = (Sfpu3)(t)

≤ (1− L)−1‖T fpu3‖∞

≤ ν2(1− L)−1C1C2V2 ×

(
A1(uη3) +B1(uη3) +

b+1∑
s=a+1

G1(s, s)(uη3)(s)

)
≤ ν2(1− L)−1C1C2V1V2ε

η
4.

Then, ε4 ≤ s1ε4 = s1‖u3‖∞ = ‖Wu3‖∞ ≤ ν2(1− L)−1C1C2V1V2ε
η
4. That is,

ε4 ≥ [ν2(1− L)C1C2V1V2]
− 1
η−1 ,

which contradicts the choice of ε4. By Lemma 1.1, we have i(W,Ωε4 , P1) = 1.
Then we have i(W,Ωε2 \Ωε4 , P1) = −1. Hence W has at least one fixed point
in Ωε2 \ Ωε4 , which means BVP (1.2) has at least positive solution. This
completes the proof of (i).

The proof of (ii) is similar and will be omitted here. �
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