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Abstract. In this paper, by using fixed point index theorems, the existence of positive
solutions are obtained for discrete nonlinear fourth-order m-point boundary value problems

with variable coefficients.

1. INTRODUCTION

The theory of nonlinear difference equations has been widely used to study
discrete models in many fields such as computer science, economics, neural
network, ecology, cybernetics, etc. In recent years, a great deal of work has
been done in the study of the existence of solutions for discrete boundary value
problem. For the background and recent results, we refer the reader to the
monographs [1-4,8,13,14,16-18] and the references therein.
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Anderson and Minhés [1] studied the existence, multiplicity, and nonex-
istence of nontrivial solutions for fourth-order boundary value problem with
explicit parameters 5 and A\ given by

Atu(t —2) — BA2u(t — 1) = Af(t,u(t)), t€Zla+1,b+1],
{u(a) =AN%u(a—1)=0, ulb+2)=~2%ub+1)=0.
In this paper, we consider more general m-point boundary value problem
with variable coefficients as follows:
At —2) + B(t)A2%u(t — 1) — A@t)u(t) = f(t,u(t)), t€ Zla+1,b+1],
u(a) = X752 aiu(l),  w(b+2) = ST biu(ly),
Nufa—1) = X2 aNu(l; — 1), APub+1) = 772 biA%u(l; — 1),
(1.2)

(1.1)

where A denotes the forward difference operator defined by
Au(t) = u(t + 1) — u(t), A"u(t) = AA"Tu(t)), Zla+1,b4 1]

is the discrete interval given by {a 4+ 1,a+ 2, -+ ,b+ 1} with a and b (a < b)
integers, l; € Z[a+ 1,b+ 1], a;,b; € [0,400) for : = 1,2,--- ,m — 2 are given
constants, A(t),B(t) : Z[a + 1,b + 1] — (—o0,+00), f : Zla + 1,b+ 1] x
[0, 4+00) — [0,400) is continuous.

The study of multipoint BVPs for linear second-order ordinary differential
equations was initiated by I'in and Moiseev [9]. Then Gupta [6] studied three-
point BVPs for nonlinear ordinary differential equations. Since then, the more
general nonlinear multipoint BVPs for ordinary differential equations have
been studied by many authors, for example, see [11,12,15,19]. However, few
results have been seen in literature for fourth-order difference equations with
multi-point boundary condition. So, in this paper, motivated by [1,5,10-12],
we aim to study the existence of positive solutions for BVP (1.2).

By a solution u of BVP (1.2), we mean a real sequence u which is defined
on Zla — 1,b+ 3] and satisfies the difference equation as well as the boundary
conditions in (1.2). A solution {u(t)}?*3 | of (1.2) is called to be positive if
u(t) >0forteZa+1,b+1].

Let o = mingezjq41,p41] A(t), B = minyezjay1,541) B(t). We make the follow-
ing assumptions for convenience:

T T T
H 8sin? ——— a>0 48sin? ———— < 16sin* ———————
(Hy) B < 8sin 2(bfa+2)7a_ ,a+ 48sin 2(bfa+2)< sin 26—at2)
™ T T
H, dsin? — " 4 >0,a+48sin® — " <16sint —
(Hio) B < 4sin 2(b—a+2)’a_ , + 48 sin 5012 < 16sin 50—t

The proofs of the main theorems of this paper are based on the fixed point
index theory. Let E be a real Bananch space with cone P. Assume () is a
bounded open subset of E with boundary 02, and PN = (. Let A: PNQ —
P be a completely continuous operator. If Az # x for all z € PN, then the
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fixed point index i(A, P N Q, P) has definition. One important fact is that if
i(A,PNQ,P) # 0, then A has a fixed point in P N Q. The following three

well-known lemmas in [7] are needed in our argument.

Lemma 1.1. Let A: P — P be a completely continuous operator. If pAx # z
for all x € PN OQ, 0 < p <1, then the fixed point index i(A, P, P) = 1.

Lemma 1.2. Let A : P — P be a completely continuous operator. If
infyeop, ||Az|| > 0 and pAzx # x for x € OP,, p > 1, then the fixed point
index (A, P, P) = 0.

Lemma 1.3. Let A : P — P be a completely continuous operator, xy €
P\{0}. If x — Az # pxo for x € PN O, p > 0, then the fixed point index
i(A,PNQ,P)=0.

2. PRELIMINARIES

In order to obtain our main results, we present some preliminary results in
this section. Let

X={u:Zla+1,b+1] =R}, Xs ={uec X :u(t)>0, t€Zla+1,b+1]}.

It is well known that X is a Banach space equipped with the norm

o= Y.
fulle = _jmx_ {fu(o)]}
Let
m—2 m—2
E = {u :Za,b+2] - R, u(a) = Z a;ju(l;), u(b+2) = Z biu(li)} ,
i=1 i=1
E,={uecFE:u(t)>0, teZab+ 2]}
For any u € F, set
oo = Dy,
fulloe = _jmae ()]}
= Au(t = 1)+ Au@®)[HA >0
Julls =y {14%u(e = ] + Nu(®} 1 > 0
and
lull e = max{||ulloo, [[A%u]l},
where
[A%ulle =  max  |[APu(t —1)].
t€Z[a+1,b+1]

It is easy to verity that || - |0, || []A(A > 0) and || - ||z are all norms on E.
Obviously, (E, || - [lec), (E,]l-]la)(A > 0) and (E, || - ||g) are all Banach spaces.
From the following remark 2.1, we know that ||ullo = ||A%u/|s is also a norm

on F.
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Lemma 2.1. Let (H;) holds. Then there exist unique ¢;, 1;, i = 1,2 satisfy-
ing
—A20i(t— 1) + Xigi(t) =0, te€Zla+1,b+1],
pia) =0, ¢i(b+2)=1;
(

= A2 (t = 1) + Nai(t) = teZia+1,b+1],
Yi(a) =1, i(b+2)= 0

respectively. And on Z[a,b+2], ¢; >0, ¥ >0, i = 1,2, where A1, Ay are the
roots of the polynomial P(\) = A2 + S\ — a, namely,

\ o BB rda B VAt da
1= 5 , A= 5 .
Proof. We can obtain by calculation that ¢;, 1;, i = 1,2 are explicitly given
by

, sin(t — a)f sin(b+2 —t)0
i(t) = — 3 T = . 3
(D) ¢ilt) sin(b+2 —a)f v sin(b+2 —a)f
where 6 := arctan _/)\\?S_);H) € (0, b+72r_a), when —4sin? m <\ <0
t— b+2—1t
(i) 9ilt) = s i(t) = 7 when \; = 0

b+2— b+2—a
b+2—t _ o t—b—2
.. e i -7
(”Z) 4‘01( ) ’7b+2 a_ ya- b—2" wl( ) ’Yb+2 a_ oy
where v := AA2EVAQHD) W, when \; > 0.
It is obviously that on Z[a, b+2], v1, @2, 1, Y2 > 0and Ag;(a), Apa(a) >
0. The proof is complete. O

a—b—2"

Let Gi(t,s)(i = 1,2) be the Green’s function of the linear boundary value
problem

N2t — 1)+ Nu(t) =0, teZla+1,b+1],
u(a) = u(b+2) =0.
Then G;(t,s)(i = 1,2) can be expressed by

1 {gpi(t)wi(s), a<t<s<b+2,

Gill9) = Roi(@ \@ilo)lt). a<s<t<b2

(2.1)

Lemma 2.2. G;(t,s), i, ¥;i(i =1,2) have the following properties:
(i) Gi(t,s) > 0,Vt,s € Zla+ 1,b+ 1];
(ii) 51‘Gi(t, t)Gi(S, s) < Gi(t, S) < CZ‘GZ‘(S, S), Vt,s € Z[CL +1,b+ 1];
(iii) (5iGi(t,t) < gOi(t), ¢z<t) < Cy,Vt, s € Z[CL +1,b+ 1],
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t}>Oand

S

0; = min min _Lvila) , min _Lwila)
a+1<t<s<b+1 i (t)pi(s) " at1<s<t<b+1 ;(t)ihi(s)’

_ pilt
where C; = max{max,+1<i<s<p42 (PZ—((S)), MaXa<s<t<bt1 3,

DN, JANGY
min (pz(a), min pila) > 0.
at1<t<b1 Pi(t) 7 ar1<t<o+1 @i(t)
The proof is simple and is omitted.
For convenience, let

vk: :‘ _Zm_szwk( ) 1—Zm 2bz()0k<lz)
1= e (l) =057 aion(l)

LS S bGl hls) 1= S i) 4y e x
Vi Z:r;_l Zs:a-i-l ain(livs)h(S) _Zm_l az‘Pk( z)

k=12, (2.2)

(2.3)

L =T ) T zi*i L biGr(li, s)h(s)|
B = Gl S ) S sh(s)| F TR X

(2.4)
Lemma 2.3. Let (H;) holds. Assume that
(Ho) Vi #0, k=1,2.
Then for any h € X, the BVP
Zu(t —1) —|—/\ku( )="h(t), teZla+1,b+1],
Lot St o, s2) = St 29)
has a unique solution
b+1
u(t) = Ap(h)r(t) + Bi(h + > Glt,s)h(s), t€Zla,b+2].
s=a+1

Proof. 1t is easy to see that the linear boundary value problem
—A%u(t — 1)+ Mu(t) = h(t), teZla+1,b+1], ula)=ub+2)=0

has a unique solution u(t) = ZZZ}IH Gi(t,s)h(s), t € Z[a,b+ 1]. And notice
that g, ¥y are two linearly independent solutions of the problem

~A?u(t — 1) + Mu(t) = 0.

The proof follows by routine calculations. O
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In the rest of the paper, we make the following assumption:

m—2

(Hak) Vi <0, 1= anh(l) >0, 1- Z bior (I k=1,2.
=1

Lemma 2.4. Let (H;) and (Hsi) hold. Then for any h : Zja + 1,0+ 1] —
[0, +00), the unique solution w of the problem (2.5) satisfies u(t) > 0, t €
Zla,b+2].

Proof. Since Vi, < 0, and G > 0 on Z[a,b + 2] x Z[a,b + 2|, we obtain that
Ag(h) > 0 and Bg(h) > 0. By Lemma 2.3, u(t) > 0, t € Za,b+ 2]. O

Lemma 2.5. Let (Hsy) holds. Then
(i) For any h € X4, Ag(h), Br(h) are two linear functionals and nonde-

creasing in h.
(ii) For amy h € X, |Ay(h)] < Ap(1)[[hlloos |Bi(h)] < Bi(1)[hlloo-

Now notice that
Atu(t —2) + BA%u(t — 1) — au(t) = (AL + Xo)(—A2L + A)u(t)
= (=A2L + A\)(—AL + A2)u(t),
where Lu(t) = u(t — 1). Then we can easily get
Lemma 2.6. Let (H;), (H31) and (Hs2) hold. Then for any h € X, the BVP

{A4u( 2) + BA%u(t — 1) — au(t) = h(t), te€Zla+1,b+1],

u(a) = X5 aul),  u(b+2) = S0 bu(l), (2.6)
Nu(a—1) = N7 2 a;Nu(l — 1), A2ub+1) =7 2 00%u(l; — 1)

has a unique solution {u(t)}?*3 | with

b+1
u(t) = Az(v)2(t) + Ba(v Z Ga(t,s)v(s), t € Zla,b+2] (2.7)
s=a+1
and
m—2 m—2
u(a—1) ZaZA2ul —1) —u(a +1)+22aiu(li),
i=1 i=1

m—2
u(b+3) = Zb,Nuz —1)—u(b+1) +2Zbu
=1 i=1
where G;, A;, Bi(i = ,2) are defined as in (2.1),(2.3),(2.4) and

b+1

v(t) = A1(h)Y1(t) + Bi(h)pi(t) + Z Gi(t,s)h(s), t € Z[a,b+2]. (2.8)
s=a+1
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Moreover, if h € X, then u(t) >0, t € Z[a, b+ 2].

Denote
1 (t—a)b+2—35), a<t<s<b+2,
Golt, 5) = b+2—a{( —ab+2-1), a<s<t<bt2, 29
27 b+2- 2
Vo= | TEuL Vg T2 bepince (2.10)
1_21 1 azb+2 a _Z =1 a1b+2 a
Doy =
1 m—2 b+1 m—2 I —a m—2 l _a m—2 b+1
1 m—2 b+1 m—2 b—|—2 m—2 b—|—2—l m—2
+%<lealcozl,52bb+2_ DI Z ZbGolz,s)
i=1 s=a+1 i=1 i=1 i=1 s=a+1
b+1

+ max Z Go(t, s).

teZla+1b+1] L)
(2.11)

A simple computation shows that Dy > 1. By Lemma 2.3 with A\ = 0 and
h(t) = —A%u(t — 1), we have the following.

Lemma 2.7. Let (H;) holds. Assume that
(Hi) Vo # 0.
Then for any v € F,

b+2—t t—a
t) = Ag(—=A%u)——— + Bo(=A%u)—————
u(t) of u)b+2—a+ o u)b—|—2—a
b+1
+ Y Golt,s)(—A%u(s—1)), t€Za,b+2], (2.12)
s=a+1
where
b+1 ) ) A2 _ _ m—2 li—a
A( AQ ) Z Zg+i1+1 b’LGO(ZﬂS)( AZ’U’(S 1)) 1 %:2 blll,+_2aa ;
VO Z Zs a+1 aiGO(li’s)(_A U(S—l)) _Zizl a1b+2—a
Doty = L[ SR SRS hGull o)1)
Vo [1- Y7 add e S S0 aiGo(li, s) (= A%u(s — 1)
Hence,

[ulloc < Dol|A%ulco, Vu € E. (2.13)
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Remark 2.1. Let (Hy) holds, then it follows from (2.13) that ||ullo = ||A%ul0

is a norm on E. Moreover, for given A > 0, the norm || - ||x is equivalent to
the norm || - || g, that is,
(L+ N lullx < llullz < Dollullx, Vu € E. (2.14)

In fact, Vu € E, t € Z[a+ 1,b+ 1],
|APu(t = 1)] + Au(t)] < 1A%u]co + Allulloo < (1+A)|ullz-

Thus,
[ullx < (L4 A)|ule.
On the other hand, Vu € E, t € Z[a+ 1,b+ 1],

|A2u(t — 1) < |A%u(t = 1)+ Mu(®)] < [lullx,
and 50 [|A%u|s < |lullx. By (2.13), we have
lulloo < DollA%u]loe < Dollullx.
Hence, ||ul|g < Dog||u|[x. Then || - || is equivalent to the norm || - || .
For any h € X, the lincar BVP (2.6) has a unique solution {u}’*3 . Let

(Th)(t) = u(t), t € Z[a,b+ 2]. From Lemma 2.6, the operator T can be
expressed by

b+1
(Th)(t) = Aa(v)pa(t) + Ba(v)pa(t)+ Z Ga(t,s)v(s), t € Z[a,b+2], (2.15)
s=a+1
where v is defined by (2.8). And Th € E4 for h € X.
For k =1,2, let
Ey = t F = t 2.16
b tez[glfl),cb-&-l] #), B tez[glfl},cb-l—l} rlt); (2.16)
b+1

My, = t 2.1
F tez[Iglfl}fbﬂ} S:Za;rl Gt ), (2.17)
Dy, = Ap(1)Ex + By (1) Fy, + Mj,. (2.18)

Lemma 2.8. Assume that (Hy), (Hsy1), (Hs2) and (Hy) hold, then T': (X, || -
lloo) = (E, | - |la,) is linear completely continuous, and ||T'|| < Ds.

Proof. Tt follows from (2.15) that 7" maps X into F and is linear. Since F is
finite dimensional, we only need to prove that T : (X, | - |loc) = (£, - ||A,) is
continuous. For any {h(t)}i’;llﬂ € X, let

{u®}Ll = {(Th) &) }12,
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m—2 m—2
ula—1) = a;iNu(l; — 1) —u(a+1) +2 Z a;u(l;),
=1 =1
m—2 m—2
u(b+3) =Y bAul; —1) —ub+1) +2 ) bu(l).
i=1 i=1
Then
m—2
Z aiu(l;), ub+2) =Y bul),
=1
w(a — 1) ZazAul—l u(b+ 1) ZbAQ (I — 1).

Let v(t) = —A2u(t — 1) + Xou(t), t € Zla,b+ 2]. Then v( ) =S 2aw(l),
v(b+2) = X" % bv(l;). Hence, {v(t)}212 satisfies the following BVP:
— A%t —1) + Xv(t) = h(t), t€Zla+1,b+1],
o(a) = 3057 (), v(b+2) = T biv(l).
From Lemma 2.3, we obtain

b+1
v(t) = Ay(h)r(t) + By(h + ) Gi(t,s)h(s), t € Zla,b+2].
s=a+1
That is,
—D%u(t — 1) + du(t) = Ay (h)er(t) + Bi(h) e (t)
b+1
+ Y Git,s)h(s), t€Zla,b+2].  (2.19)
s=a+1

Similarly, we also have

—A2u(t — 1) + Mu(t) = Az (h)a(t) + Bo(h)pa(t)

b+1
+ ) Galt,9)h(s), t € Zla,b+2].  (2.20)
s=a+1
By (2.19) and (2.15), we have
b+1
A?u(t — 1) = Mu(t) — Ay (h)Y1(t) — By(h)ei(t) — Z G1(t, s)h(s)
s=a+1

bl
=X <A2(U)¢2(t) + Ba(v)pa(t) + Z Galt, S)U(5)>

s=a+1
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—A1(h)Yn(t) — bii G1(t,s)h(s), t € Z]a,b+ 2].
It follows from (2.16)-(2.18) and Lemma 2.; tcllat:t
A1 (R)Y1(t) + Bi(h)ea(t) + % G1(t, s)h(s)
< (A(D) By + Bi(1)F1 + J\S/Z;H;LHM = D1||h||cos
A2(0)a(t) + Bz (v)pa(t) + bii Ga(t, s)
smati

< (A2(1)E2 + Ba(1)Fs + Ma)|[vloc = D1D2|[h[co-
Thus, we get

|A2u(t —1)| < (|A2| D2 + 1) D1 |hlloo; t € Z[a+1,b+1].
Then, ||A%ulloo < (|A2|D2 + 1)D1||h|ls- By (2.13), we have
IThl|z = llullz = max{|[ulloo, [|5%ullo }

< DollA%ulloo < ([A2|D2 + 1) DAl
which implies that T': (X, || - |lec) = (&, || - ||g) is continuous. Since the norms
|- ||£ and || - ||z, are equivalent from Remark 2.1, T": (X, || - [|o0) = (&, || - [|5,)
is also continuous.

Now, we show that ||T|| < Ds. For any h € X4, let u = Th, by Lemma
2.6, u(t) > 0, t € Zla,b+ 2]. It follows from (H;) that Ay > 0 > A\y. From
(2.19) and Lemma 2.5, we obtain that A?u(t — 1) <0, t € Z[a,b + 2]. Thus,
by (2.20), we immediately have

| = AZu(t — D] + [Mu(t)] = —A2u(t — 1) + \ul?)

b+1

= Ag(h)iha(t) + Ba(h)oo(t) + > Galt,s)h(s), t € Zla,b+2].
s=a+1
For any h € X, let h = hy — ho,u; = Thy,us = Ths, where h; and ho are the
positive and negative part of h, respectively. Let u = Th. Then u = u; — us.
From the discuss above, we have uy(t) > 0, A%ug(t—1) > 0, t € Z[a,b+2], k =
1,2. Hence
| — A%ug(t — 1]+ [Mug(t)] = =A%up(t — 1) + Aug(t)
b+1

= Ag(h)¥2(t) + Ba(hi)p2(t) + Y Galt, s)hy(s
s=a+1

=: Hhy, t € Zla,b+ 2], k=1,2.
Then

‘AZUJ(t — 1)‘ + /\ﬂu(t)\ = \A2u1(t — 1) — AQUQ(t — 1)‘ + /\1’U1(t) — UQ(t)|
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< A% (t = 1)) + Mfur (8)] + | A%z (t — 1)] + Aifua(t)]
= Hhy + Hhy = H|h|

< (A2(1)Ez + Ba(1) Fa + Mp)||hlloo = D2l|h|co-
Thus [|Th||x, < D2||h||s, and so ||T'|| < Da. The proof is completed. O

In the rest of the paper, we make the following notations:

t t
f. . =liminf  min I ,x)’ fon, =limsup max ( ,:z:);
208 250t tezlatip+l]  af ot t€Zlatlbtl]
=1 f LN Aea = li .
ioo,f P tezﬁlﬁfwu s Foom alclgigf teZ[gllebﬂ] x
T T
AN =16sin* ——— —48sin? ———— — o 2.21
ey P g Ty (2:21)
K= At) — B(t) — 38]; 2.22
ez A®) —a+ Bt = f (2.22)
b+1
Vi = Ak( + Bk Z Gk S S =1,2; (2.23)
s=a+1
Up= min Gi(t,t), k=1,2. (2.24)
t€Z[a+1,b+1]

3. MAIN RESULTS

Now with the aid of the lemmas in Section 2, we are in position to state
and prove our main results.

Theorem 3.1. Assume that (Hy,),(Hs1),(Hs2) and (Hy) hold, and L =
KDyDy < 1. If one of the following conditions are satisfied

(l)io ()‘* +OO] foon [ )Withle,ﬁzl;

(i) £ € (\'s+o0), Fo € [0.0) with § = Ly = 1,
then, BVP (1.2) has at least one positive solution, where A\, = (1-L)(C1C2V1Va) ™"

C1,C> are given in Lemma 2.2, V1, V5 are defined as in (2.23), A*, K are defined
as in (2.21), and Dy, Dy are defined as in (2.11) and (2.18), respectively.

I

Proof. For any h € X, consider the linear BVP:

Atu(t —2) + B(t)A%u(t — 1) — A(t)u(t) = h(t), t € Z[a +1,b+ 1],
u(a) = Y052 au(ly), u(b +2) = 377 bu(ly),
Nu(a —1) = 2 a; A 2u(l; — 1), Nu(b+1) = 720 A%u(l; — 1),
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It is easy to see that the above BVP is equivalent to the following BVP:

At —2) + BA%u(t — 1) — au(t)

= —(B(t) — B)A%u(t — 1) + (A(t) — a)u(t) + h(t),t € Zla+1,b+ 1],

u(a) = 7% aqu(ly), u(b+2) = 307 bl

Nula—1) = N7 2 ainNu(l; — 1), A2ub+1) = 72 biA%u(l; - 1),

(3.1)

For any v € E, let (Gv)(t) = —(B(t) — B)A%u(t — 1) + (A(t) — )u(t), t €
Z[a + 1,b+ 1]. Obviously, the operator G : E — X is linear. Owing to (2.14),
one has that forv e E, t € Zja+ 1,b+ 1],

(Gu)(t)] < [(B(t) = B) + (A(t) — )] max{[[v]los, [|A%0[lc} < K Dollv]ly,-
Hence, [[(Gv)|lcoc < KDgllv|x,, and so [|G]| < KDy. On the other hand,

{u(t)}o3 | is a solution of (3.1) if and only if u = {u(t)}’X? € F satisfies
u=T(Gu+ h), ie.,
(I = TG)u=Th. (3.2)
It follows from 7' : X — F and G : E — X that [ — T'G maps E into F.
By |IT']| < D2 (see Lemma 2.8), ||G|| < KDg and condition KDyDy < 1, we
obtain that (I —TG)~!, the inverse mapping of I — TG, exists and is bounded.
Let S = (I — TG)~'T. Then (3.2) is equivalent to u = Sh and S can be
expressed by
S=I+TG+---+TG)"+-- )T =T+TGT+---+(TG)"T+---. (3.3)

The complete continuity of 7' together with the continuity of (I — T'G)~!
implies that the operator S : X — FE is completely continuous. For any
h € X4, let w=Th. Then the definition of 7" and Lemma 2.6 yield that u € E
and u(t) >0, t € Z[a,b+ 2]. From (2.19), Lemma 2.5 and A2 < 0, we obtain
that A%u(t — 1) <0, t € Zla,b+ 2]. So we have

(Gu)(t) = —(B(t) — B)A*u(t — 1) + (A(t) — a)u(t) > 0, t € Zla +1,b+ 1].

Hence for any h € X1, (GTh)(t) > 0, t € Z[a+1,b+1], and so (T'G)(Th)(t) >
0, t € Zla,b+ 2]. It follows from mathematical induction that

(TG)"(Th)(t) >0, YVh e X4, t € Z[a,b+2], n=1,2,--- (3.4)
By (3.3) and (3.4), we have
(Sh)(t) = (Th)(t) + (TG)(Th)(t) + - -- + (TG)(Th)(t) + - --
> (Th)(t), Vhe X4, t € Zla,b+ 2]. (3.5)
Then S : X1 — E4. On the other hand, we have that for any h € X,
(Sh)(t) < (Th)(t) + ITGI[(Th)(t) + - -+ [(TG)"[[(Th) () + ---
<(A+L+--4+L"+---)(Th)(t)
=(1-L) " (Th)(t), t€ Zla,b+2]. (3.6)
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Thus,
1Shlloc < (1= L) Thl|oo- (3.7)
Define operators f : X — X, p: F — X, respectively, by
(fu)(t) = f(t,u(t)), Yue X, teZla+1,b+1];

p{u® iz = {u®)}fi, V{u®)}Zl € B.
The continuity of f means that f : X, — X, is continuous. It is easy to
see that {u(t)}2*3 | is a positive solution of BVP (1.2) if and only if u =
{u(t)}22% € E, is a nonzero solution of the operator equation u = Wu, where
W := Sfp. Obviously, W : E, — FE. is completely continuous. We next show

that the operator W has at least fixed point in E,.
Set

P={ueE;:u(t)> oGt t)||u)lc, t € Z[a+ 1,b+ 1]},

where
0 = 0102(1 — L)(C1CyVp) ™1

bl (3.8)
X (AQ(Gl(t,t))—l—Bg(Gl(t,t))+ > GI(S,S)GQ(S,S))

s=a+1
It is easy to see that P is a cone. Now, we show W(P) C P.
For any u € E,, then fpu € X, . By the definition of T, we have
(Ttpu)(t) = Az(w)ia(t) + Ba(w)epa(t)

AR (3.9)
+ Z Ga(t,s)w(s), Yu € P, t € Z[a,b+ 2],
s=a+1
where w(t) = Ai(fpu)ii(t) + Bi(fpu)pi(t) + X35, 4, Git, k) (fpu)(k), t €
Z[a,b+ 2]. By Lemmas 2.2 and 2.5, we have
Az(w)2(t) + Ba(w)epa(t)
< Ca(A2(1) + B2 (1)) |wlloo

b+1
< ClcQ(AQ(l) + BQ(l)) <A1 (fpu) + Bl(fpu) + Z Gl(k, k)(fpu)(k)) ,
k=a+1

b+1 b4+1 b+1
> Ga(t,s)w(s) < CiCy > Ga(s, ) <A1(fpu)+Bl(fpu)—|— > Gl(k,k)(fpu)(k)>.

s=a+1 s=a+1 k=a+1
Then,
b+1
(Tfpu)(t) < C1C5V, <A1(fpu) + B (fpu) + Z Gl(k, k) (fpu)(k’)) , te Z[(l+1, b+1]
k=a+1
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This gives
b+1
A (fpu) + By (fpu) + Y Gi(k, k)(fpu) (k)
k=a+1

> (ClC'QVg)_lﬂTfpuHoo.

Similarly, we also have

(3.10)

b+1
(Tfpu)(t) > (5152G2(t, t) <A2(G1 (t, t)) + BQ(Gl(t, t)) + Z G (8, S)GQ(S, S))
s=a+1

b+1
X (Al(fpu)+Bl(fpu)+ > Gl(s,s)(fpu)(s)>. (3.11)

s=a+1
This together with (3.5), (3.10) and (3.7) gives
(Wu)(t) = (Sfpu)(t) > (Ttpu)(t) > cGa(t,t)||Stpulec, t € Zla + 1,0+ 1].
Hence, W(P) C P. Obviously, T(P) C P.
Let wy = ming41<¢ s<p+1 Gr(t, s). Obviously, wy > 0(k = 1,2), and more-
over
u(t) > owsl|ullos, Yu € P, t € Zja+1,b+ 1]. (3.12)
Suppose that condition (i) holds. By f 01 > A", we can choose € > 0 such
that f,, > A" +¢. Then there exists r > 0 such that f(¢,z) > (A" +¢)z for
z e (0,r], t € Zla+1,b+1]. Let Q. = {u € P : ||ul|oc <r}. For any u € 09,
it follows from (3.12) that
flt,u(t)) > (N +e)u(t) > (N +¢e)owar, t € Zla+1,b+ 1]. (3.13)
For any u € 99,., by (3.5), (3.9) and (3.13), we have

b+1 b+1
Wullw > (Wa)a+1) = (Tpu)a+1) = 3. S Gala+1,5)Gi(s, k) (Epu) (k)
s=a+1 k=a-+1

> (A +e)owiwsr(b —a+1)% > 0.

Therefore,
inf ||[Wullo > 0. (3.14)
u€oN,
Now we shall prove
Wu # pu, Yu € 09, p € (0,1]. (3.15)

Suppose the contrary, then there exist ug € 99, and py € (0,1] such that
Wug = poug. By (3.5), we have

uo(t) > poup(t) = Wug)(t) > (Tfpuo)(t) :=vo(t), t € Zla,b+2]. (3.16)
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Let
m—2 m—2
’Uo(a — 1) = Z CLiAQUo(li — 1) — ’Uo(a + 1) + 2 Z aivo(li),
i=1 i=1

vo(b+3) = ZbA vo(li —1) —wo(b+1 +22bv0
i=1

Then, {vo(t)}?T3 | satisfies BVP (2.6) with {h(t )}i’Jr;H = {fpuo(t )}i’iéﬂ.
That is,

Aot — 2) + BA2vo(t — 1) — awg(t) = f(t,uo(t)),

teZla+1,b+1],

vo(a) = 37157 aivo(L),  vo(b +2) = > bivo(la),

A?vpla—1) =31 -1 2 ai N2 (l; — 1),

N2+ 1) = S 2 b A2wg(1; — 1).

(3.17)

For x,y : Z — Z, a simple computation shows

b+1

> yt)Ala(t—1)

t=a+1
—z(a+ 1)y(a) + z(a)y(a+ 1) +z(b+ 2)y(b+ 1) (3.18)
b+1

—z(b+ Dy +2)+ Y xt)A%y(t—1).

t=a+1

b+1

> yt)Ata(t - 2)

t=a+1
= —y(a)A%z(a) + y(a + 1) A%z(a — 1) — z(a + 1)A%y(a — 1)
+ z(a)A%y(a) + z(b + 2) A%y(b) — z(b+ 1) A2%y(b+ 1)
b+1
+y(b+ D) A%(b+1) —y(b+2)A%((b) + Y a(t)Aty(t —2).
t=a+1

(3.19)

Multiplying the first equation of (3.17) by e(t) := sin z=%;7 and summing
from a+1 to b+ 1, it follows from (3.18), (3.19) and the boundary conditions

n (3.17) that
e(a+1)A*vp(a— 1) +vo(a)[A%e(a) + Be(a+1)] +vo(b+2)[Ae(b) + Be(b+1)]

b+1 b+1

+e(b+1) A% (b+1)+ Y [Ate(t—2)+BA%(t-1)—a = Y fltouolt

t=a+1 t=a+1
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That is,

m—2 m—2
sin - Z+ 5 (; (a; + bi) Ao (l; — 1) + [—4sin® 2(b+a+2) + 4] ; (a; + bi)’l)o(li))

b+1 b+1
XD wolte(t) = Y f(tuo(t))e(t). (3.20)
t=a+1 t=a+1

It follows from Lemma 2.6 that vo(t) > 0, ¢t € Z[a,b + 2]. Similarly to (2.19),
we have

—Az’l}o(t — 1) + /\Qvo(t) = A (fp’u,o)¢1 (t) + B3 (fp’u,o)tpl (t)

b+1

+ Y Git,s)(fpuo)(s), t € Za,b+2].
s=a+1

Bearing in mind that Ay < 0, we obtain that A2vy(t — 1) <0, t € Z[a, b+ 2].
By (3.13), (3.20), (H1) and (3.16), we get

b+1 b+1 b+1 b+1
(V) > woet) < D Fltuo())e) <N D " wo(t)e(t) A Y ug(t)e(t).
t=a+1 t=a+1 t=a+1 t=a+1

Since ug(t) > owsl|uglloc = owar >0, t € Zla + 1,b+ 1], we have

b+1

> ug(t)e(t) > 0.

t=a+1

Then A\*+¢ < A*, which is a contradiction. This proves (3.15). It follows from
(3.14), (3.15) and Lemma 1.2 that

i(W,Q,, P) = 0. (3.21)

From f,; < A, we can choose e = (0, \,) such that f, ; < A —e. Then
there exists Rp > 0 such that f(t,z) < (A« —¢)z for x > Ry, t € Z[a+1,b+1].
Let C' = Supiezat1,p+1], zef0,Ry) f (¢, 7). Obviously,

ft,z) < (M —e)z+C, Y €[0,+00), t € Z[a+1,b+1].

Take R > max{r,e *C}, and let Qr = {u € P : ||ul]|oc < R}. We next show
Wu # pu, Yu € 0Qg, pu > 0. In fact, if there exist ug € 0Q2r and pg > 1 such
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that Wug = pouo, then by (3.7) and (3.10), we obtain

(Wuo)(t)
= (Sfpuo)(t)
< (1= L) TfPuo|

b+1
<(1-L) 01V (Al(fpuo)+B1(fPUO)+ > Gl(k,k)(fpuo)(k)>
k=a+1
<in lloo < 1- = || uoll +i0 t€eZla+1,b+1]
>~ )\* PUD||co > )\* U || oo )\* ) a ) .
Then

1
uo(t) < poup(t) = (Wup)(t) < (1 - ;) l|uoloo + )TC', teZla+1,b+1],

which implies ||ug|loo < (1 — /\5—*) lluo oo + /\%C’. Thus R = ||upl|ee < g, which

contradicts the choice of R. By Lemma 1.1, we have i(W, Qg, P) = 1. Taking
(3.21) into account, we have i(W,Qr \ Q,,P) = 1. Then W has at least
one fixed point in Qg \ ,, which means BVP (1.1) has at least one positive
solution. This completes the proof of (i).

The proof of (ii) is similar and will be omitted here. O

Theorem 3.2. Assume that (Hy),(Hs1), (Hs2) and (Hy) hold, and L =
K DyDs < 1. If one of the following conditions are satisfied

(i) ioo,g € (0, +o0], ;me € [0,400) with £ > 1,7 > 1;

(ii) fo,g € (0,+00], fooy €10,400) with 0 <€ < 1,0 <n <1,
then, BVP (1.2) has at least one positive solution.

Proof. According to the proof of Theorem 3.1, it suffices to prove that the
operator W has at least fixed point in ..
First, suppose that the condition (i) holds. Define the cone P; in E by

P = {u S u(t) > 5152(1 — L)UlUg(C’ng)_lﬂuHoo, te Z[a +1,b+ 1]},

where C1,Ca,01,0d2 are given in Lemma 2.2, Uy, Uy are defined as in (2.24).
By (3.5), (3.11), (3.10) and (3.7), we have, for u € P and t € Z[a + 1,b+ 1],

(Wu)(t) = (Stpu)(t) > (Tpu)(t) > 8102(1 — L)U1Us(C1C2) " | Wt o

Hence, W(P;) C P.
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Let @y = Shy, where by = {1}%1] € X,. Then by (3.5), (3.6), (2.15),
Lemma 2.2 and Lemma 2.5, one has, for ¢ € Z[a, b+ 2],

6162U1U2V1Va < (Th)(t) < ua(t) = (Sha)(t)
< (1= L) " (Th)(t)
< (1 — L)_101(3'2V1V2.

Set
ul(t) = (5152U1U2V1V2
for t € Z[a +1,b+ 1],

ui(a) = 010U U2V1 Vs Zai
i=1
and .
ul(b + 2) = 010U U V1 V5 Z b;.
i=1
Then u; € P \ {0}, and
010U U V1 Vo = ul(t) < (1 — L)_10102V1V2, te Z[a + 1,0+ 1]. (3.22)

By ioof € (0,4o00] with £ > 1, there exist £; > 0 and v; > 0 such that

f(t,z) > vat, teZla+1,b+1], z>e;. (3.23)
Choose €9 such that
€9 > maX{810102[5152(1 — L)UlUQ]_l,
-5 261 _1
v (1= L) 235,100 Un) 1 (ViVa) €T},

and let Q., = {u € P : ||Ju||loc < e2}. If there exists uy € 99, such that
ug — Wug = 0, then the conclusion holds, so suppose that u — Wu # 0,Vu €
0Q¢,. We claim that

u— Wu # suy, Yu € 08,, s> 0. (3.24)

Suppose the contrary, then there exist ugs € 9€2., and so > 0 such that ug —
Wug = soup. By the assumption that u — Wu # 0, Vu € 0€).,, we obtain that
so > 0.

Notice that

ug(t) = Wua(t) + soui(t) > soui(t), t € Zla+1,b+ 1].

Let s* = sup{s : ua(t) > sui(t), t € Zja+1,b+1]}. Then sy < s* < 400 and
ug(t) > s*ui(t), t € Zla+ 1,b+ 1]. By us € 9Q, and (3.22), we have, for
teZia+1,b+1],

us(t) > 6109(1 — LYU U (C1Cs) ey
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1 1

> O1Cow, (1 — L)1 (616,01 Uz) €7 (V) &1

1

— 0 T (1 L) (610U Ve) ST CLC WV,

1

=z V;g(5152U1U2‘/1V2)_éu1(t).

From the definition of s*, it follows that

1

s> Vl_gj(5152U1U2V1V2)_5%- (3.25)
Taking into account that
ug(t) > 8102(1 — L)ULU(C1Co) " tey > €1, Vt € Zla+ 1,b+ 1],
we have, by (3.5), (3.11), (3.23) and (3.25), for t € Z[a + 1,b + 1],

u9 (t)
= (WUQ)(t) + Soul(t)

b+1
> 016,U1Us Vs X (Al(ylug) + Bi(nu) + > Gl(s,s)(ulug)(s))
s=a+1

+ souy(t)

b+1
> 11010, U1UsVy X <A1<s*u§>+Bl<s*u§>+ > G1<s,s><s*u§><s>)
s=a-+1

+ spu1 (t)
= 11010,U1U5 Vi Vo (5" 616201 Ua Vi Va)* + soua (1)
= [11(5* 010201 U Vi Vo) + so]us (t)
> (8" + so)ui(t),
which contradicts the definition of s*, and so (3.24) holds. It follows from
Lemma 1.3 that i(W,Q.,, P1) = 0.
On the other hand, by f,, € [0,+00) with n > 1, there exist €3 > 0 and

v > 0 such that 0 < f(¢t,x2) < vz, t € Z[a+ 1,b+ 1], 0 < x < g3. Choose
&4 such that

0 < g4 < min {52,53, [a(1 — L)C’l(JQVﬂ/Q]’ﬁ} ,

and let Q., = {u € P : ||ul]|sc < e4}. We next show Wu # su, Yu € 09Q,,, s >
1. In fact, if there exist ug € 9€2, and s; > 1 such that Wus = sjus, then by
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(3.7) and (3.10), we obtain that for t € Z[a + 1,b+ 1],
(Wus)(t) = (Stpus)(t)
< (1 - L) | Tfpus|l
b+1
<wa(l— L)' C1CaVh x| Av(uf) + Bi(u) + Y Gi(s,s)(uf)(s)
s=a+1

< (1 — L) 7rC1CoVy Vel
Then, g4 < s164 = $1/|uslloo = [Wuslloo < v2(1 — L)"1C1Co V1 Vae]. That is,

__1

g4 > [1o(1 — L)C1CoVA V] n—1,

which contradicts the choice of €4. By Lemma 1.1, we have i(W,Q,,, P;) = 1.
Then we have i(W,Qg, \ Q¢,, P1) = —1. Hence W has at least one fixed point
in Q, \ Q,, which means BVP (1.2) has at least positive solution. This
completes the proof of (i).

The proof of (ii) is similar and will be omitted here. O
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