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Abstract. In this paper, we prove Hadamard inequalities for k-fractional Riemann-Liouville
integrals and Hadamard inequalities for fractional Riemann-Liouville integrals are deduced.
Also we extend these results on two coordinates and Hadamard inequalities for fractional

Riemann-Liouville integrals on two coordinates are deduced.

1. INTRODUCTION

Study of integration or differentiation of fractional order is known as frac-
tional calculus. Its history is as old as the history of calculus. In 1695, Leibniz
discussed with L’ Hospital the differentiation of products functions of order %
It is considered as first discussion of fractional calculus. A lot of work has been
published by mathematicians over the years. For example Liouville, Riemann,
and Weyl made their major contributions to prospers this theory of fractional
calculus. This subject continued with contributions of Fourier, Abel, Lacroix,
Leibniz, Grunwald and Letnikov (see, [8, 10, 11] and references there in).
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Fractional integral inequalities are useful in establishing the uniqueness of
solutions for certain fractional partial differential equations. They also pro-
vide upper as well as lower bounds for solutions of the fractional boundary
value problems. These considerations have led various researchers in the field
of integral inequalities to explore certain extensions and generalizations by
involving fractional calculus operators (see, [1, 8, 10, 13, 18]).

Let f € Li[a,b]. Then Riemann-Liouville fractional integrals of order a > 0
with a > 0 are defined as follows:

o, f(z) = F(la) /x (@ — ) f(B)dt, =>a (1.1)
and . ,
o f(z) = F(a)/ (t—2)* f(O)dt, = <b. (1.2)

For further details one may see [7, 10, 13].

In [9], there is given definition of k-fractional Riemann-Liouville integrals
as follows:

Let f € Li[a,b]. Then k-fractional integrals of order o,k > 0 with a > 0
are defined as

Ig‘ff(x) = kl“klm) /ax (x =) f(@)dt, x>a (1.3)
and
a,k 1 b a_q
A1) = gy [ -0 0 <, (1.4)

where I'y (o) is the k-Gamma function defined as

0 tk
Ti(a) = /0 t* ™ F dt.
One can note that
Lip(a+ k) = ol ()
and
Il f(o) = I f(x) = f(x).
For k =1, k-fractional integrals give Riemann-Liouville integrals.

In [17], Sarikaya et al. proved following Hadamard and Hadamard-type
inequalities for Riemann-Liouville fractional integrals:

Theorem 1.1. Let f : [a,b] — R be a positive function with 0 < a < b and
f € Li[a,b]. If f is a convex function on [a,b], then the following inequalities
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for fractional integrals hold:

F(450) < g s+ iy ) < LD )

with a > 0.

Theorem 1.2. Let f : [a,b] — R be a differential mapping on (a,b) with
a < b. If |f'| is convex on [a,b], then the following inequality for fractional
integral holds:

2 T 3b—a)p (12, f(b) + I f(a)]

b—a (1 1)[\f’(a)|+\f’(b)u'

< = _
~ 2(a+1) 20

‘f(a) + f(b) I'(a)
(1.6)

The rest of this paper is organised in the following manner. In Section 2,
we give Hadamard and Hadamard-type inequalities for k-fractional integrals
and show that inequalities (1.5) and (1.6) are their special cases. In Section
3, we extend results of Section 1 in two coordinates. Also we deduce some
results given in [16].

2. MAIN RESULTS

Theorem 2.1. Let f : [a,b] — R be a positive function with 0 < a <b. If f
is a convex function on [a,b], then the following inequalities for k-fractional
integrals hold:

a+b p(a+k) [rak ak fla) + f(b)
F(557) < it by + iptpa] < LOZL0 )
with o, k > 0.
Proof. By the convexity of f we have,
f (x ; y) < f(@) ; 1) for all z,y € [a,b)]. (2.2)

Let x =ta+ (1 —t)b,y = (1 —t)a+tb for t € [0,1]. Then z,y € [a,b] and (2.2)
gives

2f <“ ; b) < flta+ (1= 0)b) + £((1 = ba + tb). (2.3)
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Multiplying both sides of above inequality with t% ! and integrating over
[0,1], we have

2%k b L,
—f (a+ )/ thtdt
(8] 2 0

1 1
a1 _ a1 _
g/o te~ fta+ (1 t)b)dt+/0 tk f((1—t)a+tb)dt

It follows

a+b Cr(a+k) ok akpy
F(57) = g g [t i) (2.4

On the other hand convexity of f gives

flta+ (1 —t)b) + f((1 —t)a + tb)
< tf(a) + (1= ) f(0) + (L — ) f(a) + L (b).

Multiplying both sides of above inequality with t%_l, and integrating over
[0, 1] leads us to

1 1
/t%—lf(m+(1—t)b)dt+/ FELR((1 = B+ th)dt

0 0

1
< U@+ 7] [ e
It follows
Fk(a + k?)

fla) + £(b)
2(b—a)* '

e po) + 1t ] < B2 (2.5)

Combining inequality (2.4) and inequality (2.5), we get inequality (2.1) . O

Remark 2.2. If we take k = 1, Theorem 2.1 gives inequality (1.5) of Theorem
1.1 and putting @ = 1 along with & = 1 leads us to classical Hadamard
inequality.

For the next result we need the following lemma.

Lemma 2.3. Let f : [a,b] — R be a differentiable mapping on (a,b) with

a<b Iff e L[a,b], then the following equality for k-fractional integral
holds:
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fla)+ f(b) Trla+k)r,a, a
2 C2(b—a)t [Iaff(b) * Ib—kf(a)]
—a 1 a a ’
= b 5 /0 (L—=t)r —tr)f (ta+ (1 —t)b)dt. (2.6)

Proof. One can note that

—a 1 « « ’
b 5 /0 (1—=t)F —t5)f (ta+ (1 — t)b)dt

_ b;a [/01(1 — )% f (ta + (1 — )b)dt — /It(’zf'(taﬂL (1—t)b)dt |,

0

where by simple calculation one can get

—a 1 a
b2 /O(I—t)kf(ta+(1—t)b)dt

_f) o [t(z—a\FT f(a)
_b—a_k(b—a)/a<b—a> b=
_ f(b) Fk(a+k) a,

Tb—a (hb—a)it! v f @)

and
b - 1 o /
- 2(1/0 t% f (ta + (1 — t)b)dt
_f) o P bea\ET ()
“b—a k(b—a)/a <b—a) b—a”
- f(a) Fk (CV + k) a,k
Tb—a  (h— OL)%HI“Jr J(®).
Hence (2.6) can be established. O

Using above lemma we give following k-fractional Hadamard-type inequal-
ity.
Theorem 2.4. Let f : [a,b] — R be a differentiable mapping on (a,b) with

a < b. If |f'| is convex on [a,b], then the following inequality for k-fractional
integral holds:
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‘f(a)+f(b) ~ Tyla+k) [ ,
2 2(b—a)*

b—a 1 / /
< S (12) (1@ + 17 ®)]

with a, k > 0.

Proof. From Lemma 2.3 and the convexity of |f’|, we have

MO0 Tt ) o)
| - et [ )+ 17w

—a/ —nF k||

b—a

5 /0 (L= t)5 —tx|[tlf (@) + (1 = )£ (D))t

ta—i—(l—t)b)’dt

-5 [/;(“ —0F — )t |£(@)] + 1= 1S B)
1
*[ 1= =D [f @]+ (1~ t)lf’(b)\]dt] .

One can note that
1

/ (1= 0)F — E][t1f(0)] + (1 — )| (b))dt

\/tltkdt /tk“dt]
0

+1f (b [ (1—t)% (1t)tkdt]
. 1 7(2) T+l , 1 7(%)%—1—1
= |f'(a)] CES i + £ ()] s

By similar evaluation one can have
1
[ [ - a-0t]Er@is - ol o)
2

1 >%+1

1
HIFe) (% +D(F +2) %+1

Bl
+
[\
R ol
+

= 1f'(a)|

(2.7)
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Therefore (2.8) implies

LV 10 T8 [y ot

2(b—a)®
b—a 1 (35! 1 G
=73 [’f,(a)‘ cinery  err | PO
k k k k k
1 1 (3) !
+ ! _ N2 + / b _ N2
From which after a little computation one can have (2.7). O

If we take k = 1 in Theorem 2.4, we get inequality (1.6) of Theorem 1.2,
and if we take o = 1 along with £ = 1 in Theorem 2.4 , then inequality (2.7)
gives the following result given in [3].

Corollary 2.5. Consider a differentiable function f : I — R on [ with a,b € I
and a < b. If |f'| is convex on [a,b], then the following inequality holds:

flap+fo) 1 [ (b—a)
_b—a/a f(x)dx

2 = 8a (I @]+ £ (®)]) - (2.9)

3. HADAMARD-TYPE INEQUALITIES FOR COORDINATED CONVEX FUNCTIONS
VIA k-FRACTIONAL INTEGRALS

In this section we use coordinate convex functions to give k-fractional Hadamard
inequalites on two coordinates. First we give preliminaries for this section.

Definition 3.1. ([5]) Let a,b,¢,d € Rwitha < b, ¢c < dand A = [a,b]x[c,d] C
R2. A mapping f : A — R is said to be convex on A if the following inequality
holds:

fltz+ (1 =)z, ty+ (1= tw) < tf(z,y) + (1 - 1) f(2,w),
for all (z,y),(z,w) € A and t € [0, 1].
Definition 3.2. ([5]) Let a,b,¢,d € Rwitha < b, ¢ < dand A = [a, b]x][c,d] C

R?. A function f : A — Ris said to be coordinated convex on A if the following
inequality holds:

flz+ (1 —t)y,su+ (1 —s)w)
<tsf(au) +s(1=1)f(y,u) + (1 =) f(z,w) + (1 =) (1 =) f(y, w), (3.1)
for all (z,y), (u,w) € A and t,s € [0,1].
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In [16], Riemann-Liouville integrals on two coordinates are defined as fol-
lows:
Definition 3.3. Let a, b, c,d € [0,00) witha < b, ¢ < d and A = [a,b] x[c,d] C
R2. Consider f € L1(A), then the Riemann-Liouville integrals I af s Ig‘f g
1P Ia_’ﬂd_ of order «, 8 > 0 are defined as:

b—,c+
Igchrf(x Y) / / — )7L f(t, s)dsdt,
a+d f(z,y) / / ) y)ﬁ_lf(t,s)dsdt,
L fa,y) / / — )P (¢, 5)dsdt

and

R Y A & RO DU
F(a)r(g)/x/y(t x)* (s — )" (¢, s)dsdt,

respectively, where I' is the Gamma function defined already in Section 1.
Also,

I o ) = 100 flay) = 10 fey) = 10y f(ay) = f(z,).

I ’ﬂ _fl=z,y) =

There in [16] also defined:

o c+d) 1 v a1 c+d
ot (o 50) =g [ e (55

We define Riemann-Liouville k-fractional integrals on two coordinates as:

Definition 3.4. Let a,b,¢,d € [0,00) witha < b, ¢ < dand A = [a b] x|, d]

R2. Consider f € Li(A), then the k-fractional integrals ;I +C+’kla+d ,
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a?ﬁ
ka—,c—i—’ k

R P (0)0n(B) Fk // (- )%y — s)ELf(t, 8)dsdt,

oSy = () 0n(6) sz //:r—t s — ) ELf (2, 8)dsdt,

I’B Sy = (T2 (3) Fk // (t—z)E —8)%_1f(t,s)dsdt

" B A of order « ﬂ k > 0 are defined as following

and
a B_
) = o [ / E (s — )£ (1 ),

respectively, where I'y is the k-Gamma function defined already in Section 1.
Also,

0 ) =1 100, flay) =1 B0 fay) =1 10 f(a,y) = f(z,y).

Also we define:

In the following we give Hadamard inequality for k-fractional integrals in
two coordinates.

Theorem 3.5. Let a,b,c,d € [0,00) witha < b, c < d and A = [a,b] X [c,d] C
R2. Let f : A — R be coordinated convex on A. Then the following inequalities
for k-fractional integrals hold:
f <a+b c+d> < Tp(a+ K)k(8 + k)
272 )7 4b-a)id-o)f
I fa,d) 44 I fa,0)]

f(a, C) + f(a7 d) 1_ f(bv c) + f(b’ d) . (3.2)

[kjg#ﬁ,c—i-f(b d) +k Ia”B f(ba C)

<
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Proof. From inequality (3.1) with x = tja + (1 — t1)b, y = (1 — t1)a + t1b,
u=sic+ (1 —s1)d, w=(1—-s1)c+s1d, t =s =3, we get,
a+b c+d
()
1
— [f(tla + (1 — tl)b si1c+ (1 — 81) ) + f(tla + (1 — tl)b, (1 — 31)0 + Sld)

+f((17t1)a+t1b, 816+(1*51)d)+f((1*t1)a+t1b, (1*81)C+81d)] (33)

o

8
By

Multiplying both sides of inequality (3.3) with t§ s/
resulting inequality over [0, 1] x [0, 1], we get

k2 (a—i—b c—i—d)
AT
<[

/ / l’oﬁt 1 1Z tla + (l — tl)b, (1 — 81)0 + Sld)dsldtl

and integrating the

"‘?r\s;

B_
lk tla + (1 — tl)b s1C+ (1 — Sl)d)dsldtl

/ / 1105 ! E (1 —t1)a + t1b, syc + (1 — s1)d)ds1dty

/ / tl SIE 1 — tl)a + t10, (1 — 81)0 + Sld)dsldtl .

Using the change of variables we have

4k:2f<a+b c—i—d)

3 2 2
< ﬁ[/ / (b= )t (d— )P f(a, y)dyde

(b—a)r(d—c)"

// b—ajz L —c)%_lf(a:,y)dydac

/ / (- @)t "1 (d — 9)F 1 f(z, y)dyde

+/a / (z—a)F(y — )F " f(,y)dyd] .

From which one can have first inequality of (3.2).
On the other hand from (3.1) for x = a, y = b, u = ¢, w = d we have

f(ta+ (1 —t)b,sc+ (1 — s)d)
<tsf(a,c)+s(1—=1t)f(b,c)+t(1—3s)f(a,d)+ (1 —1t)(1—s)f(b,d),
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flta+ (1 —1t)b, (1 — s)c+ sd)
<t(l—s)f(a,c)+ (1 —t)(1—9)f(bc)+tsf(a,d) + s(1—1t)f(b,d),

f((L—=t)a+tb,sc+ (1 — s)d)
<s(I=t)f(a,c)+tsf(bye)+ (1 —t)(1—s)f(a,d) +t(1—s)f(b,d),

f((1—=t)a+tb, (1 —s)c+ sd)
<1-=t)1-s)f(a,c)+t(1—s)f(bc)+ (1 —t)sf(a,d) + tsf(b,d).
Adding the above four inequalities we get,
flta+ (1 =t)b,sc+ (1 —s)d) + f(ta+ (1 —t)b,(1 — s)c+ sd)
+ (1 = t)a+tb,sc+ (1 —s)d) + f((1 —t)a+tb, (1 — s)c + sd)
< fla,c)+ f(b,c) + f(a,d) + f(b,d). (3.4)

Multiplying both sides of inequality (3.4) with 151571 and integrating the
resulting inequality over [0 1] x [0, 1], we get

/ / tLsk T f(ta + (1 — )b, sc + (1 — s)d)dsdt

//f
s

/ / tx L sk (1 = t)a+ th, (1 — s)c + sd)dsdt

w\p
m

sk f(ta+ (1 — )b, (1 — 5)c + sd)dsdt

1R F((1 = t)a + th, sc + (1 — s)d)dsdt

:r\p

/ / 18 f(aye) + F(bye) + fla,d) + F(b, d)|dsdt.
Using change of variables we have,
kQFk(gO‘)Fk(B) [kfa+ et f(b,d) +i I a_f(b;c)
(b—a)i(d—o)f
+k I(;X_”C_;_f(av d) +x I[?_77d_f(aa c)] (3.5)

2

< C’jﬂf(a,@ + Flard) + F(b.¢) + (b, d).

From which one can have second inequality of (3.2). O
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Remark 3.6. In Theorem 3.5, if we put £ = 1, then we get [16, Theorem
3]. If we put @ = 8 = 1 along with £ = 1 in Theorem 3.5, we get Hadamard
inequality in two coordinates.

Theorem 3.7. Let a,b,c,d € [0,00) witha < b, ¢ < d and A = [a,b] X [¢,d] C
R2. Let f : A — R be coordinated convex on A. Then the following inequalities
for k-fractional integrals hold:

a+b c+d
()

Fpla+Fk) [ ak c+d ak c+d
e GGy A O]

r?(5+)k)[ f<a~|—b ) Iﬁyf< ;rb’cﬂ

Pk(a + k) (B+ k) [
T 4(b—a) x

Iajrﬂc+ (bv d) +k I(?deff((% C)

E(d—c)F
+kggﬂ+fuud)+kntd,fﬁucﬂ
T(a + k o o o «

< Zf_)) [Ia FFb, o)+ 15 (b, d) + I fa,0) + I f(a, d)}

T'y(B+ K
RCED
8(d — c)
< fla, o)+ fla, d) + f(b,c) + f(b,d)
J— 4 .

Proof. Since f : A — R is coordinated convex, so the mapping g, : [¢c,d] — R,

92(y) = f(z,y), is convex on [c,d] for all z € [a,b]. By using inequality (2.1),

we can write

0" <c+ d) Ly(B+k)

= | f ) + 2 (b, d) + 120 f(a,0) + 170 (0,0

(3.6)

[Icﬁ-i-k gz(d) + Ig’_kgm(c)] < M

2 )7 2d—o)f 2 ’

which implies

f (x, c 42— d)
< %(dﬁ_)ﬁ { / " ) gy + / "y - 0f fay)dy

< fnd + fed) 5
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Multiplying both sides of inequality (3.7) with % and integrating the

resulted inequality over [a,b], we get

kwo_écw(x/ab(b—x)?‘lf (x C;d> do
k2(d — c) —a%[// — @) E N d — y)F T (@ y)dyde
// (b—a)* - >l’zlf(96,y)dydx]

4

b
< —— b— )kt x,cdm+/ b— )t ! z,d)dz|. (3.8
di [0t o [0t ] 6
Multiplying both sides of inequality (3.7) with % and integrating the

resulted inequality over [a,b], we get,

b
o _ye-l c+d
Qk(ba)a/a(x o)* f( 2 >dw
< 2 : [/ / v —a)F 7 (d —y)F N f(a,y)dyde
_a k

// x—a) —c)g_lf(w,y)dydx]

< W [/ (@ — a)f 1f(x,c)dx+/ab($—a)%1f(a;,d)dx (3.9)

Similarly for the mapping g, : [a,b] = R, g,(z) = f(z,y), we get

2l<;(dﬁ—c)§/cd( )—1f<a+b >dy
= b—a)t [/ / — ) F N (d = y) ¥ f(a,y)dyda

k2
/ / r—a)il(d—y)f 1f<x,y>dyd4

d
M[/ (d—y)* 1f(a,y)dy+/c(d_y)§31f(b,y)dy (3.10)

A
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and
2k(dﬁ—c)§ /cd( — o)kl <“+b >dy
<4]<;2 Y [/ / —z)E Y —c)% Lf(x, y)dyda
// T —a) —c)ilf(x,y)dyda:}
<

U—T c%_l a I —c% 1
4k(d_c)§ [/c (v =)= S ’y)dy+/c(@/ ) f(b,y)dy]. (3.11)

Adding (3.8), (3.9), (3.10) and (3.11) we get second and third inequality of
3.6.

Now from the first inequality of (2.1) we can write
a+b c+d a /b a_q < c+d)
, < - b—x)* x, dx
(21 g -
b
a d
—i—/(x—a)klf <a:,cg )dw}

1(55) < g [t (55 )
+/cd( C)‘1f<a+b >dy]-

Adding above two inequalities we get first inequality of 3.6. Now for last
inequality of (3.6) we proceed as follows:

Using the second inequality in (2.1) we can write,

and

(07

m [/ab(b —2)%  f (2, c)de + /ab(x —a)s Vi (x, c)d:n}

Sf(a,C)-QFf(b,C)7

(07

2h(b— )t [ /ab“’— 0 o+ | - a)i“lf(x,d)dx]

< f((l?d);f(bad)’
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B d PR B d _ 32 ]
P [a-ntranars [ 6=t
< f(a,C)v;f(md)

and
B [dd— 1 E (b, y)d d—f‘lbd}
oz L e [ of
< 0+ S0
Finally adding the above four inequalities we get,
M [Ig“f Fb,) + IEF£(b, d) + I% f(a, ) + 12 f(a, d)}
8(b—a)*
SR CAL) 2 f (s d) + 12 F0.d) + 1 f (0, 0) + 170 £ 0,0)|
8(d—c)*
_ H@e) + f(,d) + f(bo) + (b d)

J— 4 .
0

Remark 3.8. If we put £ = 1 in Theorem 3.7, we get [16, Theorem 4| and
if we take @« = g = 1 along with k¥ = 1 in Theorem 3.7 we get Hadamard
inequality in two coordinates.
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