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Abstract. We provide new semi-local convergence results for general iterative methods in
order to approximate a solution of a nonlinear operator equation. Moreover, applications are
suggested in many areas including k-multivariate fractional calculus, where k is a positive

integer.

1. INTRODUCTION

Many problems are special cases of the equation
M (z) =0, (1.1)

where M : Q — Bs is a continuous operator, B1, Bo are Banach spaces and
Q C Bj. These problems are reduced to (1.1) using Mathematical Modelling.
Then, it is very important to find solutions z* of equation (1.1). However,
the solutions z* can rarely be obtained in closed form. That is why we use
mostly iterative methods to approximate such solutions [1], [8-20].
Let £ (B, By) stand for space of bounded linear operators from Bj into Bs.
Let also A(-) : @ — L (B, B1) be a continuous operator. Set

F=LM, (1.2)
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where L € L (By, B1). We shall approximate z* using a sequence {z,} gener-
ated by the fixed point scheme:

Tnt1 = T + Yn, A(xp)yn+ F(2,) =0

1.3
S0 = Q) = (1~ Alen)) v — F (). 3
where zg € . The sequence {z,} defined by
Tpi1 = Q (7n) = Q(n+1) (z0) (1.4)
exists. In case of convergence we write:
Q> (xg) := nh_)ngo (Q" (x0)) = nh_{r;ozn (1.5)

Many methods in the literature can be considered special cases of method (1.3).
We can choose A to be: A(z) = F' (z) (Newton’s method), A (x) = F' (z0)
(Modified Newton’s method), A (x) = [x,g(z); F], g : Q@ — B; (Steffensen’s
method). Many other choices for A can be found in [1-21] and the references
there in. Therefore, it is important to study the convergence of method (1.3)
under generalized conditions. In particular, we present the semi-local conver-
gence of method (1.3) using only continuity assumptions on operator F' and
for a so general operator A as to allow applications to k-multivariate fractional
calculus and other areas.

The rest of the paper is organized as follows: Section 2 contains the semi-
local convergence of method (1.3). In the concluding Section 3, we suggest
some applications to k-multivariate fractional calculus.

2. CONVERGENCE

Let B (w,§), B (w,&) stand, respectively for the open and closed balls in
By with center w € B; and of radius £ > 0.

We present the semi-local convergence of method (1.3) in this section.

Theorem 2.1. Let F : Q C By — By, A(-) : Q = L(B1,B1) and xg € Q
be as defined in the Introduction. Suppose there exist oy € (0,1), 61 € (0,1),
n > 0 such that for each x,y € Q)

§:=08g+0 <1, (2.1)

|1 F (zo)[| <, (2.2)

11— A ()| < do, (2.3)

1F (y) — F(z) = Az) (y —2)[| < b1 lly — 2] (2.4)

and
B (0,0) C Q, (2.5)
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where
n

el
Then, sequence {xz,} generated for o € Q by
Tnt1=2n +Qp (0), Qn(y) = —A(zn)y— F(zn) (2.7)
is well defined in B (zo, p), remains in B (xo,p) for each n = 0,1,2, ... and

converges to x* which is the only solution of equation F (z) = 0 in B (o, p).
Moreover, an apriori error estimate is given by the sequence {p,} defined by

(2.6)

po:=p, pn="T(0), T, (t) = o+ d1pn—1 (2.8)
for each n = 1,2, ... and satisfying
nh—{gop" = 0. (2.9)

Furthermore, an aposteriori error estimate is given by the sequence {0y} de-

fined by

op = H;7(0), Hy (t) = 6t + d1pn—1, (2.10)
Gn 1= | — ol < p—pn < p, (2.11)

where
Pn—1:= ||xn — xpn_1|| for each n=1,2,.... (2.12)

Proof. We shall show using mathematical induction the following assertion is
true:
(An) x, € X and p, >0 are well defined and such that
Pn + Pn—1 < Pn—1- (213)
By the definition of p, (2.3)-(2.6) we have that there exists r < p (Lemma 1.4
[8, p. 3]) such that
Sor + [|F (zo)l| = 7
and
Skr<okp—0 as k— oo
That is (Lemma 1.5 [8, p. 4]) z1 is well defined and py < r.
We need the estimate:
Ty (p—1)=23d0(p—1)+d1po = bop — dor + d1p = Go (p) =7 =p—1.
That is (Lemma 1.4 [8, p. 3]) p1 exists and satisfies
p1+po < p—r+r=p=po.

Hence (Ip) is true. Suppose that for each k = 1,2, ...,n, assertion ([) is true.
We must show: zj,1 exists and find a bound r for pg. Indeed, we have in turn
that

S0Pk + 01 (pr—1 — pr) = dopk + S1pk—1 — d1pk

=Ty (pr) — 61px < pr-
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That is there exists r < pg such that
r=dor + 01 (pr—1 — px) and (do + 61)i r—0 (2.14)

as ¢ — 00.
The induction hypothesis gives that

Qk<2pm§2 — pmi1) = p— pr < p,

so 2 € B (z0,p) C Q and z7 satisfies |1 — A (z1)| < do (by (2.3)).
Using the induction hypothesis, (1.3) and (2.4), we get

IF (zi)|| = [|1F (zg) = F (zg-1) — A(2p-1) (T8 — T)—1) |
< 01pr—1 < 61 (pr—1 — pr)
leading together with (2.14) to:
dor + ||F (zp)|| <,

(2.15)

which implies zp 1 exists and pp < r < pg. It follows from the definition of
pr+1 that

Tio1 (o — 1) = Tis () — 7 = pr. — 7,
SO pr+1 exists and satisfies
Pkl + Dk < P — 7+ 7 = pg

so the induction for (I,,) is completed.
Let j > k. Then, we obtain in turn that

45 — ]l < sz < Z — pit1) = Pk — itk < Pi- (2.16)

We also obtain using 1nduct10n that

a1 = Thr1 (pra1) < Trga (pr) < 6pr < .. < 5°Hp. (2.17)
Hence, by (2.1) and (2.17) klim pr = 0, so {z}} is a complete sequence in a
—00

Banach space X and as such it converges to some z*. By letting j — oo in
(2.16), we conclude that * € B (z, px). Moreover, by letting k — oo in (2.15)
and using the continuity of F' we get that F' (z*) = 0. Notice that

Hy, (pr) < Tk (pr) < pr,

so the apriori bound exists. That is oy is smaller in general than pg. Clearly,
the conditions of the theorem are satisfied for xj replacing z¢ (by (2.16)).
Hence, by (2.8) z* € B (xy, 0y,), which completes the proof for the aposteriori
bound. H



Results on the semi-local convergence of iterative methods with applications 483

Remark 2.2. (a) It follows from the proof of Theorem 2.1 that the conclusions
hold, if A (-) is replaced by a more general continuous operator A : Q — Bj.

(b) In the next section some applications are suggested for special choices
of the “A” operators with vy := dg and 7 := ;.

3. APPLICATIONS TO k-MULTIVARIATE FRACTIONAL CALCULUS

Our presented earlier semi-local convergence results, see Theorem 2.1, ap-
ply in the next three multivariate fractional settings given that the following
inequalities are fulfilled:

11 =A@l <70 € (0,1) (3.1)
and
|[Fw) - FE)T - A@ @-o)| <nly-al, (3:2)
where 79,71 € (0, 1), furthermore

Y=+ € (071)7 (33)

177

N
for all z,y € [] [a},b}], where a; < af <bf <b;, i=1,...,N.
i=1

Above ? is the unit vector in RV, N € N,
RF.
The specific functions A (z), F' (z) will be described next.

%
i H =1, and ||-|| is a norm in

(T) Consider the k-left multidimensional Riemann-Liouville fractional integral
of order a = (a1, ...,an), k = (k1,....,kn), (@; >0, k; >0,i=1,...,N):

(klg+f) (l‘)

1 z1 TN N &4 _q
:/ / H(-rz_tz)kl f(tl,...,tN)dtl...dtN, (34)

kilg, (aq) 7% 70 =t
1

=

(2

ki
where I'y, () is the kj-gamma function given by I'y, (og) = [;7t* te % dt,
i =1,..,N (it holds ([21]) 'k, (cvi + ki) = 'k, (w), I' (o) = ]}imlfki (),
i

N
where I is the gamma function, and ¢I0, f := f), f € L <H1 [ai,bi}>, a=

N
(a1,...;an) and & = (21, ...,zNn) € [] [ai, bi] .
i=1
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N
By [6], we get that (xI$, f) is a continuous function on [ [a;, b;]. Further-

i=1
more, by [6], we get that 12, is a bounded linear operator which is a positive
operator.

We notice the following

IS f (fﬂ)‘
< - (/ / £ dtl...dtN>||fH N (3.5)
H ka Oéz N = 1 Oo’il;[1[ai7bi]
=1
N Q4
T — a;) ki
-~ H( [T
Tt ) i

Q4

N o4
o (@i —ai)b
‘kIa—‘rf (l’)‘ < <]._[1 Fki (az + k 2)) |f|oo,_lL_V[1[ai,bi]

5 (3.7)
< <]__[1 W) £l ~ -

OO:_H [aivbi]
=1

We get that

W2 f (@) = 0 (3.8)

N
In particular, (xIZ, f) is continuous on H [ar,bf]. Thus there exist z1, 29 €
H [a},by] such that
(2 T) (r2) = ma (1) () 39

over all z € H [af, b]

R

We assume that

(KI5, f) (1) > 0 (3.10)
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Hence

[l = (kg4 ) (x2) > 0. (3.11)

N
o0, 1 [ar,b7]
=1

Here we define

1
Jf(x) =mf (x), O<m<§, (3.12)
N
for any z € [] [a}, bf]. Therefore the equation
i=1
N
Jf (@) =0, =€ []la,b]] (3.13)
i=1
has the same solutions as the equation
N
Jf ()
Fa)=—"22__—0 e[l b]. (3.14
)= S de f) () 131 i 8] )
Notice that
IO f (2) = (klg+f) (z)
A2 (i S) () 2 (kg J) (2)
N (3.15)
1
< 5 HARS 11 az , bZ .
Call
A(z) = ﬁ, Ve H [aX,b?]. (3.16)
2 (k34 f) (@
We notice that
e N
O<M§A( Haz,b;". (3.17)

2 (kI3 f) (22)
Hence the first condition (3.1) is fulfilled by

|1A(x)|:1A(:p)§1m : Yo, veraz,bj. (3.18)

So that |1 — A (2)||, < 70, where ||-]|, is over H [a¥,b}]. Clearly 7o € (0,1).

R

=1
f(z) . . .
Next we assume that YRS ) is a contraction, that is
[ f(y
W W cpay), (3.19)

2 (R I8 f) (x2) 2 (RIS f) (22)
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N
for all z,y € H [a¥,b7], 0 < 6 < 1. Hence

R

mi) W | eyl < Seull, 20)

2 (I3, f) (x2) 2 (kIS f) (w2)

(R

for all z,y € H la,b7]. Set A =9, it is 0 < A < 3. We have that
[F (2) = F (y)| < Mz =yl (3.21)

for all = yeH[a bil.

(R

Equlvalently, we have

TF @)= f ()] < 2\ (1% f) (22) 5=l , for auxyeH [az, b (3.22)

=1
We observe that
|F@) -F@) 7 -A@ -2
<|F(y) — F(z) + A )] ly — ]|
<Ally —z| +[A(z )\ ly =zl = A+ A (2)]) ly — =] (3.23)
(1), V:L‘yEHaZ,b:.
By (3.7), we have that
|(R 5 ) (2)] < ﬂ(b)k Kl VmEHa b?] (3.24)
Wat =\ Dy (o6 + K o palet D0l '

N
where ||-||, now is over [] [a;, bs].
i=1
Hence

(3.25)
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for all z € H [a},b}] . Therefore we get

- 1074
Z:

(1) < R — ﬁ(b)k [flloo | ly =2l (3.26)
- 2 (I3 f) (w2) \ o) Ths (06 + ki) 7

=

R

for all z,y € H [af,bf]. Call

N (b —ai)k ’7:
O<mi=Ad— i~ G , 3.27

zlkL

and by choosing (b; — ai) small enough, i=1,...,N, we can make v; € (0,1),
fulfilling (3.2).
Next we call and we need that

0<y=2+m

_ (1_ (KIS, f) (21) )
2 (I f) (22)

equivalently,

! e (T2, f) @)
A+ 2 (12, f) (22) (E Th (a; + k1)> 1l < > o Io 1) (22) (3.29)

equivalently,

N ' L
A(kfs+f)<z2>+<Hr<b(+)k)) Fle < (I ) (). (330
=1

which is possible for small A\ and small (b; —a;), all i = 1,...,N. That is

~v € (0,1), fulfilling (3.3). So our numerical method converges and solves
(3.13).

(IT) Consider the k-right multidimensional Riemann-Liouville fractional inte-
gral of order o = (aq,...,an), k = (k1,....kn), (a; >0, k; >0,i=1,...,N):
(kfz? f ) (x)

bl 0‘7, 1
= / / i — ;) f(t1, ., tn) dty...dty, (3.31)
IN = 1

H k; Fk Ozl
i=1
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we set
Wy f =1, (3.32)
N N
where f € Lo <H [ai,bi]>, b= (bl, ...,bN) and z = (.7}1, ...,xN) S H [ai,bi] .
i=1 i=1
N
By [7], we get that ,Ij* f is a continuous function on [] [as, b;]. Furthermore by
i=1

[7] we get that ;I is a bounded linear operator, which is a positive operator.
We notice the following

N oo
e f @) < H(bl( 22 1l

i=1 | (3.33)

That is it holds

N o (3.34)
(bi — ag) *
< (H s )> 171
We get that
Ly f (b)) =0. (3.35)

=

In particular, (;J{){ f) is continuous on [] [af,b!]. Thus there exist z1,22 €
=1

H [ar,b}] such that

(;J{f‘_f) (x1) = min (kfg‘_f) (z),

(oI2_f) (z2) = max (12 f) (), (3.36)
over all z € H [aX,b7] .
We assume that
(oI5 f) (1) > 0. (3.37)
Hence
kab fH (kflf‘_f) (z2) > 0. (3.38)

S
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Here we define

1
Jf (@) =mf (@), 0<m<3, (3.39)
N
for any « € [] [a},b}]. Therefore the equation
i=1
N
Jf (@) =0, xe[]lal.b;], (3.40)
i=1

has the same solutions as the equation
N

F (o) = ) () 0, ze E[ 0. (3.41)

Notice that

« T N
i <2(f>(m) = 2(’“Ib‘f)() < % <1, ze]]la;,b]]. (3.42)

W f) (22) (k15 f) (w2) Py
Call N
(15 f) () -
A =—""V S b .
(2) =3 (T f) (22) z € Z1;[1 lag, b; ] (3.43)
We notice that
(k15 f) (1) 1 ST
Hence the first condition (3.1) is fulfilled by
_ (I f) (z1) A
1—A(z)|=1-A(z)<1-— 2 (el ) () Y0, V€ il_[l[ai,bi]. (3.45)

N
So that |1 — A (2)||., < 70, where ||-||, is over [] [a},b;]. Clearly 7o € (0,1).

071
=1

f(=@) : . o
Next we assume that 20l 1)) is a contraction, that is
f(x) f ()
- <Ollz—yll, (3.46)
2 (kfgy_f) (I‘Q) 2 (kI;;l_f) (.’132)
N
for all z,y € [] [a},bf], 0 <6 < 1. Hence
i=1
mf (z mf (y 0
W W gy < Dyl 3a)
2(1Ig f) (w2) 2 (R f) (2)
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N
for allx,yGH[a b]. Set A =9, it is 0 < A < 1. We have that

|F'(z) — F (y)] < MMz -y,

N
all z,y € H [af,b}] . Equivalently we have

1974

N

[Tf () = Jf ()] < 2X (oI5 f) (x2) Iz — yll, Yo,y € []la,0]].

=1
‘We observe that

|F@) -F@)T - A@ @)

<|F(y) = F (o) + [A@@)]ly —«|
<Ay =zl + [A )] ly — |

= A+ [A@)]) [ly — 2] =: (2), waGHawa-

By (3.34), we have that

St (bi—a)® .
| (kI3 f) ()] < (HW> flloo, Vo GH a7, b7],

i=1

where ||-||, now is over H [a;, b;] . Hence

\A(x)|_‘((’;[;; )) )

1 N (b —a)®
= 2 (kI3 f) (22) <Hl Ty, (al—l—k)) I £llos

for all = € H [af,bf]. Therefore we get

R

() < (A4t ﬁ(b‘) £l ) Iy — 2l
- 2 (kIy f) (w2) \ 27 T (0 + ki) > ’

N
for all z,y € H [af,bf]. Call

R

i ’L

N (b “i

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)



Results on the semi-local convergence of iterative methods with applications 491

and by choosing (b; — a;) small enough, i = 1,..., N, we can make v; € (0, 1),
fulfilling (3.2).
Next we call and we need that

O<~v:=7+m

_ (1_ (15 ) <x1>>
2 (kI f) (22) (3.55)
N (b — 0‘1
+<>\+ ST f (Hrk = )>Hf||>
equivalently,

L (e G e
M 2 (kIl?—f) (72) (g [, (i + ki )) Hf” ( Iba—f) (952)’ (3.56)

equivalently,

2X (L f (H = —a;)

which is possible for small A and small (b; —a;), all @ = 1,...,N. That is
~v € (0,1), fulfilling (3.3). So our numerical method converges and solves
(3.40).

@4

kl

) 1flloo < (kI5=f) (1), (3.57)

(IIT) Here we deal with the following multivariate mixed fractional derivative:
let a = (ay,...,an), where 0 < o; < 1,i=1,..,N; f e CV (Hf\il [0, b,-]);
b;>0,i=1,...,N,

(“FDef) (t) = Y, 1-a;) /t1 /tNHGXp( (t 3i)> 559

8Nf (81, veey SN)
X Os1...05n dsy...dsy,

foral 0 < ¢; < b;, i = 1,..., N with t = (t1,...,tx). When N = 1, the
univariate case is known as the M. Caputo-Fabrizio fractional derivative, see
[18]. Call

Q5

Vi = > 0, (359)

l—OéZ'
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i.€.,
t1 N
(CFfo) (t) = / / He vi(ti—si)
I (1 - a0) (3.60)
6Nf (81,...,51\[)
8 0s1...0sN dsi..ds;,
forall 0 <t; <b;,i=1,...,N. We notice that
|(CFD“f) ()]
noopin N f (3.61)
< ’Yz i Sz) s
B HZJ\L]_ 1— Oéz) </ / He dSl dSN> ‘ aﬂfla.TNHoo
N i N
= H /t e Vilti=si) gg. AV
i=1 1_041 0 ‘ (91’1...833]\] o
N
- (T e -0) |24
i1 (67} 6.%'18.%]\[ 00
N (3.62)
N
- <H1 (1—e ))'MH
=1 &%) 0x1...0TN oo
(T (=) |2
i 021...0xN || o
That is
(“"Dgf) (0,..,0) =0 (3.63)
and N
1 — e ibi 8Nf
CF na <
[(“"DSf) (1)) < (Hl( - )) } 6:61...6:6NH00 (3.64)

Notice here that 1 — e~ ¢, > 0 is an increasing function, i = 1, ..., N. Thus
the smaller the t;, the smaller it is 1 — e~ i =1,..., N. We can rewrite

(CFDaf) ( )
_ H(e iti ) /t1 ty R 1%515 f(sl’""sN)dsl...dsN (3.65)

- 1— oy 081...0sN
N b b
e 'Y'L 1 N
- <1 )/ / XTI fo,0,] (815 8N) € Eisi s
_CEZ i=1 K
i1 (3.66)
N
07 f (s1, ’SN)dsl...dsN,
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where x stands for the characteristic function. Let t,, — t, as n — oo, then
XTIY . [0.t0n] (S1y..0y SN) — XTIY [04] (81,...,SN) ,a.8, as N — 00,
where t, = (t1p, ..., tnn) - Hence we have

Sy visi aNf (S1y..ey SN)
681...881\/’
S s OV F (51,0, 5N)
0s1...0sN

XX, [0,tin] (S1,...,5N) €

= XTI, (o, (s1,...,8N) € , a.e.,

in (s1,...,8y) € Hiil [0, b;]. Furthermore, it holds

8Nf (81, ceny SN) ’

EN o
(81, e SN) e2ui=17i5i
881...881\[

an\;ﬂovtiﬂ 3 67
o (3.67)

- 0x1...0TN

HOO

Thus, by dominated convergence theorem we get
(CED2f) (tn) = (“FD2f) (t) as n — oo,
proving continuity of (D2 f) (), t € Hfil [0,b;] . In particular, (“F'D2f) (t)

is continuous, for all t € Hfil [a;, b;], where 0 < a; < b;, i =1, ..., N. Therefore
there exist x1, 22 € Hf\il [ai, b;] such that

CEDAf (x1) = min “FDYf (x) (3.68)
and
N
FDef (w2) = max “FDYf (z), for z €[] lai,bi]. (3.69)
i=1
We assume that
CEDAf (x1) >0 (3.70)
(i.e., °FDOf (2) >0, Vo e Hf\il [a;, b;]). Furthermore
|7 DL o aiy =" DS (2). (3.71)
Here we define
N
1
Jf () =mf (x), 0<m <, Ve []laibi. (3.72)
=1
The equation
N
Jf(x) =0, z€]]labi] (3.73)

i=1
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has the same set of solutions as the equation

Jf(z N
F (z) :_CTD],;(f()xg)_O’ xezl;[l[ai,bi].

Notice that

N
CF ma f () “pef(z) 1
D = < — 1, V i, bil .
*(WWENMQ D) =2 < 1 Vo€ LLlentd
We call
CFDaf (w) N
A = iy bl .
(z) D (o) "€ il‘[l[a ]
‘We notice that or
Daf (331) 1
— V<A < =,
0< 3eFpafiy) =AW =3
Furthermore it holds
CED2f (1)

Clearly vy € (0,1). We have proved that
N
||1 - A($)||oo < Yo € (07 ]-)a Vze H [aivbi] 3
i=1

see (3.1) fulfilled.

Next we assume that F'(x) is a contraction over Hfil [ai, bi], i.e.,

N

|F (2) = F(y)l < Ma —yll, Y,y e []la b
i=1

and 0 < A < % Equivalently we have
[Tf (x) = Jf ()| <2XA (“"DLf (2)) Iz = yll, Va,y € [a,b].
We observe that
—
|F@) - F@) T -a@ -
<|F(y) — F (o) + A )] [ly — ]|
< My =zl + [A ()] ly — =]

N
= A+ [A@D) lly =2l =: (&), Yo,y e []laibil,
i=1

N
) =:7v, Vxé€ H [ai,bi] .
=1

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)
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%
where 4 the unit vector in RY. Here we have (3.64) valid on Hf;l [a;, b;] .
Hence, for all z € [, [ai, bi] , we get that

. % (55)) |
o ferzrl, < O CE el
Consequently we observe
N 1—6—.%'1%' oNf
© < [r+ i (m (CFD))fl o . ly—al.  (380)
for all z,y € [, [ai,b;] . Call
0< =X+ <HiN:1 (kgibi)) ’ oy HOO (3.85)

20 (CFD2f) (w2) ’
choosing b; small enough, i = 1,..., N, we can make v, € (0,1). We have
proved (3.2) over Hfil [a;, b;] .
Next we call and need
O<y=m+m

N (1-e7ibi oN f H
_q TP @) (I5 (=) [ . (3.86)
207 D2 f () 20 (OFDef) (22)
<1,
equivalently,
N [(1—eibi N
)\+ <Hi:1 ( @i )> ‘ axl"'axN Hoo CFD*Otf (‘rl) (3 87)
2a (CF D2 f) (22) 208D f (2)’ '
equivalently,
N
1 — e ibi oN
XD f (w2) + (H( — >) ‘ = ngH <CF Def (x1), (3.88)
i=1 7 cen 00

which is possible for small A, b;, i = 1, ..., N. We have proved that
Y=Y+ € (07 1) ) (389)

fulfilling (3.3). Hence equation (3.73) can be solved with our presented numer-
ical methods. Consequently, our presented Numerical methods here, Theorem
2.1, apply to solve

f(z)=0. (3.90)
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