Nonlinear Functional Analysis and Applications Vol. 21, No. 3 (2016), pp. 479-496

http://nfaa.kyungnam.ac.kr/journal-nfaa Copyright © 2016 Kyungnam University Press

RESULTS ON THE SEMI-LOCAL CONVERGENCE OF ITERATIVE METHODS WITH APPLICATIONS IN k-MULTIVARIATE FRACTIONAL CALCULUS

George A. Anastassiou¹ and Ioannis K. Argyros²

¹Department of Mathematical Sciences, University of Memphis Memphis, TN 38152, USA e-mail: ganastss@memphis.edu

²Department of Mathematics Sciences, Cameron University Lawton, Ok 73505, USA e-mail: iargyros@cameron.edu

Abstract. We provide new semi-local convergence results for general iterative methods in order to approximate a solution of a nonlinear operator equation. Moreover, applications are suggested in many areas including k-multivariate fractional calculus, where k is a positive integer.

1. Introduction

Many problems are special cases of the equation

$$M\left(x\right) = 0,\tag{1.1}$$

where $M: \Omega \to B_2$ is a continuous operator, B_1 , B_2 are Banach spaces and $\Omega \subseteq B_1$. These problems are reduced to (1.1) using Mathematical Modelling.

Then, it is very important to find solutions x^* of equation (1.1). However, the solutions x^* can rarely be obtained in closed form. That is why we use mostly iterative methods to approximate such solutions [1], [8-20].

Let $\mathcal{L}(B_1, B_2)$ stand for space of bounded linear operators from B_1 into B_2 . Let also $A(\cdot): \Omega \to \mathcal{L}(B_1, B_1)$ be a continuous operator. Set

$$F = LM, (1.2)$$

⁰Received January 14, 2016. Revised March 31, 2016.

 $^{^02010}$ Mathematics Subject Classification: 65G99, 65H10, 26A33, 47J25, 47J05.

 $^{^{0}}$ Keywords: Fixed point, Banach space, semi-local convergence, k-multivariate fractional calculus.

where $L \in \mathcal{L}(B_2, B_1)$. We shall approximate x^* using a sequence $\{x_n\}$ generated by the fixed point scheme:

$$x_{n+1} := x_n + y_n, \ A(x_n) y_n + F(x_n) = 0 \Leftrightarrow y_n = Q(y_n) := (I - A(x_n)) y_n - F(x_n),$$
(1.3)

where $x_0 \in \Omega$. The sequence $\{x_n\}$ defined by

$$x_{n+1} = Q(x_n) = Q^{(n+1)}(x_0)$$
(1.4)

exists. In case of convergence we write:

$$Q^{\infty}(x_0) := \lim_{n \to \infty} \left(Q^n(x_0) \right) = \lim_{n \to \infty} x_n. \tag{1.5}$$

Many methods in the literature can be considered special cases of method (1.3). We can choose A to be: A(x) = F'(x) (Newton's method), $A(x) = F'(x_0)$ (Modified Newton's method), $A(x) = [x, g(x); F], g: \Omega \to B_1$ (Steffensen's method). Many other choices for A can be found in [1-21] and the references there in. Therefore, it is important to study the convergence of method (1.3) under generalized conditions. In particular, we present the semi-local convergence of method (1.3) using only continuity assumptions on operator F and for a so general operator F as to allow applications to F-multivariate fractional calculus and other areas.

The rest of the paper is organized as follows: Section 2 contains the semi-local convergence of method (1.3). In the concluding Section 3, we suggest some applications to k-multivariate fractional calculus.

2. Convergence

Let $B(w,\xi)$, $\overline{B}(w,\xi)$ stand, respectively for the open and closed balls in B_1 with center $w \in B_1$ and of radius $\xi > 0$.

We present the semi-local convergence of method (1.3) in this section.

Theorem 2.1. Let $F: \Omega \subset B_1 \to B_2$, $A(\cdot): \Omega \to \mathcal{L}(B_1, B_1)$ and $x_0 \in \Omega$ be as defined in the Introduction. Suppose there exist $\delta_0 \in (0,1)$, $\delta_1 \in (0,1)$, $\eta \geq 0$ such that for each $x, y \in \Omega$

$$\delta := \delta_0 + \delta_1 < 1, \tag{2.1}$$

$$||F\left(x_{0}\right)|| \leq \eta,\tag{2.2}$$

$$||I - A(x)|| \le \delta_0, \tag{2.3}$$

$$||F(y) - F(x) - A(x)(y - x)|| \le \delta_1 ||y - x||$$
 (2.4)

and

$$\overline{B}(x_0, \delta) \subseteq \Omega, \tag{2.5}$$

where

$$\rho = \frac{\eta}{1 - \delta}.\tag{2.6}$$

Then, sequence $\{x_n\}$ generated for $x_0 \in \Omega$ by

$$x_{n+1} = x_n + Q_n^{\infty}(0), \quad Q_n(y) := (I - A(x_n))y - F(x_n)$$
 (2.7)

is well defined in $B(x_0, \rho)$, remains in $\overline{B}(x_0, \rho)$ for each n = 0, 1, 2, ... and converges to x^* which is the only solution of equation F(x) = 0 in $\overline{B}(x_0, \rho)$. Moreover, an apriori error estimate is given by the sequence $\{\rho_n\}$ defined by

$$\rho_0 := \rho, \quad \rho_n = T_n^{\infty}(0), \quad T_n(t) = \delta_0 + \delta_1 \rho_{n-1}$$
(2.8)

for each n = 1, 2, ... and satisfying

$$\lim_{n \to \infty} \rho_n = 0. \tag{2.9}$$

Furthermore, an aposteriori error estimate is given by the sequence $\{\sigma_n\}$ defined by

$$\sigma_n := H_n^{\infty}(0), H_n(t) = \delta t + \delta_1 p_{n-1},$$
 (2.10)

$$q_n := ||x_n - x_0|| \le \rho - \rho_n \le \rho, \tag{2.11}$$

where

$$p_{n-1} := ||x_n - x_{n-1}|| \text{ for each } n = 1, 2,$$
 (2.12)

Proof. We shall show using mathematical induction the following assertion is true:

 (A_n) $x_n \in X$ and $\rho_n \geq 0$ are well defined and such that

$$\rho_n + p_{n-1} \le \rho_{n-1}. \tag{2.13}$$

By the definition of ρ , (2.3)-(2.6) we have that there exists $r \leq \rho$ (Lemma 1.4 [8, p. 3]) such that

$$\delta_0 r + \|F\left(x_0\right)\| = r$$

and

$$\delta_0^k r \le \delta_0^k \rho \to 0$$
 as $k \to \infty$.

That is (Lemma 1.5 [8, p. 4]) x_1 is well defined and $p_0 \le r$.

We need the estimate:

$$T_1(\rho - r) = \delta_0(\rho - r) + \delta_1\rho_0 = \delta_0\rho - \delta_0r + \delta_1\rho = G_0(\rho) - r = \rho - r.$$

That is (Lemma 1.4 [8, p. 3]) ρ_1 exists and satisfies

$$\rho_1 + p_0 \le \rho - r + r = \rho = \rho_0.$$

Hence (I_0) is true. Suppose that for each k = 1, 2, ..., n, assertion (I_k) is true. We must show: x_{k+1} exists and find a bound r for p_k . Indeed, we have in turn that

$$\delta_0 \rho_k + \delta_1 (\rho_{k-1} - \rho_k) = \delta_0 \rho_k + \delta_1 \rho_{k-1} - \delta_1 \rho_k$$
$$= T_k (\rho_k) - \delta_1 \rho_k < \rho_k.$$

That is there exists $r \leq \rho_k$ such that

$$r = \delta_0 r + \delta_1 (\rho_{k-1} - \rho_k)$$
 and $(\delta_0 + \delta_1)^i r \to 0$ (2.14)

as $i \to \infty$.

The induction hypothesis gives that

$$q_k \le \sum_{m=0}^{k-1} p_m \le \sum_{m=0}^{k-1} (\rho_m - \rho_{m+1}) = \rho - \rho_k \le \rho,$$

so $x_k \in \overline{B}(x_0, \rho) \subseteq \Omega$ and x_1 satisfies $||I - A(x_1)|| \le \delta_0$ (by (2.3)). Using the induction hypothesis, (1.3) and (2.4), we get

$$||F(x_k)|| = ||F(x_k) - F(x_{k-1}) - A(x_{k-1})(x_k - x_{k-1})||$$

$$\leq \delta_1 p_{k-1} \leq \delta_1 (\rho_{k-1} - \rho_k)$$
(2.15)

leading together with (2.14) to:

$$\delta_0 r + \|F(x_k)\| \le r,$$

which implies x_{k+1} exists and $p_k \leq r \leq \rho_k$. It follows from the definition of ρ_{k+1} that

$$T_{k+1}(\rho_k - r) = T_k(\rho_k) - r = \rho_k - r,$$

so ρ_{k+1} exists and satisfies

$$\rho_{k+1} + p_k \le \rho_k - r + r = \rho_k$$

so the induction for (I_n) is completed.

Let $j \geq k$. Then, we obtain in turn that

$$||x_{j+k} - x_k|| \le \sum_{i=k}^{j} p_i \le \sum_{i=k}^{j} (\rho_j - \rho_{j+1}) = \rho_k - \rho_{j+k} \le \rho_k.$$
 (2.16)

We also obtain using induction that

$$\rho_{k+1} = T_{k+1}(\rho_{k+1}) \le T_{k+1}(\rho_k) \le \delta \rho_k \le \dots \le \delta^{k+1} \rho. \tag{2.17}$$

Hence, by (2.1) and (2.17) $\lim_{k\to\infty} \rho_k = 0$, so $\{x_k\}$ is a complete sequence in a Banach space X and as such it converges to some x^* . By letting $j\to\infty$ in (2.16), we conclude that $x^*\in \overline{B}(x_k,\rho_k)$. Moreover, by letting $k\to\infty$ in (2.15) and using the continuity of F we get that $F(x^*)=0$. Notice that

$$H_k(\rho_k) \leq T_k(\rho_k) \leq \rho_k,$$

so the apriori bound exists. That is σ_k is smaller in general than ρ_k . Clearly, the conditions of the theorem are satisfied for x_k replacing x_0 (by (2.16)). Hence, by (2.8) $x^* \in \overline{B}(x_n, \sigma_n)$, which completes the proof for the aposteriori bound.

Remark 2.2. (a) It follows from the proof of Theorem 2.1 that the conclusions hold, if $A(\cdot)$ is replaced by a more general continuous operator $A:\Omega\to B_1$.

(b) In the next section some applications are suggested for special choices of the "A" operators with $\gamma_0 := \delta_0$ and $\gamma_1 := \delta_1$.

3. Applications to k-multivariate fractional calculus

Our presented earlier semi-local convergence results, see Theorem 2.1, apply in the next three multivariate fractional settings given that the following inequalities are fulfilled:

$$||1 - A(x)||_{\infty} \le \gamma_0 \in (0, 1)$$
 (3.1)

and

$$\left\| \left(F\left(y\right) - F\left(x\right) \right) \overrightarrow{i} - A\left(x\right) \left(y - x\right) \right\| \le \gamma_1 \left\| y - x \right\|, \tag{3.2}$$

where $\gamma_0, \gamma_1 \in (0, 1)$, furthermore

$$\gamma = \gamma_0 + \gamma_1 \in (0, 1) \,, \tag{3.3}$$

for all $x, y \in \prod_{i=1}^{N} [a_i^*, b_i^*]$, where $a_i < a_i^* < b_i^* < b_i$, i = 1, ..., N. Above \overrightarrow{i} is the unit vector in \mathbb{R}^N , $N \in \mathbb{N}$, $\|\overrightarrow{i}\| = 1$, and $\|\cdot\|$ is a norm in

 \mathbb{R}^k .

The specific functions A(x), F(x) will be described next.

(I) Consider the k-left multidimensional Riemann-Liouville fractional integral of order $\alpha = (\alpha_1, ..., \alpha_N), k = (k_1, ..., k_N), (\alpha_i > 0, k_i > 0, i = 1, ..., N)$:

$$\left({}_{k}I_{a+}^{\alpha}f\right)(x) = \frac{1}{\prod_{i=1}^{N} k_{i}\Gamma_{k_{i}}(\alpha_{i})} \int_{a_{1}}^{x_{1}} \dots \int_{a_{N}}^{x_{N}} \prod_{i=1}^{N} (x_{i} - t_{i})^{\frac{\alpha_{i}}{k_{i}} - 1} f(t_{1}, \dots, t_{N}) dt_{1} \dots dt_{N}, \quad (3.4)$$

where $\Gamma_{k_i}(\alpha_i)$ is the k_i -gamma function given by $\Gamma_{k_i}(\alpha_i) = \int_0^\infty t^{\alpha_i - 1} e^{-\frac{t^{\kappa_i}}{k_i}} dt$, i = 1, ..., N (it holds ([21]) $\Gamma_{k_i}(\alpha_i + k_i) = \alpha_i \Gamma_{k_i}(\alpha_i)$, $\Gamma(\alpha_i) = \lim_{k_i \to 1} \Gamma_{k_i}(\alpha_i)$, where Γ is the gamma function, and ${}_{k}I_{a+}^{0}f:=f), f\in L_{\infty}\left(\prod_{i=1}^{N}\left[a_{i},b_{i}\right]\right), a=$

$$(a_1,...,a_N)$$
 and $x = (x_1,...,x_N) \in \prod_{i=1}^{N} [a_i,b_i]$.

By [6], we get that $({}_{k}I_{a+}^{\alpha}f)$ is a continuous function on $\prod_{i=1}^{N}[a_{i},b_{i}]$. Furthermore, by [6], we get that ${}_{k}I_{a+}^{\alpha}$ is a bounded linear operator which is a positive operator.

We notice the following

$$\left| {_kI_{a+}^{\alpha}f\left(x \right)} \right| \le \frac{1}{\prod\limits_{i = 1}^{N} {k_i}{\Gamma _{k_i} \left({\alpha _i} \right)} } \left({\int_{a_1}^{{x_1}} {...\int_{a_N}^{{x_N}} {\prod\limits_{i = 1}^{N} {\left({x_i} - t_i \right)^{\frac{{\alpha _i}}{{k_i}} - 1}} } dt_1 ...dt_N } \right) \| f\| _{\infty, \prod\limits_{i = 1}^{N} {\left[{a_i,b_i} \right]} } \right. \tag{3.5}$$

$$= \frac{1}{\prod_{i=1}^{N} k_{i} \Gamma_{k_{i}} (\alpha_{i})} \prod_{i=1}^{N} \frac{(x_{i} - a_{i})^{\frac{\alpha_{i}}{k_{i}}}}{\left(\frac{\alpha_{i}}{k_{i}}\right)} \|f\|_{\infty, \prod_{i=1}^{N} [a_{i}, b_{i}]}$$

$$= \left(\prod_{i=1}^{N} \frac{(x_{i} - a_{i})^{\frac{\alpha_{i}}{k_{i}}}}{\Gamma_{k_{i}} (\alpha_{i} + k_{i})}\right) \|f\|_{\infty, \prod_{i=1}^{N} [a_{i}, b_{i}]}.$$
(3.6)

That is, it holds

$$\left| {}_{k}I_{a+}^{\alpha}f\left(x \right) \right| \leq \left(\prod_{i=1}^{N} \frac{\left(x_{i}-a_{i} \right)^{\frac{\alpha_{i}}{k_{i}}}}{\Gamma_{k_{i}}\left(\alpha_{i}+k_{i} \right)} \right) \left\| f \right\|_{\infty, \prod\limits_{i=1}^{N}\left[a_{i},b_{i} \right]}$$

$$\leq \left(\prod_{i=1}^{N} \frac{\left(b_{i}-a_{i} \right)^{\frac{\alpha_{i}}{k_{i}}}}{\Gamma_{k_{i}}\left(\alpha_{i}+k_{i} \right)} \right) \left\| f \right\|_{\infty, \prod\limits_{i=1}^{N}\left[a_{i},b_{i} \right]}.$$

$$(3.7)$$

We get that

$$_{k}I_{a+}^{\alpha}f\left(a\right) =0. \tag{3.8}$$

In particular, $(kI_{a+}^{\alpha}f)$ is continuous on $\prod_{i=1}^{N} [a_i^*, b_i^*]$. Thus there exist $x_1, x_2 \in \prod_{i=1}^{N} [a_i^*, b_i^*]$ such that

$$\begin{pmatrix} kI_{a+}^{\alpha}f \end{pmatrix}(x_1) = \min \left(kI_{a+}^{\alpha}f \right)(x), \\
\left(kI_{a+}^{\alpha}f \right)(x_2) = \max \left(kI_{a+}^{\alpha}f \right)(x),$$
(3.9)

over all $x \in \prod_{i=1}^{N} [a_i^*, b_i^*]$.

We assume that

$$\left(_{k}I_{a+}^{\alpha}f\right)\left(x_{1}\right)>0. \tag{3.10}$$

Hence

$$\|kI_{a+}^{\alpha}f\|_{\infty,\prod_{i=1}^{N}\left[a_{i}^{*},b_{i}^{*}\right]} = \left(kI_{a+}^{\alpha}f\right)(x_{2}) > 0.$$
 (3.11)

Here we define

$$Jf(x) = mf(x), \ 0 < m < \frac{1}{2},$$
 (3.12)

for any $x \in \prod\limits_{i=1}^{N} \left[a_{i}^{*}, b_{i}^{*}\right].$ Therefore the equation

$$Jf(x) = 0, \ x \in \prod_{i=1}^{N} [a_i^*, b_i^*]$$
 (3.13)

has the same solutions as the equation

$$F(x) := \frac{Jf(x)}{2(kI_{a+}^{\alpha}f)(x_2)} = 0, \quad x \in \prod_{i=1}^{N} [a_i^*, b_i^*].$$
 (3.14)

Notice that

$${}_{k}I_{a+}^{\alpha}\left(\frac{f}{2\left({}_{k}I_{a+}^{\alpha}f\right)\left(x_{2}\right)}\right)\left(x\right) = \frac{\left({}_{k}I_{a+}^{\alpha}f\right)\left(x\right)}{2\left({}_{k}I_{a+}^{\alpha}f\right)\left(x_{2}\right)}$$

$$\leq \frac{1}{2} < 1, \quad x \in \prod_{i=1}^{N}\left[a_{i}^{*}, b_{i}^{*}\right].$$
(3.15)

Call

$$A(x) := \frac{\left(kI_{a+}^{\alpha}f\right)(x)}{2\left(kI_{a+}^{\alpha}f\right)(x_{2})}, \ \forall x \in \prod_{i=1}^{N} \left[a_{i}^{*}, b_{i}^{*}\right]. \tag{3.16}$$

We notice that

$$0 < \frac{\left(k I_{a+}^{\alpha} f\right)(x_1)}{2\left(k I_{a+}^{\alpha} f\right)(x_2)} \le A(x) \le \frac{1}{2}, \quad \forall x \in \prod_{i=1}^{N} \left[a_i^*, b_i^*\right]. \tag{3.17}$$

Hence the first condition (3.1) is fulfilled by

$$|1 - A(x)| = 1 - A(x) \le 1 - \frac{\left(_{k} I_{a+}^{\alpha} f\right)(x_{1})}{2\left(_{k} I_{a+}^{\alpha} f\right)(x_{2})} =: \gamma_{0}, \ \forall x \in \prod_{i=1}^{N} \left[a_{i}^{*}, b_{i}^{*}\right].$$
 (3.18)

So that $\|1 - A(x)\|_{\infty} \leq \gamma_0$, where $\|\cdot\|_{\infty}$ is over $\prod_{i=1}^{N} [a_i^*, b_i^*]$. Clearly $\gamma_0 \in (0, 1)$.

Next we assume that $\frac{f(x)}{2(kI_{a+}^{\alpha}f)(x_2)}$ is a contraction, that is

$$\left| \frac{f(x)}{2(kI_{a+}^{\alpha}f)(x_2)} - \frac{f(y)}{2(kI_{a+}^{\alpha}f)(x_2)} \right| \le \theta \|x - y\|, \tag{3.19}$$

for all $x, y \in \prod_{i=1}^{N} [a_i^*, b_i^*], 0 < \theta < 1$. Hence

$$\left| \frac{mf(x)}{2(kI_{a+}^{\alpha}f)(x_{2})} - \frac{mf(y)}{2(kI_{a+}^{\alpha}f)(x_{2})} \right| \le m\theta \|x - y\| \le \frac{\theta}{2} \|x - y\|, \qquad (3.20)$$

for all $x, y \in \prod_{i=1}^{N} [a_i^*, b_i^*]$. Set $\lambda = \frac{\theta}{2}$, it is $0 < \lambda < \frac{1}{2}$. We have that

$$|F(x) - F(y)| \le \lambda ||x - y||,$$
 (3.21)

for all $x, y \in \prod_{i=1}^{N} [a_i^*, b_i^*]$. Equivalently, we have

$$|Jf(x) - Jf(y)| \le 2\lambda \left({}_{k}I_{a+}^{\alpha}f \right)(x_{2}) ||x - y||, \text{ for all } x, y \in \prod_{i=1}^{N} \left[a_{i}^{*}, b_{i}^{*} \right].$$
 (3.22)

We observe that

$$\begin{aligned} & \| (F(y) - F(x)) \overrightarrow{i} - A(x) (y - x) \| \\ & \leq |F(y) - F(x)| + |A(x)| \|y - x\| \\ & \leq \lambda \|y - x\| + |A(x)| \|y - x\| = (\lambda + |A(x)|) \|y - x\| \\ & =: (\psi_1), \ \forall x, y \in \prod_{i=1}^{N} [a_i^*, b_i^*]. \end{aligned}$$
(3.23)

By (3.7), we have that

$$\left| \left({_k}I_{a+}^{\alpha} f \right)(x) \right| \le \left(\prod_{i=1}^{N} \frac{\left(b_i - a_i \right)^{\frac{\alpha_i}{k_i}}}{\Gamma_{k_i} \left(\alpha_i + k_i \right)} \right) \|f\|_{\infty}, \quad \forall \, x \in \prod_{i=1}^{N} \left[a_i^*, b_i^* \right],$$
 (3.24)

where $\|\cdot\|_{\infty}$ now is over $\prod_{i=1}^{N} [a_i, b_i]$.

Hence

$$|A(x)| = \frac{\left| \left({_k} I_{a+}^{\alpha} f \right) (x) \right|}{2 \left({_k} I_{a+}^{\alpha} f \right) (x_2)}$$

$$\leq \frac{1}{2 \left({_k} I_{a+}^{\alpha} f \right) (x_2)} \left(\prod_{i=1}^{N} \frac{\left(b_i - a_i \right)^{\frac{\alpha_i}{k_i}}}{\Gamma_{k_i} (\alpha_i + k_i)} \right) \|f\|_{\infty} < \infty,$$

$$(3.25)$$

for all $x \in \prod\limits_{i=1}^{N} \left[a_{i}^{*}, b_{i}^{*}\right].$ Therefore we get

$$(\psi_1) \le \left(\lambda + \frac{1}{2(kI_{a+}^{\alpha}f)(x_2)} \left(\prod_{i=1}^{N} \frac{(b_i - a_i)^{\frac{\alpha_i}{k_i}}}{\Gamma_{k_i}(\alpha_i + k_i)} \right) \|f\|_{\infty} \right) \|y - x\|, \quad (3.26)$$

for all $x, y \in \prod_{i=1}^{N} [a_i^*, b_i^*]$. Call

$$0 < \gamma_1 := \lambda + \frac{1}{2(kI_{a+}^{\alpha}f)(x_2)} \left(\prod_{i=1}^{N} \frac{(b_i - a_i)^{\frac{\alpha_i}{k_i}}}{\Gamma_{k_i}(\alpha_i + k_i)} \right) ||f||_{\infty},$$
 (3.27)

and by choosing $(b_i - a_i)$ small enough, i = 1, ..., N, we can make $\gamma_1 \in (0, 1)$, fulfilling (3.2).

Next we call and we need that

$$0 < \gamma := \gamma_0 + \gamma_1$$

$$= \left(1 - \frac{\left(kI_{a+}^{\alpha}f\right)(x_1)}{2\left(kI_{a+}^{\alpha}f\right)(x_2)}\right)$$

$$+ \left(\lambda + \frac{1}{2\left(kI_{a+}^{\alpha}f\right)(x_2)} \left(\prod_{i=1}^{N} \frac{\left(b_i - a_i\right)^{\frac{\alpha_i}{k_i}}}{\Gamma_{k_i}\left(\alpha_i + k_i\right)}\right) \|f\|_{\infty}\right)$$

$$(3.28)$$

equivalently,

$$\lambda + \frac{1}{2(kI_{a+}^{\alpha}f)(x_2)} \left(\prod_{i=1}^{N} \frac{(b_i - a_i)^{\frac{\alpha_i}{k_i}}}{\Gamma_{k_i}(\alpha_i + k_i)} \right) \|f\|_{\infty} < \frac{(kI_{a+}^{\alpha}f)(x_1)}{2(kI_{a+}^{\alpha}f)(x_2)}, \quad (3.29)$$

equivalently,

$$2\lambda \left({_k}I_{a+}^{\alpha} f \right)(x_2) + \left(\prod_{i=1}^{N} \frac{\left(b_i - a_i \right)^{\frac{\alpha_i}{k_i}}}{\Gamma_{k_i} \left(\alpha_i + k_i \right)} \right) \|f\|_{\infty} < \left({_k}I_{a+}^{\alpha} f \right)(x_1), \tag{3.30}$$

which is possible for small λ and small $(b_i - a_i)$, all i = 1, ..., N. That is $\gamma \in (0,1)$, fulfilling (3.3). So our numerical method converges and solves (3.13).

(II) Consider the k-right multidimensional Riemann-Liouville fractional integral of order $\alpha = (\alpha_1, ..., \alpha_N)$, $k = (k_1, ..., k_N)$, $(\alpha_i > 0, k_i > 0, i = 1, ..., N)$: $(k_b I_{b-}^{\alpha} f)(x)$

$$= \frac{1}{\prod_{i=1}^{N} k_{i} \Gamma_{k_{i}}(\alpha_{i})} \int_{x_{1}}^{b_{1}} \dots \int_{x_{N}}^{b_{N}} \prod_{i=1}^{N} (t_{i} - x_{i})^{\frac{\alpha_{i}}{k_{i}} - 1} f(t_{1}, \dots, t_{N}) dt_{1} \dots dt_{N}, \quad (3.31)$$

we set

$$_{k}I_{b-}^{0}f = f,$$
 (3.32)

where
$$f \in L_{\infty}\left(\prod_{i=1}^{N} [a_i, b_i]\right)$$
, $b = (b_1, ..., b_N)$ and $x = (x_1, ..., x_N) \in \prod_{i=1}^{N} [a_i, b_i]$.

By [7], we get that ${}_{k}I_{b-}^{\alpha}f$ is a continuous function on $\prod_{i=1}^{N} [a_{i}, b_{i}]$. Furthermore by [7] we get that ${}_{k}I_{b-}^{\alpha}$ is a bounded linear operator, which is a positive operator. We notice the following

$$\left| {}_{k}I_{b-}^{\alpha}f\left(x \right) \right| \leq \frac{1}{\prod\limits_{i=1}^{N}k_{i}\Gamma_{k_{i}}\left(\alpha_{i} \right)}\prod\limits_{i=1}^{N}\frac{\left(b_{i}-x_{i} \right)^{\frac{\alpha_{i}}{k_{i}}}}{\left(\frac{\alpha_{i}}{k_{i}} \right)} \left\| f \right\|_{\infty}$$

$$= \left(\prod\limits_{i=1}^{N}\frac{\left(b_{i}-x_{i} \right)^{\frac{\alpha_{i}}{k_{i}}}}{\Gamma_{k_{i}}\left(\alpha_{i}+k_{i} \right)} \right) \left\| f \right\|_{\infty}.$$

$$(3.33)$$

That is it holds

$$\left| {}_{k}I_{b-}^{\alpha}f\left(x\right) \right| \leq \left(\prod_{i=1}^{N} \frac{\left(b_{i}-x_{i} \right)^{\frac{\alpha_{i}}{k_{i}}}}{\Gamma_{k_{i}}\left(\alpha_{i}+k_{i} \right)} \right) \left\| f \right\|_{\infty}$$

$$\leq \left(\prod_{i=1}^{N} \frac{\left(b_{i}-a_{i} \right)^{\frac{\alpha_{i}}{k_{i}}}}{\Gamma_{k_{i}}\left(\alpha_{i}+k_{i} \right)} \right) \left\| f \right\|_{\infty}. \tag{3.34}$$

We get that

$$_{k}I_{b-}^{\alpha}f\left(b\right) =0.$$
 (3.35)

In particular, $(kI_{b-}^{\alpha}f)$ is continuous on $\prod_{i=1}^{N} [a_i^*, b_i^*]$. Thus there exist $x_1, x_2 \in \prod_{i=1}^{N} [a_i^*, b_i^*]$ such that

$$\begin{pmatrix} kI_{b-}^{\alpha}f \end{pmatrix}(x_1) = \min \left(kI_{b-}^{\alpha}f \right)(x),
\left(kI_{b-}^{\alpha}f \right)(x_2) = \max \left(kI_{b-}^{\alpha}f \right)(x),$$
(3.36)

over all $x \in \prod_{i=1}^{N} [a_i^*, b_i^*]$.

We assume that

$$\left(_{k}I_{b-}^{\alpha}f\right)\left(x_{1}\right)>0.\tag{3.37}$$

Hence

$$\|kI_{b-}^{\alpha}f\|_{\infty,\prod_{i=1}^{N}\left[a_{i}^{*},b_{i}^{*}\right]} = \left(kI_{b-}^{\alpha}f\right)(x_{2}) > 0.$$
(3.38)

Here we define

$$Jf(x) = mf(x), \ 0 < m < \frac{1}{2},$$
 (3.39)

for any $x \in \prod_{i=1}^{N} [a_i^*, b_i^*]$. Therefore the equation

$$Jf(x) = 0, \ x \in \prod_{i=1}^{N} [a_i^*, b_i^*],$$
 (3.40)

has the same solutions as the equation

$$F(x) := \frac{Jf(x)}{2(kI_{b-}^{\alpha}f)(x_2)} = 0, \quad x \in \prod_{i=1}^{N} [a_i^*, b_i^*].$$
 (3.41)

Notice that

$$_{k}I_{b-}^{\alpha}\left(\frac{f}{2\left(_{k}I_{b-}^{\alpha}f\right)(x_{2})}\right)\!(x) = \frac{\left(_{k}I_{b-}^{\alpha}f\right)(x)}{2\left(_{k}I_{b-}^{\alpha}f\right)(x_{2})} \le \frac{1}{2} < 1, \quad x \in \prod_{i=1}^{N}\left[a_{i}^{*},b_{i}^{*}\right]. \quad (3.42)$$

Call

$$A(x) := \frac{\left(_{k} I_{b-}^{\alpha} f\right)(x)}{2\left(_{k} I_{b-}^{\alpha} f\right)(x_{2})}, \ \forall x \in \prod_{i=1}^{N} \left[a_{i}^{*}, b_{i}^{*}\right]. \tag{3.43}$$

We notice that

$$0 < \frac{\left(_{k}I_{b-}^{\alpha}f\right)(x_{1})}{2\left(_{k}I_{b-}^{\alpha}f\right)(x_{2})} \le A(x) \le \frac{1}{2}, \quad \forall x \in \prod_{i=1}^{N} \left[a_{i}^{*}, b_{i}^{*}\right]. \tag{3.44}$$

Hence the first condition (3.1) is fulfilled by

$$|1 - A(x)| = 1 - A(x) \le 1 - \frac{\left(kI_{b-}^{\alpha}f\right)(x_1)}{2\left(kI_{b-}^{\alpha}f\right)(x_2)} =: \gamma_0, \ \forall x \in \prod_{i=1}^{N} \left[a_i^*, b_i^*\right]. (3.45)$$

So that $\left\|1-A\left(x\right)\right\|_{\infty}\leq\gamma_{0}$, where $\left\|\cdot\right\|_{\infty}$ is over $\prod\limits_{i=1}^{N}\left[a_{i}^{*},b_{i}^{*}\right]$. Clearly $\gamma_{0}\in(0,1)$.

Next we assume that $\frac{f(x)}{2(kI_{h-}^{\alpha}f)(x_2)}$ is a contraction, that is

$$\left| \frac{f(x)}{2(kI_{b-}^{\alpha}f)(x_{2})} - \frac{f(y)}{2(kI_{b-}^{\alpha}f)(x_{2})} \right| \le \theta \|x - y\|,$$
 (3.46)

for all $x,y\in\prod\limits_{i=1}^{N}\left[a_{i}^{*},b_{i}^{*}\right],$ $0<\theta<1.$ Hence

$$\left| \frac{mf(x)}{2(kI_{b-}^{\alpha}f)(x_{2})} - \frac{mf(y)}{2(kI_{b-}^{\alpha}f)(x_{2})} \right| \le m\theta \|x - y\| \le \frac{\theta}{2} \|x - y\|, \qquad (3.47)$$

for all
$$x, y \in \prod_{i=1}^{N} [a_i^*, b_i^*]$$
. Set $\lambda = \frac{\theta}{2}$, it is $0 < \lambda < \frac{1}{2}$. We have that
$$|F(x) - F(y)| \le \lambda ||x - y||, \tag{3.48}$$

all $x, y \in \prod_{i=1}^{N} [a_i^*, b_i^*]$. Equivalently we have

$$|Jf(x) - Jf(y)| \le 2\lambda \left({}_{k}I_{b-}^{\alpha}f \right)(x_{2}) ||x - y||, \quad \forall x, y \in \prod_{i=1}^{N} \left[a_{i}^{*}, b_{i}^{*} \right].$$
 (3.49)

We observe that

$$\begin{aligned} & \left\| (F(y) - F(x)) \overrightarrow{i} - A(x) (y - x) \right\| \\ & \leq |F(y) - F(x)| + |A(x)| \|y - x\| \\ & \leq \lambda \|y - x\| + |A(x)| \|y - x\| \\ & = (\lambda + |A(x)|) \|y - x\| =: (\psi_2), \ \forall x, y \in \prod_{i=1}^{N} [a_i^*, b_i^*]. \end{aligned}$$
(3.50)

By (3.34), we have that

$$\left| \left({_k}I_{b-}^{\alpha}f \right)(x) \right| \le \left(\prod_{i=1}^{N} \frac{\left(b_i - a_i \right)^{\frac{\alpha_i}{k_i}}}{\Gamma_{k_i} \left(\alpha_i + k_i \right)} \right) \|f\|_{\infty}, \quad \forall \, x \in \prod_{i=1}^{N} \left[a_i^*, b_i^* \right],$$
 (3.51)

where $\|\cdot\|_{\infty}$ now is over $\prod_{i=1}^{N} [a_i, b_i]$. Hence

$$|A(x)| = \frac{\left| \left(k I_{b-}^{\alpha} f \right) (x) \right|}{2 \left(k I_{b-}^{\alpha} f \right) (x_{2})}$$

$$\leq \frac{1}{2 \left(k I_{b-}^{\alpha} f \right) (x_{2})} \left(\prod_{i=1}^{N} \frac{\left(b_{i} - a_{i} \right)^{\frac{\alpha_{i}}{k_{i}}}}{\Gamma_{k_{i}} \left(\alpha_{i} + k_{i} \right)} \right) \|f\|_{\infty} < \infty,$$

$$(3.52)$$

for all $x \in \prod_{i=1}^{N} [a_i^*, b_i^*]$. Therefore we get

$$(\psi_{2}) \leq \left(\lambda + \frac{1}{2(kI_{b-}^{\alpha}f)(x_{2})} \left(\prod_{i=1}^{N} \frac{(b_{i} - a_{i})^{\frac{\alpha_{i}}{k_{i}}}}{\Gamma_{k_{i}}(\alpha_{i} + k_{i})} \right) \|f\|_{\infty} \right) \|y - x\|, \quad (3.53)$$

for all $x, y \in \prod_{i=1}^{N} [a_i^*, b_i^*]$. Call

$$0 < \gamma_1 := \lambda + \frac{1}{2(kI_{b-}^{\alpha}f)(x_2)} \left(\prod_{i=1}^{N} \frac{(b_i - a_i)^{\frac{\alpha_i}{k_i}}}{\Gamma_{k_i}(\alpha_i + k_i)} \right) ||f||_{\infty},$$
 (3.54)

and by choosing $(b_i - a_i)$ small enough, i = 1, ..., N, we can make $\gamma_1 \in (0, 1)$, fulfilling (3.2).

Next we call and we need that

$$0 < \gamma := \gamma_{0} + \gamma_{1}$$

$$= \left(1 - \frac{\left(k I_{b-}^{\alpha} f\right)(x_{1})}{2\left(k I_{b-}^{\alpha} f\right)(x_{2})}\right)$$

$$+ \left(\lambda + \frac{1}{2\left(k I_{b-}^{\alpha} f\right)(x_{2})} \left(\prod_{i=1}^{N} \frac{\left(b_{i} - a_{i}\right)^{\frac{\alpha_{i}}{k_{i}}}}{\Gamma_{k_{i}}\left(\alpha_{i} + k_{i}\right)}\right) \|f\|_{\infty}\right) < 1,$$
(3.55)

equivalently,

$$\lambda + \frac{1}{2(kI_{b-}^{\alpha}f)(x_{2})} \left(\prod_{i=1}^{N} \frac{(b_{i} - a_{i})^{\frac{\alpha_{i}}{k_{i}}}}{\Gamma_{k_{i}}(\alpha_{i} + k_{i})} \right) \|f\|_{\infty} < \frac{(kI_{b-}^{\alpha}f)(x_{1})}{2(kI_{b-}^{\alpha}f)(x_{2})}, \quad (3.56)$$

equivalently,

$$2\lambda \left({_{k}I_{b-}^{\alpha}f} \right)(x_{2}) + \left(\prod_{i=1}^{N} \frac{\left(b_{i} - a_{i} \right)^{\frac{\alpha_{i}}{k_{i}}}}{\Gamma_{k_{i}}\left(\alpha_{i} + k_{i} \right)} \right) \|f\|_{\infty} < \left({_{k}I_{b-}^{\alpha}f} \right)(x_{1}), \tag{3.57}$$

which is possible for small λ and small $(b_i - a_i)$, all i = 1, ..., N. That is $\gamma \in (0,1)$, fulfilling (3.3). So our numerical method converges and solves (3.40).

(III) Here we deal with the following multivariate mixed fractional derivative: let $\alpha = (\alpha_1, ..., \alpha_N)$, where $0 < \alpha_i < 1, i = 1, ..., N; f \in C^N\left(\prod_{i=1}^N [0, b_i]\right); b_i > 0, i = 1, ..., N,$

$${\binom{CF}{0_*^{\alpha} f}(t) = \frac{1}{\prod_{i=1}^{N} (1-\alpha_i)} \cdot \int_0^{t_1} \dots \int_0^{t_N} \prod_{i=1}^{N} \exp\left(-\frac{\alpha_i}{1-\alpha_i} (t_i - s_i)\right) \times \frac{\partial^N f(s_1, \dots, s_N)}{\partial s_1 \dots \partial s_N} ds_1 \dots ds_N,}$$
(3.58)

for all $0 \le t_i \le b_i$, i = 1, ..., N with $t = (t_1, ..., t_N)$. When N = 1, the univariate case is known as the M. Caputo-Fabrizio fractional derivative, see [18]. Call

$$\gamma_i := \frac{\alpha_i}{1 - \alpha_i} > 0, \tag{3.59}$$

i.e.,

$$\binom{CF}{0_*^{\alpha} f}(t) = \frac{1}{\prod_{i=1}^{N} (1 - \alpha_i)} \cdot \int_0^{t_1} \dots \int_0^{t_N} \prod_{i=1}^{N} e^{-\gamma_i (t_i - s_i)} \times \frac{\partial^N f(s_1, \dots, s_N)}{\partial s_1 \dots \partial s_N} ds_1 \dots ds_N,$$
(3.60)

for all $0 \le t_i \le b_i$, i = 1, ..., N. We notice that

$$\left| \begin{pmatrix} CFD_*^{\alpha}f \end{pmatrix}(t) \right|$$

$$\leq \frac{1}{\prod_{i=1}^{N} (1 - \alpha_{i})} \cdot \left(\int_{0}^{t_{1}} \dots \int_{0}^{t_{N}} \prod_{i=1}^{N} e^{-\gamma_{i}(t_{i} - s_{i})} ds_{1} \dots ds_{N} \right) \left\| \frac{\partial^{N} f}{\partial x_{1} \dots \partial x_{N}} \right\|_{\infty}$$

$$= \prod_{i=1}^{N} \left(\frac{1}{1 - \alpha_{i}} \int_{0}^{t_{i}} e^{-\gamma_{i}(t_{i} - s_{i})} ds_{i} \right) \left\| \frac{\partial^{N} f}{\partial x_{1} \dots \partial x_{N}} \right\|_{\infty}$$

$$= \left(\prod_{i=1}^{N} \frac{e^{-\gamma_{i} t_{i}}}{\alpha_{i}} \left(e^{\gamma_{i} t_{i}} - 1 \right) \right) \left\| \frac{\partial^{N} f}{\partial x_{1} \dots \partial x_{N}} \right\|_{\infty}$$

$$= \left(\prod_{i=1}^{N} \frac{1}{\alpha_{i}} \left(1 - e^{-\gamma_{i} t_{i}} \right) \right) \left\| \frac{\partial^{N} f}{\partial x_{1} \dots \partial x_{N}} \right\|_{\infty}$$

$$\leq \left(\prod_{i=1}^{N} \left(\frac{1 - e^{-\gamma_{i} b_{i}}}{\alpha_{i}} \right) \right) \left\| \frac{\partial^{N} f}{\partial x_{1} \dots \partial x_{N}} \right\|_{\infty}$$

$$(3.62)$$

That is

$$({}^{CF}D_*^{\alpha}f)(0,...,0) = 0$$
 (3.63)

and

$$\left| \left({^{CF}D_*^{\alpha}f} \right)(t) \right| \le \left(\prod_{i=1}^N \left(\frac{1 - e^{-\gamma_i b_i}}{\alpha_i} \right) \right) \left\| \frac{\partial^N f}{\partial x_1 ... \partial x_N} \right\|_{\infty}. \tag{3.64}$$

Notice here that $1 - e^{-\gamma_i t_i}$, $t_i \ge 0$ is an increasing function, i = 1, ..., N. Thus the smaller the t_i , the smaller it is $1 - e^{-\gamma_i t_i}$, i = 1, ..., N. We can rewrite

$$\begin{aligned}
&(C^{F}D_{*}^{\alpha}f)(t) \\
&= \prod_{i=1}^{N} \left(\frac{e^{-\gamma_{i}t_{i}}}{1-\alpha_{i}}\right) \int_{0}^{t_{1}} \dots \int_{0}^{t_{N}} e^{\sum_{i=1}^{N} \gamma_{i}s_{i}} \frac{\partial^{N}f(s_{1}, \dots, s_{N})}{\partial s_{1} \dots \partial s_{N}} ds_{1} \dots ds_{N} \\
&= \prod_{i=1}^{N} \left(\frac{e^{-\gamma_{i}t_{i}}}{1-\alpha_{i}}\right) \int_{0}^{b_{1}} \dots \int_{0}^{b_{N}} \chi_{\prod_{i=1}^{N}[0, t_{i}]}(s_{1}, \dots, s_{N}) e^{\sum_{i=1}^{N} \gamma_{i}s_{i}} \\
&\times \frac{\partial^{N}f(s_{1}, \dots, s_{N})}{\partial s_{1} \dots \partial s_{N}} ds_{1} \dots ds_{N},
\end{aligned} (3.66)$$

where χ stands for the characteristic function. Let $t_n \to t$, as $n \to \infty$, then

$$\chi_{\prod_{i=1}^{N}[0,t_{in}]}(s_1,...,s_N) \to \chi_{\prod_{i=1}^{N}[0,t_i]}(s_1,...,s_N)$$
, a.e., as $n \to \infty$,

where $t_n = (t_{1n}, ..., t_{Nn})$. Hence we have

$$\chi_{\prod_{i=1}^{N}[0,t_{in}]}(s_{1},...,s_{N}) e^{\sum_{i=1}^{N} \gamma_{i} s_{i}} \frac{\partial^{N} f(s_{1},...,s_{N})}{\partial s_{1}...\partial s_{N}}$$

$$\to \chi_{\prod_{i=1}^{N}[0,t_{i}]}(s_{1},...,s_{N}) e^{\sum_{i=1}^{N} \gamma_{i} s_{i}} \frac{\partial^{N} f(s_{1},...,s_{N})}{\partial s_{1}...\partial s_{N}}, \text{ a.e.,}$$

in $(s_1,...,s_N) \in \prod_{i=1}^N [0,b_i]$. Furthermore, it holds

$$\chi_{\prod_{i=1}^{N}[0,t_{iN}]}(s_{1},...,s_{N}) e^{\sum_{i=1}^{N} \gamma_{i} s_{i}} \left| \frac{\partial^{N} f(s_{1},...,s_{N})}{\partial s_{1}...\partial s_{N}} \right| \\
\leq e^{\sum_{i=1}^{N} \gamma_{i} b_{i}} \left\| \frac{\partial^{N} f}{\partial x_{1}...\partial x_{N}} \right\|_{\infty}.$$
(3.67)

Thus, by dominated convergence theorem we get

$$({}^{CF}D_*^{\alpha}f)(t_n) \to ({}^{CF}D_*^{\alpha}f)(t) \text{ as } n \to \infty,$$

proving continuity of $\binom{CF}{0_*^{\alpha}f}(t)$, $t \in \prod_{i=1}^N [0,b_i]$. In particular, $\binom{CF}{0_*^{\alpha}f}(t)$ is continuous, for all $t \in \prod_{i=1}^N [a_i,b_i]$, where $0 < a_i < b_i$, i = 1,...,N. Therefore there exist $x_1, x_2 \in \prod_{i=1}^N [a_i,b_i]$ such that

$${}^{CF}D_*^{\alpha}f(x_1) = \min {}^{CF}D_*^{\alpha}f(x) \tag{3.68}$$

and

$$^{CF}D_*^{\alpha}f(x_2) = \max \ ^{CF}D_*^{\alpha}f(x), \text{ for } x \in \prod_{i=1}^{N} [a_i, b_i].$$
 (3.69)

We assume that

$$^{CF}D_{*}^{\alpha}f(x_{1}) > 0$$
 (3.70)

(i.e., $^{CF}D_{*}^{\alpha}f\left(x\right)>0, \quad \forall x\in\prod_{i=1}^{N}\left[a_{i},b_{i}\right]$). Furthermore

$$\|C^{F}D_{*}^{\alpha}fG\|_{\infty,[a,b]} = C^{F}D_{*}^{\alpha}f(x_{2}).$$
 (3.71)

Here we define

$$Jf(x) = mf(x), \quad 0 < m < \frac{1}{2}, \quad \forall \ x \in \prod_{i=1}^{N} [a_i, b_i].$$
 (3.72)

The equation

$$Jf(x) = 0, \quad x \in \prod_{i=1}^{N} [a_i, b_i]$$
 (3.73)

has the same set of solutions as the equation

$$F(x) := \frac{Jf(x)}{CFD_*^{\alpha}f(x_2)} = 0, \quad x \in \prod_{i=1}^{N} [a_i, b_i].$$
 (3.74)

Notice that

$${}^{CF}D_*^{\alpha}\left(\frac{f(x)}{2^{CF}D_*^{\alpha}f(x_2)}\right) = \frac{{}^{CF}D_*^{\alpha}f(x)}{2^{CF}D_*^{\alpha}f(x_2)} \le \frac{1}{2} < 1, \quad \forall \, x \in \prod_{i=1}^{N} \left[a_i, b_i\right]. \quad (3.75)$$

We call

$$A(x) := \frac{CFD_*^{\alpha} f(x)}{2^{CF}D_*^{\alpha} f(x_2)}, \quad \forall x \in \prod_{i=1}^{N} [a_i, b_i].$$
 (3.76)

We notice that

$$0 < \frac{{}^{CF}D_*^{\alpha}f(x_1)}{2{}^{CF}D_*^{\alpha}f(x_2)} \le A(x) \le \frac{1}{2}.$$
 (3.77)

Furthermore it holds

$$|1 - A(x)| = 1 - A(x) \le 1 - \frac{CF D_*^{\alpha} f(x_1)}{2^{CF} D_*^{\alpha} f(x_2)} =: \gamma_0, \quad \forall x \in \prod_{i=1}^{N} [a_i, b_i]. \quad (3.78)$$

Clearly $\gamma_0 \in (0,1)$. We have proved that

$$\|1 - A(x)\|_{\infty} \le \gamma_0 \in (0, 1), \quad \forall x \in \prod_{i=1}^{N} [a_i, b_i],$$
 (3.79)

see (3.1) fulfilled.

Next we assume that F(x) is a contraction over $\prod_{i=1}^{N} [a_i, b_i]$, *i.e.*,

$$|F(x) - F(y)| \le \lambda ||x - y||, \quad \forall x, y \in \prod_{i=1}^{N} [a_i, b_i]$$
 (3.80)

and $0 < \lambda < \frac{1}{2}$. Equivalently we have

$$|Jf(x) - Jf(y)| \le 2\lambda \left({^{CF}D_*^{\alpha}f(x_2)} \right) ||x - y||, \quad \forall x, y \in [a, b].$$
 (3.81)

We observe that

$$\begin{aligned} & \| (F(y) - F(x)) \overrightarrow{i} - A(x) (y - x) \| \\ & \leq |F(y) - F(x)| + |A(x)| \|y - x\| \\ & \leq \lambda \|y - x\| + |A(x)| \|y - x\| \\ & = (\lambda + |A(x)|) \|y - x\| =: (\xi), \ \forall x, y \in \prod_{i=1}^{N} [a_i, b_i], \end{aligned}$$
(3.82)

where \overrightarrow{i} the unit vector in \mathbb{R}^N . Here we have (3.64) valid on $\prod_{i=1}^N [a_i, b_i]$. Hence, for all $x \in \prod_{i=1}^N [a_i, b_i]$, we get that

$$|A(x)| = \frac{\left| {^{CF}D_*^{\alpha}f(x)} \right|}{2\left({^{CF}D_*^{\alpha}f(x_2)} \right)} \le \frac{\left(\prod_{i=1}^N \left(\frac{1 - e^{-\gamma_i b_i}}{\alpha_i} \right) \right) \left\| \frac{\partial^N f}{\partial x_1 \dots \partial x_N} \right\|_{\infty}}{2\alpha \left({^{CF}D_*^{\alpha}f(x_2)} \right)} < \infty. \quad (3.83)$$

Consequently we observe

$$(\xi) \le \left(\lambda + \frac{\left(\prod_{i=1}^{N} \left(\frac{1 - e^{-\gamma_i b_i}}{\alpha_i}\right)\right) \left\|\frac{\partial^N f}{\partial x_1 ... \partial x_N}\right\|_{\infty}}{2\alpha \left({}^{CF} D_*^{\alpha} f\right)(x_2)}\right) \|y - x\|, \tag{3.84}$$

for all $x, y \in \prod_{i=1}^{N} [a_i, b_i]$. Call

$$0 < \gamma_1 := \lambda + \frac{\left(\prod_{i=1}^N \left(\frac{1 - e^{-\gamma_i b_i}}{\alpha_i}\right)\right) \left\|\frac{\partial^N f}{\partial x_1 ... \partial x_N}\right\|_{\infty}}{2\alpha \left({}^{CF}D_*^{\alpha} f\right)(x_2)},\tag{3.85}$$

choosing b_i small enough, i=1,...,N, we can make $\gamma_1 \in (0,1)$. We have proved (3.2) over $\prod_{i=1}^{N} [a_i,b_i]$.

Next we call and need

$$0 < \gamma := \gamma_0 + \gamma_1$$

$$=1-\frac{CFD_{*}^{\alpha}f\left(x_{1}\right)}{2^{CF}D_{*}^{\alpha}f\left(x_{2}\right)}+\lambda+\frac{\left(\prod_{i=1}^{N}\left(\frac{1-e^{-\gamma_{i}b_{i}}}{\alpha_{i}}\right)\right)\left\|\frac{\partial^{N}f}{\partial x_{1}...\partial x_{N}}\right\|_{\infty}}{2\alpha\left({}^{CF}D_{*}^{\alpha}f\right)\left(x_{2}\right)}$$

$$<1,$$
(3.86)

equivalently,

$$\lambda + \frac{\left(\prod_{i=1}^{N} \left(\frac{1 - e^{-\gamma_i b_i}}{\alpha_i}\right)\right) \left\|\frac{\partial^N f}{\partial x_1 ... \partial x_N}\right\|_{\infty}}{2\alpha \left({}^{CF} D_*^{\alpha} f\right)(x_2)} < \frac{{}^{CF} D_*^{\alpha} f\left(x_1\right)}{2{}^{CF} D_*^{\alpha} f\left(x_2\right)},\tag{3.87}$$

equivalently,

$$2\lambda^{CF} D_*^{\alpha} f\left(x_2\right) + \left(\prod_{i=1}^N \left(\frac{1 - e^{-\gamma_i b_i}}{\alpha_i}\right)\right) \left\|\frac{\partial^N f}{\partial x_1 ... \partial x_N}\right\|_{\infty} <^{CF} D_*^{\alpha} f\left(x_1\right), \quad (3.88)$$

which is possible for small λ , b_i , i = 1, ..., N. We have proved that

$$\gamma = \gamma_0 + \gamma_1 \in (0, 1), \qquad (3.89)$$

fulfilling (3.3). Hence equation (3.73) can be solved with our presented numerical methods. Consequently, our presented Numerical methods here, Theorem 2.1, apply to solve

$$f\left(x\right) = 0. \tag{3.90}$$

References

- [1] S. Amat, S. Busquier and S. Plaza, Chaotic dynamics of a third-order Newton-type method, J. Math. Anal. Appl., 366(1) (2010), 164–174.
- [2] G. Anastassiou, Fractional Differentiation Inequalities, Springer, New York, 2009.
- [3] G. Anastassiou, Fractional Representation Formulae and Right Fractional Inequalities, Mathematical and Computer Modelling, 54(10-12) (2011), 3098–3115.
- [4] G. Anastassiou, Intelligent Mathematics: Computational Analysis, Springer, Heidelberg, 2011.
- [5] G. Anastassiou, Advanced Inequalities, World Scientific Publ. Corp., Singapore, New York, 2011.
- [6] G. Anastassiou, On left multidimensional Riemann-Liouville fractional integral, J. of Comp. Anal. Appl., accepted, 2015.
- [7] G. Anastassiou, On right multidimensional Riemann-Liouville fractional integral, J. of Comp. Anal. Appl., accepted, 2015.
- [8] G. Anastassiou and I.K. Argyros, Studies in Computational Intelligence, 624, Intelligent Numerical Methods: Applications to Fractional Calculus, Springer, Heidelberg, 2016.
- [9] I.K. Argyros, A unifying local-semilocal convergence analysis and applications for twopoint Newton-like methods in Banach space, J. Math. Anal. Appl., 298 (2004), 374–397.
- [10] I.K. Argyros, Convergence and Applications of Newton-type iterations, Springer-Verlag Publ., New York, 2008.
- [11] I.K. Argyros, On a class of Newton-like methods for solving nonlinear equations, J. Comput. Appl. Math., 228 (2009), 115–122.
- [12] I.K. Argyros, A semilocal convergence analysis for directional Newton methods, Math. Comp. AMS, 80 (2011), 327–343.
- [13] I.K. Argyros, Y.J. Cho and S. Hilout, Numerical methods for equations and its applications, CRC Press/Taylor and Fracncis Group, New York, 2012.
- [14] I.K. Argyros and S. Hilout, Weaker conditions for the convergence of Newton's method, J. Complexity, 28 (2012), 364–387.
- [15] J.A. Ezquérro, J.M. Gutiérrez, M.A. Hernández, N. Romero and M.J. Rubio, The Newton method: From Newton to Kantorovich(Spanish), Gac. R. Soc. Mat. Esp., 13 (2010), 53-76.
- [16] J.A. Ezquérro and M.A. Hernández, Newton-type methods of high order and domains of semilocal and global convergence, Appl. Math. Comput., 214(1) (2009), 142–154.
- [17] L.V. Kantorovich and G.P. Akilov, Functional Analysis in Normed Spaces, Pergamon Press, New York, 1964.
- [18] J. Losada and J.J. Nieto, Properties of a New Fractional Derivative without Singular Kernel, Progr. Fract. Differ. Appl., 1(2) (2015), 87–92.
- [19] A.A. Magreñán, Different anomalies in a Jarratt family of iterative root finding methods, Appl. Math. Comput., 233 (2014), 29–38.
- [20] A.A. Magreñán, A new tool to study real dynamics: The convergence plane, Appl. Math. Comput., 248 (2014), 215–224.
- [21] S. Mubeen and G.M. Habibullah, k-Fractional Integrals and Applications, Int. J. Contemp. Math. Sciences, 7(2) (2012), 89–94.