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Abstract. In this paper we will provide a new fixed point convergence theorem. Our

theorem includes the known results of [2].

1. Introduction

In this paper, let (X, d) be a metric space and T be a self-map of X. Denote
Ψ = {the class of all continuous nondecreasing function ψ : [0,+∞)→ [0,+∞)
with ψ(0) = 0}. Now we recall some nonlinear mappings.

A mapping T is said to be contraction if there exists α ∈ (0, 1) such that

d(Tx, Ty) ≤ α · d(x, y) (1.1)

holds for all x, y ∈ X. T is called ϕ-weak contraction if there exists ϕ ∈ Ψ
such that

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)) (1.2)

holds for all x, y ∈ X. Let ϕ(t) = (1− α)t, then ϕ-weak contraction contains
contraction as special cases.

The definition of the ϕ-weak contraction was introduced by Alber and
Guerre-Delabriere [1] in 1997, who proved the existence of fixed points in
Hilbert spaces. Later, Rhoades [2] in 2001 extended the results of [1] to metric
spaces.
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Theorem 1.1. ([2]) Let (X, d) be a complete metric space, and let T be a
ϕ-weak contraction on X. Then T has a unique fixed point.

We notice immediately that if T is ϕ-weak contraction, then T satisfies the
following inequality

d(Tx, Ty) ≤ d(x, y)− ϕ(d(Tx, Ty)). (1.3)

However, the converse is not true in general. See example as follows.

Example 1.2. Let X = (−∞,+∞) be endowed with the Euclidean metric
d(x, y) = |x − y| and let Tx = 1

3x for each x ∈ X. Define ϕ(t) : [0,+∞) →
[0,+∞) by ϕ(t) = 3

2 t. Then T satisfies (1.3), but T does not satisfy inequality
(1.2). Indeed,

d(Tx, Ty) =|1
3
x− 1

3
y|

≤|x− y| − 3

2
· |x− y|

3
=d(x, y)− ϕ(d(Tx, Ty))

and

d(Tx, Ty) =|1
3
x− 1

3
y|

≥|x− y| − 3

2
|x− y|

=d(x, y)− ϕ(d(x, y))

hold for all x, y ∈ X. The examples above show that (1.3) properly includes
the class of ϕ-weak contractions.

Example 1.3. Let X = [0,+∞) be endowed by d(x, y) = |x − y| and let

Tx = x
1+x for each x ∈ X. Define ϕ : [0,+∞)→ [0,+∞) by ϕ(t) = t2

1+t . Then

d(Tx, Ty) =| x

1 + x
− y

1 + y
| = |x− y|

(1 + x)(1 + y)

≤ |x− y|
1 + |x− y|

= |x− y| − |x− y|2

1 + |x− y|
=d(x, y)− ϕ(d(x, y))

holds for all x, y ∈ X. So T is a ϕ-weak contraction. However T is not a
contraction. Therefore it is a more significance to study the class of mappings
in fixed point theory and applications field.
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In this paper, we will research the convergence theorems of fixed point for
more generalized ϕ-weak contractions in complete metric spaces.

2. Preliminaries

Theorem 2.1. Let (X, d) be a complete metric space and let T : X → X be
a generalized ϕ-weak contraction, i.e., T satisfies the following inequality

d(Tx, Ty) ≤ d(x, y)− ϕ(d(Tx, Ty)). (2.1)

Then T has a unique fixed point.

Proof. Let x0 ∈ X and {xn} be defined by xn+1 = Txn with xn 6= Txn. Then

d(xn+1, xn) = d(Txn, Txn−1)

≤ d(xn, xn−1)− ϕ(d(xn+1, xn))

≤ d(xn, xn−1),

it implies that {d(xn+1, xn)} is a monotone decreasing bounded sequence.
There exists a real number r ≥ 0 such that

lim
n→∞

d(xn+1, xn) = r.

Since ϕ is continuous, we have

r ≤ r − ϕ(r).

That is ϕ(r) ≤ 0, i.e., r = 0. So limn→∞ d(xn+1, xn) = 0.
Next we prove that {xn} is a Cauchy sequence. Let cn = sup{d(xi, xj) :

i, j ≥ n}. Then {cn} is decreasing. If limn→∞ cn = 0, then we are done.
Assume that limn→∞ cn = c > 0. For taking ε < c

2 small enough, there exists
N such that

d(xn+1, xn) < ε, c− ε < cn < c+ ε

for all n > N . By the definition of {cn}, there exists nk, nl such that

d(xnk
, xnl

) > cn − ε > c− 2ε > 0.

And we also have

d(xnk−1, ynl−1) ≤ cn−1 < c+ ε.

Since

d(xnk
, xnl

) = d(Txnk−1, Txnl−1)

≤ d(xnk−1, xnl−1)− ϕ(d(xnk
, xnl

)),

then

c− 2ε < d(xnk
, xnl

) ≤ d(xnk−1, xnl−1) < c+ ε.
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Because of arbitrariness of ε, it follows that

d(xnk
, xnl

), d(xnk−1, xnl−1)→ c as ε→ 0.

Hence, we obtain from above inequality that

ϕ(c) ≤ 0,

which is a contradiction. This shows that {xn} is a Cauchy sequence and so
it is convergent in the complete metric space X. Let limn→∞ xn = q.

Finally, we show that q is unique fixed point of T . If q 6= Tq, then d(q, T q) >
0. Since

d(Tq, xn+1) =d(Tq, Txn)

≤d(q, xn)− ϕ(d(Tq, Txn))

=d(q, xn)− ϕ(d(Tq, xn+1)),

i.e.,
d(Tq, xn+1) + ϕ(d(Tq, xn+1)) ≤ d(q, xn).

Taking limit as n→∞ for above inequality,

d(Tq, q) + ϕ(d(Tq, q)) ≤ 0,

which is a contradiction and so q = Tq. For uniqueness of fixed point of T .
Indeed, if it is not true, then there exists p ∈ X with Tp = p 6= q. Observe
that

d(q, p) =d(Tq, Tp)

≤d(q, p)− ϕ(d(Tq, Tp))

=d(q, p))− ϕ(d(q, p)),

i.e., ϕ(d(q, p)) ≤ 0, which is a contradiction. The proof is completed. �

Theorem 2.2. Let (X, d) be a complete metric space and let T : X → X be
a ϕ-weak contraction. Then T has a unique fixed point.
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