Nonlinear Functional Analysis and Applications Vol. 21, No. 3 (2016), pp. 497-500

http://nfaa.kyungnam.ac.kr/journal-nfaa Copyright \bigodot 2016 Kyungnam University Press

THE CONVERGENCE OF FIXED POINT FOR A KIND OF WEAK CONTRACTION

Zhiqun Xue

Department of Mathematics and Physics, Shijiazhuang Tiedao University Shijiazhuang 050043, China e-mail: xuezhiqun@126.com

Abstract. In this paper we will provide a new fixed point convergence theorem. Our theorem includes the known results of [2].

1. INTRODUCTION

In this paper, let (X, d) be a metric space and T be a self-map of X. Denote $\Psi = \{\text{the class of all continuous nondecreasing function } \psi : [0, +\infty) \rightarrow [0, +\infty) \}$ with $\psi(0) = 0\}$. Now we recall some nonlinear mappings.

A mapping T is said to be contraction if there exists $\alpha \in (0, 1)$ such that

$$d(Tx, Ty) \le \alpha \cdot d(x, y) \tag{1.1}$$

holds for all $x, y \in X$. T is called φ -weak contraction if there exists $\varphi \in \Psi$ such that

$$d(Tx, Ty) \le d(x, y) - \varphi(d(x, y)) \tag{1.2}$$

holds for all $x, y \in X$. Let $\varphi(t) = (1 - \alpha)t$, then φ -weak contraction contains contraction as special cases.

The definition of the φ -weak contraction was introduced by Alber and Guerre-Delabriere [1] in 1997, who proved the existence of fixed points in Hilbert spaces. Later, Rhoades [2] in 2001 extended the results of [1] to metric spaces.

⁰Received January 18, 2016. Revised March 31, 2016.

⁰2010 Mathematics Subject Classification: 47H10, 47H17.

⁰Keywords: Complete metric space, generalized φ -weak contraction, fixed point.

⁰This work was supported by Natural Science Foundation of Hebei Province (No. A2015210098) and Science and Technology Research of Higher Education in Hebei province(No. ZD2015035).

Zhiqun Xue

Theorem 1.1. ([2]) Let (X, d) be a complete metric space, and let T be a φ -weak contraction on X. Then T has a unique fixed point.

We notice immediately that if T is φ -weak contraction, then T satisfies the following inequality

$$d(Tx, Ty) \le d(x, y) - \varphi(d(Tx, Ty)).$$
(1.3)

However, the converse is not true in general. See example as follows.

Example 1.2. Let $X = (-\infty, +\infty)$ be endowed with the Euclidean metric d(x, y) = |x - y| and let $Tx = \frac{1}{3}x$ for each $x \in X$. Define $\varphi(t) : [0, +\infty) \rightarrow [0, +\infty)$ by $\varphi(t) = \frac{3}{2}t$. Then T satisfies (1.3), but T does not satisfy inequality (1.2). Indeed,

$$d(Tx, Ty) = \left|\frac{1}{3}x - \frac{1}{3}y\right|$$

$$\leq |x - y| - \frac{3}{2} \cdot \frac{|x - y|}{3}$$

$$= d(x, y) - \varphi(d(Tx, Ty))$$

and

$$d(Tx, Ty) = \left|\frac{1}{3}x - \frac{1}{3}y\right|$$
$$\geq |x - y| - \frac{3}{2}|x - y|$$
$$= d(x, y) - \varphi(d(x, y))$$

hold for all $x, y \in X$. The examples above show that (1.3) properly includes the class of φ -weak contractions.

Example 1.3. Let $X = [0, +\infty)$ be endowed by d(x, y) = |x - y| and let $Tx = \frac{x}{1+x}$ for each $x \in X$. Define $\varphi : [0, +\infty) \to [0, +\infty)$ by $\varphi(t) = \frac{t^2}{1+t}$. Then

$$d(Tx, Ty) = \left|\frac{x}{1+x} - \frac{y}{1+y}\right| = \frac{|x-y|}{(1+x)(1+y)}$$
$$\leq \frac{|x-y|}{1+|x-y|} = |x-y| - \frac{|x-y|^2}{1+|x-y|}$$
$$= d(x, y) - \varphi(d(x, y))$$

holds for all $x, y \in X$. So T is a φ -weak contraction. However T is not a contraction. Therefore it is a more significance to study the class of mappings in fixed point theory and applications field.

In this paper, we will research the convergence theorems of fixed point for more generalized φ -weak contractions in complete metric spaces.

2. Preliminaries

Theorem 2.1. Let (X, d) be a complete metric space and let $T : X \to X$ be a generalized φ -weak contraction, i.e., T satisfies the following inequality

$$d(Tx, Ty) \le d(x, y) - \varphi(d(Tx, Ty)).$$
(2.1)

Then T has a unique fixed point.

Proof. Let $x_0 \in X$ and $\{x_n\}$ be defined by $x_{n+1} = Tx_n$ with $x_n \neq Tx_n$. Then

$$d(x_{n+1}, x_n) = d(Tx_n, Tx_{n-1}) \leq d(x_n, x_{n-1}) - \varphi(d(x_{n+1}, x_n)) \leq d(x_n, x_{n-1}),$$

it implies that $\{d(x_{n+1}, x_n)\}$ is a monotone decreasing bounded sequence. There exists a real number $r \ge 0$ such that

$$\lim_{n \to \infty} d(x_{n+1}, x_n) = r.$$

Since φ is continuous, we have

$$r \le r - \varphi(r).$$

That is $\varphi(r) \leq 0$, *i.e.*, r = 0. So $\lim_{n \to \infty} d(x_{n+1}, x_n) = 0$.

Next we prove that $\{x_n\}$ is a Cauchy sequence. Let $c_n = \sup\{d(x_i, x_j) : i, j \ge n\}$. Then $\{c_n\}$ is decreasing. If $\lim_{n\to\infty} c_n = 0$, then we are done. Assume that $\lim_{n\to\infty} c_n = c > 0$. For taking $\varepsilon < \frac{c}{2}$ small enough, there exists N such that

$$d(x_{n+1}, x_n) < \varepsilon, \quad c - \varepsilon < c_n < c + \varepsilon$$

for all n > N. By the definition of $\{c_n\}$, there exists n_k, n_l such that

$$d(x_{n_k}, x_{n_l}) > c_n - \varepsilon > c - 2\varepsilon > 0$$

And we also have

$$d(x_{n_k-1}, y_{n_l-1}) \le c_{n-1} < c + \varepsilon.$$

Since

$$d(x_{n_k}, x_{n_l}) = d(Tx_{n_k-1}, Tx_{n_l-1})$$

$$\leq d(x_{n_k-1}, x_{n_l-1}) - \varphi(d(x_{n_k}, x_{n_l})),$$

then

$$c - 2\varepsilon < d(x_{n_k}, x_{n_l}) \le d(x_{n_k-1}, x_{n_l-1}) < c + \varepsilon$$

Zhiqun Xue

Because of arbitrariness of ε , it follows that

$$d(x_{n_k}, x_{n_l}), d(x_{n_k-1}, x_{n_l-1}) \to c \ as \ \varepsilon \to 0.$$

Hence, we obtain from above inequality that

 $\varphi(c) \le 0,$

which is a contradiction. This shows that $\{x_n\}$ is a Cauchy sequence and so it is convergent in the complete metric space X. Let $\lim_{n\to\infty} x_n = q$.

Finally, we show that q is unique fixed point of T. If $q \neq Tq$, then d(q, Tq) > 0. Since

$$d(Tq, x_{n+1}) = d(Tq, Tx_n)$$

$$\leq d(q, x_n) - \varphi(d(Tq, Tx_n))$$

$$= d(q, x_n) - \varphi(d(Tq, x_{n+1})),$$

i.e.,

$$d(Tq, x_{n+1}) + \varphi(d(Tq, x_{n+1})) \le d(q, x_n)$$

Taking limit as $n \to \infty$ for above inequality,

$$d(Tq,q) + \varphi(d(Tq,q)) \le 0,$$

which is a contradiction and so q = Tq. For uniqueness of fixed point of T. Indeed, if it is not true, then there exists $p \in X$ with $Tp = p \neq q$. Observe that

$$d(q, p) = d(Tq, Tp)$$

$$\leq d(q, p) - \varphi(d(Tq, Tp))$$

$$= d(q, p)) - \varphi(d(q, p)),$$

i.e., $\varphi(d(q, p)) \leq 0$, which is a contradiction. The proof is completed.

Theorem 2.2. Let (X,d) be a complete metric space and let $T: X \to X$ be a φ -weak contraction. Then T has a unique fixed point.

References

- Y.I. Alber and S. Guerre-Delabriere, *Principles of weakly contractive maps in Hilbert spaces*, In: I. Gohberg, Yu. Lyubich (Eds.), New Results in Operator Theory, in: Advances and Appl., vol. 98, Birkhäuser, Basel, (1997), 7–22.
- [2] B.E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal., 47 (2001), 2683–2693.
- [3] Q.N. Zhang and Y.S. Song, Fixed point theory for generalized φ-weak contractions, Appl. Math. Lett., 22 (2009), 75–78.

500