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İnönü University, 44280, Malatya, Turkey

e-mail: yyilmaz44@gmail.com

Abstract. In this paper concerning with the notion of convergence in normed quasilinear

spaces, we show that convergence of a sequence depends directly on partial order relation

defined on the normed quasilinear space. Then we introduce the notions of “lower semi

convergence” and “upper semi convergence”. We note that these new definitions about

convergence would be an alternative for not convergent sequences in normed quasilinear

spaces.

1. Introduction

Aseev [2] launched a new branch of functional analysis by introducing the
concept of quasilinear spaces which is generalization of classical linear spaces.
He used a partial order relation to define quasilinear spaces and gave coherent
counterparts of some results in linear spaces. Aseev’s approach provides a
suitable base and necessary tools to proceed algebra and analysis on normed
quasilinear spaces as similar to the theory of normed linear spaces. So, Aseev’s
attempt brings an extended point of view to classical functional analysis and
allows us to construct a kind of theory of quasilinear functional analysis, [4,
5, 6, 7, 8, 10].
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This study deals with the notion of convergence of a sequence, which is one
of the important concepts in mathematics, in normed quasilinear spaces.

In next section, we give some definitions and auxiliary facts about quasi-
linear spaces and normed quasilinear spaces. Then we introduce the concepts
of lower and upper semi convergence. Also, we obtain some results related to
these concepts.

2. Preliminaries and some results on quasilinear spaces and
normed quasilinear spaces

Definition 2.1. ([2]) A set X is called quasilinear space (qls, for short), if
a partial order relation “�”, an algebraic sum operation and an operation
of multiplication by real numbers are defined in it in such a way that the
following conditions hold for all elements x, y, z, v ∈ X and any α, β ∈ R:

x � x, (2.1)

x � z if x � y and y � z, (2.2)

x = y if x � y and y � x, (2.3)

x+ y = y + x, (2.4)

x+ (y + z) = (x+ y) + z, (2.5)

there exists an element θ ∈ X such that x+ θ = x, (2.6)

α · (β · x) = (αβ) · x, (2.7)

α · (x+ y) = α · x+ α · y, (2.8)

1 · x = x, (2.9)

0 · x = θ, (2.10)

(α+ β) · x � α · x+ β · x, (2.11)

x+ z � y + v if x � y and z � v, (2.12)

α · x � α · y if x � y. (2.13)

A qls X with the partial order relation “�” is denoted by (X,�).

Every linear space is a qls with the partial order relation “=”. The most
popular example of quasilinear spaces which is not linear space is the set of all
closed intervals of real numbers with the inclusion relation “⊆”, the algebraic
sum operation

A+B = {a+ b : a ∈ A, b ∈ B}
and multiplication by a real number λ is defined by

λ ·A = {λa : a ∈ A} .
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We denote this set by ΩC (R). Another one is Ω (R) which is the set of all
nonempty compact subsets of real numbers. In general, Ω (E) the set of all
nonempty, closed and bounded subsets of any normed linear space E and
ΩC (E) denotes its subset of all nonempty convex sets. Both of them are
nonlinear quasilinear spaces with the inclusion relation, a slight modification
of addition shaped

A+B = {a+ b : a ∈ A, b ∈ B}

and multiplication by a real number λ is defined by λ ·A = {λa : a ∈ A} .

Lemma 2.2. ([2]) In a qls (X,�) the element θ is minimal, i.e., x = θ if
x � θ.

An element x′ is called inverse of x ∈ X if x + x′ = θ. Further, if the
inverse element exists, then it is unique. An element x possessing inverse is
called regular, otherwise is called singular. Xr and Xs stand for the sets of all
regular and singular elements of X, respectively. We note that the minimality
is not only a property of θ but also is shared by the other regular elements
([10]). It will be assumed throughout the paper that −x = (−1) · x and an
element x in a qls is regular if and only if x− x = θ equivalently x′ = −x.

Suppose that every element x in a qls X has inverse element x′ ∈ X . Then
the partial order relation in X is determined by equality, the distributivity
conditions hold and consequently, X is a linear space ([2]). In a real linear
space, equality relation is the only way to define a partial order relation such
that the conditions (2.1)-(2.13) hold.

Let X be a qls, Y ⊆ X and Y be a qls with the same partial order relation
and the restriction of the operations on X to Y . Then Y is called a sub-
quasilinear spaces or subspace, shortly of X. The following characterization of
subspace in a qls is the same as in linear spaces, and its proof is similar to its
counterpart in the classical.

Theorem 2.3. ([10]) Let X be a qls and Y ⊆ X. Then Y is a subspace of X
if and only if α · x+ β · y ∈ Y for all x, y ∈ Y and α, β ∈ R.

Suppose that every element x in Y has inverse element x′ ∈ Y . Then the
partial order relation on Y is determined by the equality. In this case the
distributivity conditions in (2.11) hold on Y and so Y is a linear subspace of
the qls X.

An element x ∈ X is said to be symmetric if −x = x. Let Xd denotes the
set of all symmetric elements of X. Xr, Xd and Xs ∪ {θ} are subspaces of X
and are called regular, symmetric and singular subspaces of X, respectively.
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For example, let X = ΩC(R) and Z = {0}∪ {[a, b] : a, b ∈ R and a < b}. Then
Z is singular subspace of X. On the other hand, the set of all singletons of
real numbers {{a} : a ∈ R} is regular subspace of X ([10]).

Definition 2.4. ([2]) Let (X,�) be a qls. A function ‖.‖X : X −→ R is called
a norm if the following conditions are satisfied:

‖x‖X > 0 if x 6= θ, (2.14)

‖x+ y‖X ≤ ‖x‖X + ‖y‖X , (2.15)

‖α · x‖X = |α| ‖x‖X , (2.16)

‖x‖X ≤ ‖y‖X if x � y,

if for any ε > 0 there exists an element xε ∈ X such that (2.17)

x � y + xε and ‖xε‖X ≤ ε then x � y.

A qls X with a norm defined on it, is called normed quasilinear space (briefly,
normed qls).

If there is not any confused, we write only ‖x‖ instead of ‖x‖X .
If every element in a qls has inverse then the concept of normed qls coincides

with the concept of normed linear space ([2]).

Let (X,�) be a normed qls. Hausdorff metric or norm metric on X is
defined by the equality

hX(x, y) = inf {r ≥ 0 : x � y + ar1, y � x+ ar2 and ‖ari ‖ ≤ r, i = 1, 2} .

Since x � y + (x − y) and y � x + (y − x), the quantity hX(x, y) is well
defined. It is not hard to see that the function hX(x, y) satisfies all of the
metric axioms. Further, hX(x, y) ≤ ‖x− y‖X for any elements x, y ∈ X.
Since hX(x, y) may not equal to ‖x− y‖X if X is a nonlinear qls, we use
the metric instead of the norm to discuss topological properties in normed
quasilinear spaces. So xn → x if and only if hX(xn, x) → 0 in a normed qls.
Although ‖xn − x‖X → 0 always implies xn → x in normed quasilinear spaces,
xn → x may not imply ‖xn − x‖X → 0.

Let X be a real Banach space. Then X is a complete normed qls with partial
order relation given by equality. Conversely, if X is a complete normed qls and
every x ∈ X has inverse element x

′ ∈ X, then X is a real Banach space. Also
the partial order relation on X is equality. In this case hx(x, y) = ‖x− y‖X
([2]).



Lower and upper semi convergence in normed quasilinear spaces 505

Let E be a normed real linear space. Then Ω(E) and ΩC(E) are normed
quasilinear spaces with the norm is defined by

‖A‖Ω = sup
a∈A
‖a‖E . (2.18)

In this case, the Hausdorff metric is defined as usual:

hΩ(A,B) = inf{r ≥ 0 : A ⊆ B + S(θ, r), B ⊆ A+ S(θ, r)},

where S(θ, r) denotes the closed ball of radius r and centered at θ ∈ E ([2]).

Lemma 2.5. ([2]) The operations of algebraic sum and multiplication by real
numbers are continuous with respect to the Hausdorff metric. The norm is a
continuous function with respect to the Hausdorff metric.

3. Lower and upper semi convergence in normed quasilinear
spaces

The need to discuss convergence in the context of quasilinear functional
analysis requires a suitable metric. So, we will use

hX(x, y) = inf {r ≥ 0 : x � y + ar1, y � x+ ar2 and ‖ari ‖ ≤ r, i = 1, 2} ,

as a measure of distance between the elements x and y of the normed qls
(X,�). We note that if there is not any confused we write only h instead of
hX .

We need the following proposition before explaining why we introduce con-
cepts of lower and upper semi convergence. The main idea used to define these
new notions is based on commentation of this proposition.

Proposition 3.1. Let (X,�) be a normed qls and h be Hausdorff metric
induced by the norm on X. Then the right sides of following propositions about
the convergence of a sequence (xn) in X are equivalent:

• xn → x⇔ “for every ε > 0 there exist sequences
(
aεi,n

)
⊂ X and a

natural number N=N(ε) such that xn � x + aε1,n, x � xn + aε2,n and∥∥∥aεi,n∥∥∥ ≤ ε for all n ≥ N, i = 1, 2.”

• xn → x ⇔ “for every ε > 0 there exists a natural number N=N(ε)
such that h (xn, x) ≤ ε for all n ≥ N .”

Proof. Suppose that for every ε > 0 there are sequences
(
aεi,n

)
⊂ X and a

natural number N=N(ε) such that

xn � x+ aε1,n, x � xn + aε2,n and
∥∥aεi,n∥∥ ≤ ε, i = 1, 2 (3.1)
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for all n ≥ N . Since ε is one of values r providing (3.1), we have

inf
{
r ≥ 0 : xn � x+ ar1,n, x � xn + ar2,n and

∥∥ari,n∥∥ ≤ r, i = 1, 2
}
≤ ε,

by definition of infimum. Hence we obtain h (xn, x) ≤ ε for n ≥ N.
On the other hand, suppose that for every ε > 0 there exist sequences(
aεi,n

)
⊂ X and a natural number N=N(ε) such that

h (xn, x) = inf
{
r ≥ 0 : xn � x+ ar1,n, x � xn + ar2,n,

∥∥ari,n∥∥ ≤ r, i = 1, 2
}

≤ ε

for all n ≥ N. Since the infimum of all values r providing the features xn �
x+ ar1,n, x � xn + ar2,n and

∥∥∥ari,n∥∥∥ ≤ r is less than or equal to ε,

xn � x+ aε1,n, x � xn + aε2,n and
∥∥aεi,n∥∥ ≤ ε, i = 1, 2

hold for this ε. �

So, from the Proposition 3.1, limxn = x means that for every ε > 0 it

can be found sequences
(
aεi,n

)
⊂ X and N (ε) ∈ N such that xn � x + aε1,n,

x � xn + aε2,n and
∥∥∥aεi,n∥∥∥ ≤ ε (i = 1, 2) for all n ≥ N.

With a careful observation, it can be seen that for all ε > 0 and n ≥ N,

xn � x+aε1,n and x � xn +aε2,n with
∥∥∥aεi,n∥∥∥ ≤ ε (i = 1, 2) may not be satisfied

simultaneously. Taking into account this situation, in this study we introduce
new definitions about convergence of sequences in normed quasilinear spaces.
These new definitions about covergence would be an alternative for the not
convergent sequences in normed quasilinear spaces.

Definition 3.2. Let (xn) be a sequence in normed qls (X,�) and x ∈ X.
Then, it is called that (xn) is lower semi convergent to x, if for every ε > 0
there exist a sequence (aεn) ⊂ X and a natural number N = N (ε) such that

x � xn + aεn, ‖aεn‖ ≤ ε

for all n ≥ N.
It is called that (xn) is upper semi convergent to y, if for every ε > 0 there

exist a sequence (bεn) ⊂ X and a natural number N = N (ε) such that

xn � y + bεn, ‖bεn‖ ≤ ε

for all n ≥ N.
Otherwise it is called that (xn) is not lower (upper) semi convergent to x

(y).
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Also x (y) is said to be the lower (upper) semi limit of the sequence (xn)
and it is written as

ls-lim xn = x (us-lim xn = y).

Remark 3.3. The lower or upper semi limit of a sequence in a normed qls
(X,�), (if there exists it), is not unique. But all lower (upper) semi limits
can be comparable with each other according to the partial order relation on
qls. That is, if ls-lim xn = x1 and ls-lim xn = x2, then x1 � x2 or x2 � x1.
Similarly, if us-lim xn = y1 and us-lim xn = y2, then y1 � y2 or y2 � y1.

Proposition 3.4. Let (X,�) be a qls, (xn) be a sequence in X and x, y ∈ X.
(i) If ls-lim xn = x and y � x, then ls-lim xn = y.
(ii) If us-lim xn = x and x � y, then us-lim xn = y.

Proof. (i) Let ls-lim xn = x and y � x. Then for every ε > 0 there exist a
sequence (aεn) ⊂ X and a natural number N = N (ε) such that x � xn + aεn,
‖aεn‖ ≤ ε for all n ≥ N. Since y � x, we write y � xn + aεn for all n ≥ N.
Hence ls-lim xn = y.
(ii) Since proof of (ii) is similar to proof of (i), we omit it. �

Theorem 3.5. Let (X,�) be a normed qls, (xn) be a sequence in X and
x, y ∈ X. If ls-lim xn = x, us-lim xn = y, then x � y.

Proof. Suppose that ls-lim xn = x and us-lim xn = y. Then, for every ε > 0
there exist sequences (aεn) , (bεn) ⊂ X and natural numbers N, N ′ such that
x � xn + aεn, ‖aεn‖ ≤ ε/2 for all n ≥ N and xn � y + bεn, ‖bεn‖ ≤ ε/2 for all
n ≥ N ′. From aεn � aεn and xn � y+bεn, we can write xn+aεn � y+aεn+bεn for
all n ≥ N∗ = max {N,N ′} . Since ‖aεn + bεn‖ ≤ ‖aεn‖ + ‖bεn‖ ≤ ε/2 + ε/2 = ε,
we obtain x � y from (2.17). �

Hence for any sequence (xn) which has upper and lower semi limits, we say
that ls-lim xn � us-lim xn.

A sequence in a normed qls may be convergent to x from below and to y
from above. That is, in a normed qls, a sequence can be lower and upper semi
convergent. However, this case does not mean that this sequence is convergent.
But we have the following result:

Proposition 3.6. Let (X,�) be a normed qls, (xn) be a sequence in X and
x ∈ X. If the sequence (xn) is both lower and upper semi convergent to x, then
(xn) is convergent to x.
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Proof. Let ε > 0. If ls-lim xn = x, then for every ε > 0 there exist a sequence
(aεn) ⊂ X and a natural number N = N (ε) such that x � xn + aεn, ‖aεn‖ ≤ ε
for all n ≥ N.

If us-lim xn = x, then for every ε > 0 there exist a sequence (bεn) ⊂ X and
a natural number N ′ = N ′ (ε) such that xn � x+ bεn, ‖bεn‖ ≤ ε for all n ≥ N ′.

If we choose N∗ = max {N,N ′} , we can write x � xn + aεn, ‖aεn‖ ≤ ε and
xn � x+ bεn, ‖bεn‖ ≤ ε for all n ≥ N∗. This means that limxn = x. �

Example 3.7. In ΩC (R) , consider the sequence (xn) =
([
− 1
n , 1 + 1

n

])
. Then

(xn) is both lower and upper semi convergent to x = [0, 1] ∈ ΩC (R) :
Let ε > 0, if we choose N = 1 and aεn = {0} ∈ ΩC (R), we have

[0, 1] ⊆
[
− 1

n
, 1 +

1

n

]
+ aεn and ‖aεn‖ = ‖{0}‖ = 0 ≤ ε

for all n ≥ N. Hence ls-lim xn = x.
On the other hand, (xn) is upper semi convergent to x = [0, 1] ∈ ΩC (R) :
For given every ε > 0, there are a sequence (bεn) defined by bεn =

[
− 1
n ,

1
n

]
and a natural number

N(ε) =

⌊
1

ε

⌋
+ 1

such that

‖bεn‖ =

∥∥∥∥[− 1

n
,

1

n

]∥∥∥∥ =
1

n
<

1⌊
1
ε

⌋ < 1
1
ε

= ε

and [
− 1

n
, 1 +

1

n

]
⊆ [0, 1] +

[
− 1

n
,

1

n

]
=

[
− 1

n
, 1 +

1

n

]
for all n ≥

⌊
1
ε

⌋
+1, where

⌊
1
ε

⌋
denotes the integer part of 1

ε . So we have us-lim
xn = x. Therefore the sequence (xn) is convergent to x.

Any sequence in a normed qls can be lower semi convergent without being
upper semi convergent, and vice versa. The following example shows this
situation:

Example 3.8. In the above example, (xn) is not upper semi convergent to
y =

[
0, 1

2

]
∈ ΩC (R), although the sequence it is lower semi convergent to the

element y :
It is obvious that (xn) is lower semi convergent to y.
Now we show that this sequence is not upper semi convergent to y. To do

this, we assume that us-lim xn = y =
[
0, 1

2

]
. Then, for ε = 1

100 we can find a
sequence (bεn) ⊂ ΩC (R) and an element N(ε) such that[
− 1

n
, 1 +

1

n

]
=

[
− 1

N+1000
, 1 +

1

N+1000

]
⊆ [0,

1

2
] + bεn, ‖bεn‖ ≤ ε =

1

100
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for n = N + 1000. Whereas, it must be bεn ⊆
[
− 1

100 ,
1

100

]
for ‖bεn‖ ≤ 1

100 . In
this case, we write[

− 1

N + 1000
, 1 +

1

N + 1000

]
⊆ [0,

1

2
] +

[
− 1

100
,

1

100

]
=

[
− 1

100
,
1

2
+

1

100

]
.

(3.2)

Since
1

2
+

1

100
≤ 1 +

1

N + 1000
,

the including (3.2) is not possible. This contradiction completes the proof.

Example 3.9. We consider again the sequence (xn) in Example 3.7. It is
not hard to see that it is not lower semi convergent to z = [0, 2] ∈ ΩC (R),
although the sequence (xn) is upper semi convergent to z.

Example 3.10. Consider the sequence (xn) defined by xn = [−n, n] in ΩC (R).
Then (xn) is not upper semi convergent in ΩC (R). But this sequence is lower
semi convergent to every elements x of ΩC (R) such that x ⊆ [−1, 1] :

Let ε > 0. If we choose N = 1 and aεn = {0} ∈ ΩC (R) , we have

x ⊆ [−1, 1] ⊆ [−n, n] + aεn, ‖aεn‖ = ‖{0}‖ = 0 ≤ ε

for all n ≥ N. Hence, we say that ls-lim xn = x for every elements x such
that x ⊆ [−1, 1] ∈ ΩC (R).

On the other hand, since n ∈ N is arbitrary, this shows that for given any
ε > 0, no there exist any elements y and (bεn) in ΩC (R) and N = N (ε) ∈ N
such that

[−n, n] ⊆ y + bεn and ‖bεn‖ ≤ ε
for all n ≥ N . Thus the sequence (xn) is not upper semi convergent to any
element of ΩC (R).

Example 3.11. Consider the sequence (xn) defined by

xn =

{ [
− 1
n + 1, 1 + 1

n

]
, if n is odd,[

− 1
n − 1,−1 + 1

n

]
, if n is even,

in ΩC (R). Then (xn) is upper semi convergent to [−2, 2] . But we note that
this sequence is not lower semi convergent to any element of ΩC (R) .

In the following section, we will prove some results that follow immediately
from the Definition 3.2.



510 S. Çakan and Y. Yılmaz

Theorem 3.12. Let (X,�) be a normed qls, (xn) , (yn) be sequences in X and
x, y ∈ X. Then,

(i) If ls-lim xn = x and xn � yn for all n ∈ N, then ls-lim yn = x.
(ii) If us-lim xn = y and yn � xn for all n ∈ N, then us-lim yn = y.

Proof. (i) Suppose that ls-lim xn = x and xn � yn for all n ∈ N. Then for
every ε > 0 there exist a sequence (aεn) ⊂ X and a natural number N = N (ε)
such that x � xn + aεn, ‖aεn‖ ≤ ε for all n ≥ N. Since xn � yn, we can write
x � yn + aεn. Thus ls-lim yn = x. One can prove (ii) with a similar way. �

Theorem 3.13. Let (X,�) be a normed qls, (xn) , (yn) be sequences in X and
x, y ∈ X. If ls-lim xn = x, us-lim yn = y and xn � yn for all n ∈ N, then
x � y.

Proof. Assume that ls-lim xn = x and us-lim yn = y. For every ε > 0 there
exist sequences (aεn) , (bεn) ⊂ X and natural numbers N, N ′such that x �
xn + aεn, ‖aεn‖ ≤ ε/2 for all n ≥ N and yn � y+ bεn, ‖bεn‖ ≤ ε/2 for all n ≥ N ′.
Let N∗ = max {N,N ′}. Because of the fact that xn � yn for all n ∈ N, we get
x � y + aεn + bεn for n ≥ N∗. Since ‖aεn + bεn‖ ≤ ‖aεn‖+ ‖bεn‖ ≤ ε/2 + ε/2 = ε,
we obtain x � y from (2.17). �

Now we will give an analog of the Squeeze Theorem in the setting of normed
qls.

Theorem 3.14. Let (xn) , (yn) , (zn) be sequences in normed qls (X,�) and
x ∈ X. If ls-lim xn = x, us-lim zn = x and xn � yn � zn for all n ∈ N, then
lim yn = x.

Proof. Let (xn) , (yn) , (zn) be as stated above. Then, for every ε > 0 there exist
sequences (aεn) , (bεn) ⊂ X and natural numbers N, N ′such that x � xn + aεn,
‖aεn‖ ≤ ε for all n ≥ N and zn � x + bεn, ‖bεn‖ ≤ ε for all n ≥ N ′. Since
xn � yn and yn � zn for all n ∈ N, we have x � yn + aεn and yn � x + bεn for
all n ≥ N∗ = max {N,N ′} . Consequently, we obtain lim yn = x. �

Theorem 3.15. Let (X,�) be a normed qls, (xn) , (yn) be sequences in X and
x, y ∈ X.

(i) If ls-lim xn = x and ls-lim yn = y then ls-lim (λ · xn + β · yn) =
λ · x+ β · y,

(ii) If us-lim xn = x and us-lim yn = y then us-lim (λ · xn + β · yn) =
λ · x+ β · y,

for λ, β ∈ R.



Lower and upper semi convergence in normed quasilinear spaces 511

Proof. (i) Since ls-lim xn = x and ls-lim yn = y for every ε > 0, there exist
sequences (aεn) , (bεn) ⊂ X and natural numbers N, N ′such that x � xn + aεn,
‖aεn‖ ≤ ε/ (2 |λ|) for all n ≥ N and y � yn + bεn, ‖bεn‖ ≤ ε/ (2 |β|) for all
n ≥ N ′. Taking into account the axioms (2.8), (2.12), (2.13), (2.15) and (2.16),
for N∗ = max {N,N ′}, we get λ · x + β · y � λ · xn + β · yn + λ · aεn + β · bεn
and ‖λ · aεn + β · bεn‖ ≤ |λ| ‖aεn‖ + |β| ‖bεn‖ ≤ ε, for all n ≥ N∗. Thus ls-lim
(λ · xn + β · yn) = λ·x+β·y.With the similar argument, (ii) can be proved. �

An immediate consequence of Theorem 3.15 is the following:

Corollary 3.16. Let (xn) be a sequence in normed qls (X,�), x, y ∈ X and
λ ∈ R. Then,

(i) If ls-lim xn = x then ls-lim (λ · xn + y) = λ · x+ y,
(ii) If us-lim xn = x then us-lim (λ · xn + y) = λ · x+ y.
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[7] S. Çakan and Y. Yılmaz, Lower and upper semi basis in quasilinear spaces, Erciyes

University Journal of the Institute of Science and Technology, 31(2) (2015), 97–
104, (in Turkish).
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