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Abstract. In this paper, we extend, improve and generalize some earlier results in G-metric
spaces in [1].

1. INTRODUCTION

In 2007, Mustafa and Sims introduced the notion of G-metric and investi-
gated the topology of such spaces. The authors also characterized some fixed
point result in the context of G-metric space. A number of authors have
published so many fixed point results on the G-metric space in [2]-[24].

2. PRELIMINARIES

Definition 2.1. Let X be a non empty set. A function G: X x X x X — R
is called a G-metric if the following conditions are satisfied:
(Gl) If z =y = z, then G(x,y,2) = 0;
(G2) 0 < G(zx,y,y), for any z,y € X with = # y;
(G3) G(z,z,y) < G(z,vy, 2z) for any points x,y, z € X with y # z;
(G4) G(z,y,2) = G(z,z,y) = G(y,z,x) = -+, symmetry in all three vari-
ables;
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(G5) G(z,y,2) < G(z,a,a) + G(a,y, z) for any z,y,z,a € X.
Then the pair (X, G) is called a G-metric space.

Definition 2.2. Let (X, G) be a G-metric space, and let {x,} be a sequence
of points of X. A point z € X is said to be the limit of the sequence {z,}
if limp, ;400 G(Z, T, ) = 0, and we say that the sequence {z,} is G-
convergent to x and denote it by x, — .

We have the following useful results.

Proposition 2.3. ([20]) Let (X, G) be a G-metric space. Then the following
are equivalent:

(1) {zn} is G-convergent to x;

(2) limy 400 G(zp, T, ) = 0;

(3) limy 400 G(xp, z, ) = 0.

Definition 2.4. ([20]) Let (X, G) be a G-metric space, a sequence {x,} is
called G-Cauchy if for every € > 0, there is k € N such that G(zy,, 2, 7;) < €,
for all n,m,l > k, that is, G(xy, Ty, ;) — 0 as n,m,l — 4o0.

Proposition 2.5. ([20]) Let (X, G) be a G-metric space. Then the following
are equivalent:
(1) the sequence {xy} is G-Cauchy;
(2) for every e > 0, there is k € N such that G(xp, Tm,Tm) < €, for all
n,m > k.

Definition 2.6. ([20]) A G-metric space (X, Q) is called G-complete if every
G-Cauchy sequence in (X, @) is G-convergent in (X, G).

Proposition 2.7. ([20]) Let (X,G) be a G-metric space. Then, for any
x,Yy,z,a € X it follows that:

(i) If G(z,y,2) =0 then x =y = z;

<
< %[G(x,y,a) + G(x,a, Z) + G(a>y7 Z)],
< G(z,a,a) + G(y,a,a) + G(z,a,a).

Proposition 2.8. ([20]) Let (X, G) be a G-metric space. Then the function
G(z,y,z) is jointly continuous in all three of its variables.
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Mustafa [11] extended the well-known Banach Contraction Principle Map-
ping in the framework of G-metric spaces as follows:

Theorem 2.9. ([11]) Let (X, G) be a complete G-metric space and T : X — X
be a mapping satisfying the following condition for all x,y,z € X:

G(Tz,Ty,Tz) < kG(z,y, 2), (2.1)
where k € [0,1). Then T has a unique fized point.

Theorem 2.10. ([11]) Let (X, G) be a complete G-metric space and T : X —
X be a mapping satisfying the following condition for all x,y € X:

G(Tz, Ty, Ty) < kG(z,y,y), (2.2)
where k € [0,1). Then T has a unique fixed point.

Remark 2.11. We notice that the condition (2.1) implies the condition (2.2).
The converse is true only if k € [0, 3). For details see [11].

Lemma 2.12. ([11]) By the rectangle inequality (G5) together with the sym-
metry (G4), we have

G(w,y,y) = G(y,y,x) < G(y,x,x) + G(l’,y,l‘) = 2G(y,:c,:v). (2'3)

3. MAIN RESULTS

At first we assume that
Uy = {1 :]0,00) = [0,00) such that 1 is non-decreasing and continuous}
and
® = {p:[0,00) = [0,00) such that ¢ is lower semicontinuous},
where 9(t) = ¢(t) = 0 if and only if ¢t = 0.
Theorem 3.1. Let (X,G) be a complete G-metric space and T,S : X — X

be mappings satisfying the following condition for all x,y € X where ¢ € ¥
and ¢ € ® holds,

V(G(Tz, STz, Ty)) < Y(G(x, Sz,y)) — ¢(G(z, Sz, y)). (3.1)
Then T, S have a unique common fized point.
Proof. From (3.1) and by 1 properties we reach to
G(Tx,STx,Ty) < G(x,Sz,y). (3.2)

Now put y := x,
G(Tx,STz,Tx) < G(x, Sz, x). (3.3)



526 M. Asadi and P. Salimi

Let 9 € X and x,, := Tx,—1 so by hypothesis x := x,,_1 in the relation (3.3)
we have

G(zp, Stp,xn) < G(Tp—1,5%Tn—-1,Tn—1)- (3.4)
Therefore sequence {G(xyn, Szp,x,)} is decreasing to some t. Put k, :=
G(zy, Sy, xy), now by (3.1)

w(kn) < w(kn) - d)(kn)v (3'5)
if n — oo in (3.5) we reach ¢(t) =0 so
G(xp, Stp, ) — 0. (3.6)

We shall show that the sequences {z,} and {Sz,} are G-Cauchy.
Ve >0, 3N > 0such that Vm,n (n >m > N = G(zm, Tm,xn) <€). (3.7)
Let
de >0, Vng >0, Ing, mg (ng > my >k but G(zm,, Tmy, Tny,) > €). (3.8)
By (G4) and (G5), we get
0 < e < G(Tmys Ty Tny,) = G(Tny,, Ty Ty, (3.9)
0 < e < G(Tny, STy, Tmy,) + G(STimy s Ty, Ty, )-

Now if k — oo right hand goes to zero by (3.8) and (3.6), therefore 0 < & < 0.
We note that G(zn, , STm,, Tm,) — 0, since by (G4)

Amk,nk = G(l’nk, Sxmka l'mk) - G(l'mk, Sl'mk,l'nk),

{ A,y b, 1 a decreasing and positive sequence. Because from the (3.2)
we have

Amk,nk = G($mkasmmka$nk)
= G(Txmk—hSTxmk—laT$nk—l)
G(Tmp—1,STmy—1,Tngp—1)

- Amk—l,nk—l

IN

that is, Ay, n, — t for some t. Now by (3.1)

w(Amk,nk) < ¢(Amk—1,nk—1) - ¢(Amk—1,nk—1)7 (3'10)

if kK — oo in (3.10), we reach ¢(t) = 0 so Ay, n, — 0. Thus {z,} in Cauchy,
i.e., there exists v € X such that z,, — u.
Now we want to prove G-Cauchy of {Sz,}. By (G4) and (G5),

G(xn, Sy, Tm) = G(STp, Tm, Tn) < G(STp, Tn, Tn) + G(Tn, Ty, Tp).  (3.11)
Now by G-Cauchy of {x,} and (3.6), we get
lim G(xp,Stp,xm) =0 likewise lim G(zp, STm,zn) =0. (3.12)

n,Mm—00 n,Mm—00
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On the other hand
G(Sxp, Stp,xm) < G(STp, Ty Tm) + G(n, STy, ), by (G5)  (3.13)
by (3.12) and (3.13) again we find

ligl G(Szp, Sy, xm) = 0. (3.14)
And again we have
G(xn, Stm,xn) < G(Tp,Tm,Tn) + G(@Xm, STm,x,) by (G5)
< G(IL’n,CEm,LL’n) + G(xmmmvsxm) by (G4)

G(xn, STy, xn) < G(Tp, Tm, Tn) + G(Tpn, T, STim)
+ G(Tpm, T, STrm) by (GH)

the right hand of (3.15) by (3.6), (3.12) and G-Cauchy of {z,} tends to zero,
SO

(3.15)

lim G(xn, STy, z,) = 0. (3.16)

n,Mm—00

Also we have
G(xn, Sy, Sty) < 2G(STp, Tpn,xn) — 0, by (3.6). (3.17)
For G-Cauchy of {Sz,}
G(Sxm, Sz, Szy) < G(Stpm,zn, Stpn) + G(X8, STy, STy) by (G5)
= G(Szpm,Sxn,xn) + G(xy, STy, Sxy) by (G4)
G(Sxpm, Sy, Sty) < G(STm, Tm, Tn) + G(Tpm, STy, 1)
+ G(xp, Sxy, Szy) by (G5)
so by right hand (3.18) tends to zero by (3.17) and (3.12), hence we reach
lim G(Szpm, Sy, Sx,) = 0. (3.19)

n,Mm—00

(3.18)

Namely {Sz,} is G-Cauchy, so Sz, — z for some z € X.

Now we want to show that the sequences {z,} and {Sz,} are convergent
to a point in z € X. And more z is unique common fixed point 7',.S. To prove
this, if z,, — u and Sx,, — z from (3.1) and hypothesis = := z,_1 =y

V(G (zy, S, 20)) < Y(G(Tp-1,5Tn-1,Tn-1)) — &(G(Tp-1,STn-1,Tn-1)),
so G(u, z,u) = 0 namely v = z. In (3.1), let y = z and = := z,_1 s0
V(G(xp, Sxn, Tz2)) < Y(G(xp-1,5%n-1,2)) — (G(xp-1,Tn-1,2)). (3.20)
Thus
V(G(z,2,Tz)) <Y(G(z,2,2)) — ¢(G(z,2,2)) =0= Tz = z. (3.21)
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By (3.1) and z =y = 2,
W(G(Tz,8T2,Tz)) < Y(G(z,582,2)) — ¢(G(z,5%, 2))
= ¢(G(z,52,2)) =0 (3.22)
= Sz =z

Now z =Tz = Sxz.

For uniqueness, let u = Tu = Su, v = Tv = Sv and u # v. By (3.1) and
x:=u, y =v we have

Y(G(Tu, STu, Tv)) < P(G(u, Su,v)) — ¢(G(u, Su,v))

= ¢(G(u, Su,v)) =0 (3.23)
and
Y(G(u,u,v)) < P(G(u,u,v)) — ¢(G(u, u,v))
= ¢(G(u,u,v)) =0 (3.24)
=u=u.
O

Corollary 3.2. Let (X,G) be a complete G-metric space and T, S : X — X
be a mapping satisfying the following condition for all x,y € X where ¥ € ¥
and ¢ € O holds,

P(G(T, TSz, Ty)) < Y(G(z, Sz,y)) — ¢(G(z, Sz,Y)) (3.25)
and T and S commute, i.e., T'S = ST. Then T has a unique fized point.

The next corollary is Theorem 2.3 in [1].

Corollary 3.3. Let (X, G) be a complete G-metric space and T : X — X be
a mapping satisfying the following condition for all x,y € X where ¢ € ¥ and
¢ € ® holds,

(G (T, T2, Ty)) < $(Glx,Ta,y)) — ¢(G(x, Tx,y)). (3.26)
Then T has a unique fized point.

Corollary 3.4. Let (X, G) be a complete G-metric space and T : X — X be
a mapping satisfying the following condition for all x,y € X where ¥ € ¥ and
¢ € D holds,

W(G(Tz, Tz, Ty)) < (G(z, T 'z,y)) — ¢(G(x, T™ 'a,y)),  (3.27)
for some 2 <m € N. Then T has a unique fixed point.

In Corollary 3.3, we take ¢(t) = ¢t and ¢(t) = (1 —r)t where 0 < r < 1, then
we deduce the following corollary.
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Corollary 3.5. Let (X, G) be a complete G-metric space and T : X — X be
a mapping satisfying the following condition for all x,y € X where 0 <r <1
holds,

G(Tx, Tz, Ty) < rG(z, Tz, y).

Then T has a unique fixed point.
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