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Abstract. Let P, denote the set of all polynomials of the form
n—1
P(z)=(z—a) [] (z— %)
j=1

of degree n with |z;| > 1,1 < j <n—1 and |a| < 1. In this paper, we show that P'(z) # 0
in the region |z — a| < I_TM for all P € P,. Some other results for critical points of a
polynomial are also obtained.

1. INTRODUCTION AND PRELIMINARIES

The Gauss-Lucass Theorem states that all the critical points of a polynomial
lie in the convex hull containing all the zeros of that polynomial. This is
best possible in the sense that, if P(z) has all its zeros in the disk D =
{z € C: |z|] < 1}, then no proper subset of D can be guaranteed to contain even
one zero of P'(z). Gauss Lucass theorem has been thoroughly investigated [4]
and sharpened in several ways. However there is one related question that
deserves attention, namely given one specific zero a of P(z), how far from a
lies a zero of P’(z)? In this connection the following conjecture was made by
Bulgarrian Mathematician B L. Sendov in 1962 but became later known as
Illef’s conjecture (see [3, Problem 4.5]).
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Conjecture. Let P(z) be a polynomial of degree n having all its zeros in the
unit disk |z| < 1. If a is any one of these zeros, then P’(z) has atleast one
zero in the disk |z — a| < 1. This conjecture has been fully verified for all
polynomials of degree n < 8 (see [2]). Some special cases of this conjecture
have also been proved (see [1, 3, 5]). Aziz and Zarger [1] have proved the
following result.
n—1
Theorem 1.1. ([1]) If P(z) = z [ (2 — 2;) is a polynomial of degree n with
j=1
|zj| > 1, 5=1,2,..,n—1, then P'(2) #0 in |z| < %

For the proofs of our theorems we need the following result known as coin-
cidence theorem of Walsh (see [4]).

Lemma 1.2. Let G(z1,29,...,2,) be a symmetric n linear form of total de-
gree n in zi, 2o, ..., 2n and let C be a circular region containing the n points
w1, W2, ..., Wy. Then there exists at least one point o belonging to C' such that
G(z1, 22, .oy 2n) = G, a ...y ).

2. MAIN RESULTS

In this paper we prove the following result of which Theorem 1.1 is a special
case.
n—1
Theorem 2.1. If P(z) = (2 —a) [[ (2 — z;) is a polynomial of degree n with
j=1

zi| > 1 and |a| < 1, then P'(z 0 in the region |z —a| < 1-lal
J

n—1

Proof. We have P(z) = (z—a)Q(z), where Q(z) = [] (z — z;) has all its zeros
j=1

in |z| > 1. This gives

P'(2) =Q(2) + (z — a)Q'(2).
If w is any zero of P'(z), then
0=P(v)=Qw)+ (w—a)Q (w). (2.1)

This is an equation which is linear and symmetric in the zeros z1, 22, ..., Zn—1
of Q(z). Hence an application of the Lemma 1.2 with circular region D =
{z € C: |z| > 1} shows that w will also satisfy the equation obtained by sub-
stituting into the equation (2.1)

Q(z) = (2 = H" 7,
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where [ is suitably chosen point in the circular region D = {z € C: |z| > 1}.
That is w satisfies the equation
(w=8)"""+(n—1)(w—a)(w—B)"*=0
or
(w—=B)""?[(w =) + (n - 1)(w — a)] = 0.
Which implies w = 8 or w = w If w = 3, then

]_i
w—al =18 —a 2 1o > 2214
n

If w= w, then

|lw—a| =

Btan—1)
- a

1 —al
> :

_|B=a
_’ .

n

Thus P’(z) has all its zeros in |z — a| > 1_n|a|. This completes the proof of

Theorem 2.1. O

Remark 2.2. For a = 0, Theorem 2.1 reduces to Theorem 1.1.

Next we prove the following result.
n—k
Theorem 2.3. If P(z) = 2* [[ (z — 2;) is a polynomial of degree n where
j=1
|zjl > R, R>0,1< j<n—k, 1 <k<n-—1, then P(s)(z) has k — s fold
zeros at origin and the remaining n — k zeros lie in

k(k—1)..(k—s+1)

>
ey WP
where 1 < s < k.
n—~k
Proof. Let T'(2) = [] (2 — z;) where |zj| > R, R> 0,1 < j <n—k. Then by
j=1

hypothesis we have P(z) = 2*T'(z) so that
P'(z) = k2" 'T(2) + 2T (2)
=2"1Q(2),
where Q(z) = kT'(z) + 2T"(z). Let w be any zero of Q(z), then
0 =Qw) = kT (w) + wT'(w). (2.3)

(2.2)
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This is an equation which is linear and symmetric in the zeros 21, 29, ..., Zn_k
of T(z). Hence an application of the Lemma 1.2 with circular region C' =
{#z € C: |z| > R} shows that w will also satisfy the equation obtained by sub-
stituting into the equation (2.3).

T(z) = (2= B)" ",

where f is suitably chosen point in the circular region C = {z € C: |z| > R}.
That is w satisfies the equation

k(w—B8)"* +wn —k)(w— )" 1 =0
or
(w—B)" " (nw — kB) = 0.
This implies w = 3 or w = %6. If w = (3, then

k
w| =8| > R> “R.
n

If w= %,8, then

k k
jw| = —|B] > —R.
n n

Since w is arbitrary zero of Q(z), it follows that all the zeros of Q(z) lie in
|z| > %R. Hence it follows that P’(z) has (k — 1) fold zeros at origin and the
remaining (n — k) zeros lie in the region |z| > ER.
Again from (2.2), we have P'(z) = 2*71Q(z). This gives
P"(2) = (k= 1)2"7%Q(2) + 2" Q'(2)
or equivalently,
P"(z) = 2F72F(2),

where

F(z) = (k—1)Q(z) + Q'(2). (2.4)
If now w is any zero of F'(z), then

0=F(w) = (k-1)Q(w) + Q'(w).

This is an equation which is linear and symmetric in the zeros 21, 29, ..., 2n_k
of Q(2). Hence by Lemma 1.2 with circular region C' = {z € C: |z| > R}, it

follows that w will also satisfy the equation obtained by substituting into the
equation (2.4),

Qz) = (== p)" "
where ; is suitably chosen point in the circular region C' = {z € C : |z| > £R}.
That is w satisfies the equation

(k—1)(w—B)" F+whn—k)(w-pB)"*1=0
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or
(w— B)" L wn —1) — B1(k —1)] = 0.
This implies either w = 1 or w = %51 If w = py, then |w| = |51]| > %R >

MR T w = E1By, then

k-1 k(k—1)
= — > ——=R.
wl = 12 R

This shows all the zeros of F'(z) lie in |z| > f;(k_l) R. Thus P”(z) has k—2 fold

(n—1)
zeros at origin and the remaining n — k zeros lie in the region |z| > QEZ:?) R.

Continuing this way, it follows that P(*)(z) has k — s fold zero at z = 0 and
the remaining n — k zeros lie in

k(k—1)..(k—s+1)
nn—1)..(n—s+1)

2] >

This completes the proof of Theorem 2.3. O

Remark 2.4. If we take K = 1 and s = 1 in Theorem 2.3, then we get
Theorem 1.1.

We also present the following results which follow by similar arguments.

n—k
Theorem 2.5. If P(z) = z* [] (2 — 2;) where Re(z;) > R, R>0,1< j <
j=1
n—kand1l <k <n—1, then P®(2) has k — s fold zeros at origin and the
remaining n — k zeros lie in the region

k(k—1)..(k—s+1) R

R >
) 2 T s+ 1)
n—1
Theorem 2.6. If P(z) = z [ (# — %) is a polynomial of degree n with
j=1

Re(zj) > R, R >0, then

(i) P'(2) # 0 in the region Re(z) < L.
)

(ii) P®)(2) # 0 in the region Re(z) < £ R.

s
n
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