Nonlinear Functional Analysis and Applications Vol. 21, No. 4 (2016), pp. 573-589

http://nfaa.kyungnam.ac.kr/journal-nfaa Copyright \odot 2016 Kyungnam University Press

OPERATORS PRESERVING INEQUALITIES BETWEEN THE POLYNOMIALS

Abdul Liman¹ and Irfan Ahmed Faiq²

¹Department of Mathematics National Institute of Technology, Srinagar-190006, India e-mail: abliman22@yahoo.com

²Department of Mathematics National Institute of Technology, Srinagar-190006, India e-mail: faiqirfan85@gmail.com

Abstract. In this paper, by combining the operators B and $D\alpha$, we investigate the dependence of $B[D_\alpha(P(Rz) - \beta P(z))]$ on the maximum modulus of $P(z)$ on $|z| = 1$ for every real or complex numbers α and β with $|\alpha| \geq 1$, $|\beta| \leq 1$ and $R > 1$. Our results include not only some known polynomial inequalities as special case, but also the results recently proved by Bidkham and Mezerji as a particular case.

1. INTRODUCTION

If $P(z) = \sum^{n}$ $j=0$ $a_j z^j$ is a polynomial of degree at most n and $P'(z)$ is its derivatives, then

 $\max_{|z|=1} |P'(z)| \le n \max_{|z|=1} |P(z)|$ (1.1)

and

$$
\max_{|z|=R>1} |P'(z)| \le R^n \max_{|z|=1} |P(z)|. \tag{1.2}
$$

Inequality (1.1) is an immediate consequence of S. Bernstein's inequality on the derivative of a trigonometric polynomial (for reference see $[6, 11]$), where as inequality (1.2) is a simple deduction from the maximum modulus principle [12, p.346]. In both inequalities (1.1) and (1.2) equality holds only when $P(z)$ is a constant multiple of z^n .

 0 Received February 1, 2016. Revised July 3, 2016.

⁰ 2010 Mathematics Subject Classification: 30A06, 30A64.

⁰Keywords: Polynomials, B. operator, polar derivative.

If, we restrict ourselves to a class of polynomials having no zero in $|z| < 1$, then the above inequality can be sharpened. In fact, Erdös conjectured and latter Lax [10] proved that if $P(z) \neq 0$ in $|z| \leq 1$, then

$$
\max_{|z|=1} |P'(z)| \le \frac{n}{2} \max_{|z|=1} |P(z)| \tag{1.3}
$$

and

$$
\max_{|z|=R>1} \le \frac{R^n+1}{2} \max_{|z|=1} |P(z)|. \tag{1.4}
$$

Turán [14] proved that, if $P(z)$ has all its zeros in $|z| \leq 1$, then

$$
\max_{|z|=1} |P'(z)| \ge \frac{n}{2} \max_{|z|=1} |P(z)|. \tag{1.5}
$$

Concerning the minimum modulus of a polynomial $P(z)$ and its derivative $P'(z)$, Aziz and Dawood [2] proved that, if $P(z)$ has all its zeros in $|z| \leq 1$, then

$$
\min_{|z|=1} |P'(z)| \ge n \min_{|z|=1} |P(z)|.
$$
\n(1.6)

Let α be any complex number, the polynomial $D_{\alpha}P(z) = nP(z) + (\alpha$ z) $P'(z)$ denote the polar derivative of the polynomial $P(z)$ of degree at most n with respect to α . The polynomial $D_{\alpha}P(z)$ is of degree at most $n-1$ and it generalizes the ordinary derivative in the sense that

$$
\lim_{\alpha \to \infty} \frac{D_{\alpha} P(z)}{\alpha} = P'(z).
$$

Aziz [1] extended inequality (1.3) and (1.5) to the polar derivative of a polynomial and proved that if $P(z)$ is a polynomial of degree n which does not vanish in $|z| < 1$, then for every complex number α with $|\alpha| \geq 1$,

$$
\max_{|z|=1} |D_{\alpha}P(z)| \le \frac{n}{2} \{ |\alpha z^{n-1}| + 1 \} \max_{|z|=1} |P(z)| \text{ for } |z| \ge 1.
$$
 (1.7)

Rahman [11, p.538] introduced a class B_n of operators B that map $P \in P_n$ into itself. That is, the operator B carries $P \in P_n$ into

$$
B[P(z)] = \lambda_o P(z) + \lambda_1 \left(\frac{nz}{2}\right) P'(z) + \lambda_2 \left(\frac{nz}{2}\right)^2 \frac{P''(z)}{2!},
$$

where λ_0 , λ_1 , and λ_2 are real or complex numbers such that all the zeros of

$$
u(z) := \lambda_o + C(n, 1)\lambda_1 z + C(n, 2)\lambda_2 z^2, \ C(n, r) = \frac{n!}{r!(n-r)!},
$$
 (1.8)

lie in the half plane

$$
|z| \le \left| z - \frac{n}{2} \right|.
$$

Concerning this operator Shah and Liman [13] proved:

Operators preserving inequalities between the polynomials 575

Theorem A. If $P(z) \in P_n$ and $P(z) \neq 0$ in $|z| > 1$, then for $|z| \geq 1$,

$$
|B[P(z)]| \ge |B[z^n]| \min_{|z|=1} |P(z)|.
$$
 (1.9)

Theorem B. If $P(z) \in P_n$ and $P(z) \neq 0$ in $|z| < 1$, then for $|z| \geq 1$,

$$
|B[P(z)]| \le \frac{1}{2} \bigg[\{ |B[z^n]| + |\lambda_o| \} \max_{|z|=1} |P(z)| - \{ |B[z^n]| - |\lambda_o| \} \min_{|z|=1} |P(z)| \bigg]. \tag{1.10}
$$

Concerning the dependence of $|P(Rz) - P(z)|$ on $|P(z)|$ Aziz and Rather [4] proved:

Theorem C. If $P(z)$ is a polynomial of degree n, then for every real or complex number β with $|\beta| \leq 1$ and $R \geq 1$,

$$
|P(Rz) - \beta P(z)| \le |R^n - \beta||z|^n \max_{|z|=1} |P(z)| \quad \text{for } |z| \ge 1.
$$
 (1.11)

Theorem D. If $P(z)$ is a polynomial of degree n which does not vanish in $|z| < 1$, then for every real or complex number β with $|\beta| \leq 1$ and $R \geq 1$,

$$
|P(Rz) - \beta P(z)| \le \left\{ \frac{|R^n - \beta||z^n| + |1 - \beta|}{2} \right\} \max_{|z|=1} |P(z)| \text{ for } |z| \ge 1. \tag{1.12}
$$

Recently Bidkham and Mezerji [7] have generalised some of the above inequalities by combining B and D_{α} operators and proved the following results:

Theorem E. If $P(z)$ is a polynomial of degree at most n, having all its zeros in $|z| \leq 1$, then for every complex number α with $|\alpha| \geq 1$,

$$
|B[D_{\alpha}P(z)]| \ge n|\alpha||B[z^{n-1}]| \min_{|z|=1} |P(z)| \text{ for } |z| \ge 1.
$$
 (1.13)

Theorem F. If $P(z)$ is a polynomial of degree at most n, having no zero in $|z|$ < 1, then for every α with $|\alpha| \geq 1$,

$$
|B[D_{\alpha}P(z)]| \leq \frac{n}{2} \left\{ \{|\alpha||B[z^{n-1}]| + |\lambda_o|\} \max_{|z|=1} |P(z)| - \{|\alpha||B[z^{n-1}]| - |\lambda_o|\} \min_{|z|=1} |P(z)| \right\} \text{ for } |z| \geq 1.
$$
\n(1.14)

In this paper we combine the different ideas and techniques used above and consider the operator B and D_{α} such that the operator B carries $D_{\alpha}P(z)$ into

$$
B[D_{\alpha}P(z)] = \lambda_o D_{\alpha}P(z) + \lambda_1 \left(\frac{mz}{2}\right)D_{\alpha}P'(z) + \lambda_2 \left(\frac{mz}{2}\right)^2 \frac{D_{\alpha}P''(z)}{2!},
$$

where $0 \leq m \leq n-1$ and λ_o , λ_1 , and λ_2 are real or complex numbers such that all zeros of

$$
u(z) := \lambda_o + C(m, 1)\lambda_1 z + C(m, 2)\lambda_2 z^2, \ C(m, r) = \frac{m!}{r!(m-r)!}, \qquad (1.15)
$$

lie in the half plane

$$
|z| \le \left| z - \frac{m}{2} \right|
$$

and obtain compact generalizations of some well-known polynomial inequalities. We first prove the following:

Theorem 1.1. If $P(z)$ is a polynomial of degree n, then for every real or complex numbers α , β with $|\alpha| \geq 1$, $|\beta| \leq 1$ and $R > 1$

$$
|B[D_{\alpha}(P(Rz) - \beta P(z))]| \le |\alpha|n|R^{n} - \beta||B[z^{n-1}]| \max_{|z|=1} |P(z)|,
$$
 (1.16)

for $|z| \geq 1$.

The result is sharp and equality holds in inequality (1.16) for $P(z)$ $az^n, a \neq 0.$

Substituting for $B[D_{\alpha}(P(Rz) - \beta P(z))]$, we have for $|z| \geq 1$,

$$
\left| \lambda_o D_{\alpha} (P(Rz) - \beta P(z)) + \lambda_1 \left(\frac{mz}{2} \right) D_{\alpha} (P(Rz) - \beta P(z))' + \lambda_2 \left(\frac{mz}{2} \right)^2 \frac{D_{\alpha} (P(Rz) - \beta P(z))''}{2!} \right|
$$
\n
$$
\leq |\alpha| n |R^n - \beta| \left| \lambda_o z^{n-1} + \lambda_1 \left(\frac{(n-1)z}{2} \right) (n-1) z^{n-2} + \lambda_2 \left(\frac{(n-1)z}{2} \right)^2 \frac{(n-1)(n-2)z^{n-3}}{2!} \right| \max_{|z|=1} |P(z)|,
$$
\n(1.17)

where $0 \leq m \leq n-1$ and λ_o , λ_1 and λ_2 are such that all the zeros of $u(z)$ defined by inequality (1.15) lie in the half plane $Re\ z \leq \frac{m}{4}$ $\frac{n}{4}$.

If, we choose $\beta = 0$ and let $R \rightarrow 1$ in inequality (1.16) we get the following result:

Corollary 1.2. If $P(z)$ is a polynomial of degree n, then for every real or complex number α with $|\alpha| \geq 1$,

$$
|B[D_{\alpha}P(z)]| \le |\alpha|n|B[z^{n-1}]| \max_{|z|=1} |P(z)| \text{ for } |z| \ge 1.
$$

The result is sharp and equality holds for the polynomial $P(z) = az^n$, $a \neq 0$.

Remark 1.3. If, we choose $\lambda_1 = 0 = \lambda_2$ with $\beta = 0$ and letting $R \to 1$ inequality (1.17) will reduce to

$$
|D_{\alpha}P(z)| \le |\alpha|n|z^{n-1}|\max_{|z|=1} |P(z)| \text{ for } |z| \ge 1.
$$
 (1.18)

Dividing both side of inequality (1.18) by $|\alpha|$ and letting $|\alpha| \to \infty$, inequality (1.18) will reduce to inequality (1.1).

Choosing $\lambda_o = 0 = \lambda_2$ in inequality (1.17) will give the following result:

Corollary 1.4. If $P(z)$ is a polynomial of degree n, then for every real or complex numbers α , β with $|\alpha| \geq 1$, $|\beta| \leq 1$ and $R > 1$,

$$
\left| \frac{m}{2} D_{\alpha} (P(Rz) - \beta P(z))' \right| \leq |\alpha| n |R^{n} - \beta| \left| \left(\frac{(n-1)^{2}}{2} \right) z^{n-2} \right| \max_{|z|=1} |P(z)|. \tag{1.19}
$$

Dividing both side of inequality (1.19) by $|\alpha|$ and letting $|\alpha| \to \infty$, then $m = n - 1$ and for $\beta = 0$ and $R \rightarrow 1$, inequality (1.19) will reduce to,

$$
|P''(z)| \le n(n-1)|z^{n-2}| \max_{|z|=1} |P(z)| \text{ for } |z| \ge 1.
$$
 (1.20)

The result is best possible and equality holds in inequality (1.20) for $P(z) =$ $a z^n$.

We now prove the theorem which gives the extension of [13, Lemma (2.3)] to the polar derivative.

Theorem 1.5. If $P(z)$ is a polynomial of degree n, then for every real or complex numbers α , β with $|\alpha| \geq 1$, $|\beta| \leq 1$ and $R > 1$,

$$
|B[D_{\alpha}(P(Rz) - \beta P(z))]| + |B[D_{\alpha}(Q(Rz) - \beta Q(z))|
$$

\n
$$
\leq n(|\alpha||R^{n} - \beta||B[z^{n-1}]| + |1 - \beta||\lambda_{o}|) \max_{|z|=1} |P(z)|,
$$
\n(1.21)

for $|z| \geq 1$, where $Q(z) = z^n \overline{P(\frac{1}{z})}$ $\frac{1}{\overline{z}}$).

The result is best possible and the equality holds in inequality (1.21) for $P(z) = zⁿ + 1$. Substituting for $B[D_{\alpha}(P(Rz) - \beta P(z))]$ in inequality (1.21), we have for $|z| \geq 1$,

$$
\left| \lambda_o D_{\alpha} (P(Rz) - \beta P(z)) + \lambda_1 \left(\frac{mz}{2} \right) D_{\alpha} (P(Rz) - \beta P(z))' + \lambda_2 \left(\frac{mz}{2} \right)^2 \frac{D_{\alpha} (P(Rz) - \beta P(z))''}{2!} \right| + \left| \lambda_o D_{\alpha} (Q(Rz) - \beta Q(z)) + \lambda_1 \left(\frac{mz}{2} \right) D_{\alpha} (Q(Rz) - \beta Q(z))' + \lambda_2 \left(\frac{mz}{2} \right)^2 \frac{D_{\alpha} (Q(Rz) - \beta Q(z))''}{2!} \right|
$$

$$
\leq n \left\{ |\alpha| |R^n - \beta| \left| \lambda_0 z^{n-1} + \lambda_1 \left(\frac{(n-1)z}{2} \right) (n-1) z^{n-2} + \lambda_2 \left(\frac{(n-1)z}{2} \right)^2 \frac{(n-1)(n-2)z^{n-3}}{2!} \right| + |1 - \beta| |\lambda_0| \right\} \max_{|z|=1} |P(z)|,
$$
\n(1.22)

where $0 \leq m \leq n-1$ and λ_0 , λ_1 and λ_2 are such that all the zeros of $u(z)$ defined by inequality (1.15) lie in the half plane $Re\ z \leq \frac{m}{4}$ $\frac{n}{4}$.

If, we choose $\beta = 0$ and let $R \to 1$ in inequality (1.21), we get the following extension of [13, Lemma (2.3)] to polar derivatives.

Corollary 1.6. If $P(z)$ is a polynomial of degree n, then for every real or complex numbers α with $|\alpha| \geq 1$ and for $|z| \geq 1$

$$
|B[D_{\alpha}P(z)]| + |B[D_{\alpha}Q(z)]| \le n(|\alpha||B[z^{n-1}]| + |\lambda_o|) \max_{|z|=1} |P(z)|,
$$

which implies

$$
|B[nP(z) + (\alpha - z)P'(z)]| + |B[nQ(z) + (\alpha - z)Q'(z)]|
$$

\n
$$
\le n(|B[\alpha z^{n-1}]| + |\lambda_o|) \max_{|z|=1} |P(z)|,
$$

taking $\alpha = z$ in the above inequality, we get [13, Lemma (2.3)] that is

$$
|B[P(z)]|+|B[Q(z)]|\leq (|B[z^n]|+|\lambda_o|)\max_{|z|=1}|P(z)|\;\; \text{for}\; |z|\geq 1.
$$

Taking $\lambda_1 = 0 = \lambda_2$ with $\beta = 0$ and letting $R \rightarrow 1$ in inequality (1.22), we get the following result:

Corollary 1.7. If $P(z)$ is a polynomial of degree n, then for every real or complex number α with $|\alpha| \geq 1$,

$$
|D_{\alpha}P(z)| + |D_{\alpha}Q(z)| \le n\{|{\alpha}||z^{n-1}| + 1\} \max_{|z|=1} |P(z)| \text{ for } |z| \ge 1. \tag{1.23}
$$

Dividing both sides by $|\alpha|$ and letting $|\alpha| \to \infty$, inequality (1.23) will reduce to,

$$
|P'(z)| + |Q'(z)| \le n|z^{n-1}| \max_{|z|=1} |P(z)| \text{ for } |z| \ge 1.
$$
 (1.24)

The result is best possible and equality holds in inequality (1.24) for $P(z)$ = $zⁿ+1$. The above result is a special case of the result due to Govil and Rahman [8, Inequality (3.2)].

Taking $\lambda_o = 0 = \lambda_2$ with $\beta = 0$ and letting $R \to 1$ in inequality (1.22), we get the following result:

Corollary 1.8. If $P(z)$ is a polynomial of degree n, then for every real or complex number α with $|\alpha| \geq 1$,

$$
m\{|D_{\alpha}P'(z)|+|D_{\alpha}Q'(z)|\} \le n|\alpha|(n-1)^2|z^{n-2}|\max_{|z|=1}|P(z)| \text{ for } |z| \ge 1. \tag{1.25}
$$

Dividing both sides by $|\alpha|$ and letting $|\alpha| \to \infty$, then $m = n - 1$, inequality (1.25) will reduce to

$$
|P''(z)| + |Q''(z)| \le n(n-1)|z^{n-2}| \max_{|z|=1} |P(z)| \text{ for } |z| \ge 1.
$$
 (1.26)

The result is best possible and equality holds in inequality (1.26) for $P(z)$ = z^n+1 .

Next, we prove a result for the class of polynomials not vanishing in a unit disc and obtain compact generalization of inequalities (1.7). Infact we prove:

Theorem 1.9. If $P(z)$ is a polynomial of degree n which does not vanish in $|z| < 1$, then for every real or complex numbers α , β with $|\alpha| \geq 1$, $|\beta| \leq 1$ and $R > 1$,

$$
|B[D_{\alpha}(P(Rz) - \beta P(z))]|
$$

\n
$$
\leq \frac{n}{2} \{ |\alpha| |R^{n} - \beta| |B[z^{n-1}]| + |1 - \beta| |\lambda_{o}| \} \max_{|z|=1} |P(z)|,
$$
\n(1.27)

for $|z| \geq 1$.

The result is best possible and equality in inequality (1.27) holds for $P(z) =$ $z^{n} + 1$. Substituting for $B[D_{\alpha}(P(Rz) - \beta P(z))]$ in inequality (1.27), we have for $|z| \geq 1$,

$$
\left| \lambda_o D_{\alpha} (P(Rz) - \beta P(z)) + \lambda_1 \left(\frac{mz}{2} \right) D_{\alpha} (P(Rz) - \beta P(z))' \right|
$$

+
$$
\lambda_2 \left(\frac{mz}{2} \right)^2 \frac{D_{\alpha} (P(Rz) - \beta P(z))''}{2!} \Big|
$$

$$
\leq \frac{n}{2} \left\{ |\alpha| |R^n - \beta| \left| \lambda_o z^{n-1} + \lambda_1 \left(\frac{(n-1)z}{2} \right) (n-1) z^{n-2} \right|
$$

+
$$
\lambda_2 \left(\frac{(n-1)z}{2} \right)^2 \frac{(n-1)(n-2)z^{n-3}}{2!} \Big| + |1 - \beta| |\lambda_o| \right\} \max_{|z|=1} |P(z)|,
$$

(1.28)

where $0 \leq m \leq n-1$ and λ_0 , λ_1 and λ_2 are such that all the zeros of $u(z)$ defined by inequality (1.15) lie in the half plane $Re\ z \leq \frac{m}{4}$ $\frac{n}{4}$.

Remark 1.10. If we take $\beta = 0$ and let $R \rightarrow 1$, inequality (1.27) will reduce to the following result due to Bidkham and Mezerji [7].

If $P(z)$ is a polynomial of degree at most n, having no zero in $|z| \leq 1$, then for every α with $|\alpha| \geq 1$,

$$
|B[D_{\alpha}P(z)]| \leq \frac{n}{2} \{ |\alpha| |B[z^{n-1}]| + |\lambda_o| \} \max_{|z|=1} |P(z)| \text{ for } |z| \geq 1.
$$

Remark 1.11. If we take $\lambda_1 = 0 = \lambda_2$ with $\beta = 0$ and letting $R \to 1$, inequality (1.28) reduces to inequality (1.7) that is

$$
|D_{\alpha}P(z)| \leq \frac{n}{2} \{ |\alpha z^{n-1}| + 1 \} \max_{|z|=1} |P(z)| \text{ for } |z| \geq 1.
$$

On dividing both sides of above inequality by $|\alpha|$ and letting $|\alpha| \to \infty$, we get inequality (1.3).

Choosing $\lambda_o = 0 = \lambda_2$ with $\beta = 0$ and letting $R \to 1$ in inequality (1.28), we get the following result:

Corollary 1.12. If $P(z)$ is a polynomial of degree n which does not vanish in $|z|$ < 1, then for every real or complex number α with $|\alpha| \geq 1$

$$
|mD_{\alpha}P'(z)| \le \frac{n(n-1)^2}{2} |\alpha||z^{n-2}| \max_{|z|=1} |P(z)| \text{ for } |z| \ge 1.
$$
 (1.29)

Dividing both sides of inequality (1.29) by $|\alpha|$ and letting $|\alpha| \to \infty$, then $m = n - 1$ and we have

$$
|P''(z)| \le \frac{n(n-1)}{2} |z^{n-2}| \max_{|z|=1} |P(z)| \text{ for } |z| \ge 1.
$$
 (1.30)

The result is best possible and equality in inequality (1.30) holds for $P(z) =$ z^n+1 .

We now prove the following interesting result, which provides the compact generalisation of inequality (1.13).

Theorem 1.13. If $P(z)$ is a polynomial of degree n having all its zeros in $|z| \leq 1$, then for every real or complex numbers α , β with $|\alpha| \geq 1$, $|\beta| \leq 1$ and $R > 1$

$$
|B[D_{\alpha}(P(Rz) - \beta P(z))]| \ge |\alpha|n|R^{n} - \beta||B[z^{n-1}]| \min_{|z|=1} |P(z)|,
$$
 (1.31)

for $|z| \geq 1$.

The result is sharp and equality holds in inequality (1.31) for $P(z) = az^n$. Substituting for $B[D_{\alpha}(P(Rz) - \beta P(z))]$, we have for $|z| \geq 1$,

$$
\left(\lambda_o D_\alpha(P(Rz) - \beta P(z)) + \lambda_1 \left(\frac{mz}{2}\right) D_\alpha(P(Rz) - \beta P(z))'\right)
$$

Operators preserving inequalities between the polynomials 581

$$
+ \lambda_2 \left(\frac{mz}{2}\right)^2 \frac{D_{\alpha}(P(Rz) - \beta P(z))''}{2!} \n\geq |\alpha|n|R^n - \beta| \lambda_0 z^{n-1} + \lambda_1 \left(\frac{(n-1)z}{2}\right)(n-1)z^{n-2} \n+ \lambda_2 \left(\frac{(n-1)z}{2}\right)^2 \frac{(n-1)(n-2)z^{n-3}}{2!} \Big| \min_{|z|=1} |P(z)|,
$$
\n(1.32)

where $0 \leq m \leq n-1$ and λ_o , λ_1 and λ_2 are such that all the zeros of $u(z)$ defined by (1.15) lie in the half plane $Re\ z \leq \frac{m}{4}$ $\frac{n}{4}$.

Remark 1.14. If we take $\beta = 0$ and let $R \rightarrow 1$, inequality (1.31) will reduce to inequality (1.13).

Taking $\lambda_1 = 0 = \lambda_2$ with $\beta = 0$ and letting $R \to 1$ in inequality (1.32), we will get the following result from which result of Aziz and Dawood [2] follows as a special case.

Corollary 1.15. If $P(z)$ is a polynomial of degree at most n having all its zeros in $|z| \leq 1$, then for every real or complex number α with $|\alpha| \geq 1$,

$$
|D_{\alpha}P(z)| \ge n|\alpha||z^{n-1}| \min_{|z|=1} |P(z)| \text{ for } |z| \ge 1.
$$
 (1.33)

The result is best possible and equality holds in inequality (1.33) for $P(z) =$ az^n . Dividing the inequality (1.33) both sides by $|\alpha|$ and letting $|\alpha| \to \infty$, then $m = n - 1$, we obtain the inequality (1.5) as a special case.

Choosing $\lambda_o = 0 = \lambda_2$ with $\beta = 0$ and letting $R \to 1$ in inequality (1.32), we get the following result:

Corollary 1.16. If $P(z)$ is a polynomial of degree at most n, having all its zeros in $|z| \leq 1$, then for every real or complex number α with $|\alpha| \geq 1$,

$$
|mD_{\alpha}P'(z)| \ge n(n-1)^2 |\alpha||z^{n-2}| \min_{|z|=1} |P(z)|.
$$
 (1.34)

Dividing both sides of the inequality (1.34) by $|\alpha|$ and letting $|\alpha| \to \infty$, then $m = n - 1$ we obtain

$$
|P''(z)| \ge n(n-1)|z^{n-2}| \min_{|z|=1} |P(z)|. \tag{1.35}
$$

The result is best possible and the equality holds in inequality (1.35) for $P(z)$ = $a z^n$.

As an improvement of inequality (1.31) and generalisation of inequality (1.10), we prove the following result:

Theorem 1.17. If $P(z)$ is a polynomial of degree at most n which does not vanish in $|z| < 1$, then for every real or complex numbers α , β with $|\alpha| \geq 1$, $|\beta| \leq 1$ and $R > 1$

$$
|B[D_{\alpha}(P(Rz) - \beta P(z))]|
$$

\n
$$
\leq \frac{n}{2} \left[\{ |\alpha| |R^{n} - \beta| |B[z^{n-1}]| + |\lambda_{o}| |1 - \beta| \} \max_{|z|=1} |P(z)| - \{ |\alpha| |R^{n} - \beta| |B[z^{n-1}]| - |\lambda_{o}| |1 - \beta| \} \min_{|z|=1} |P(z)| \right] \text{ for } |z| \geq 1.
$$
\n(1.36)

The result is sharp and equality in inequality (1.36) holds for the polynomial having all the zeros on the unit disk. Substituting for $B[D_{\alpha}(P(Rz) - P(z))]$ in inequality (1.36), we have for $|z| \geq 1$,

$$
\left| \lambda_{o}D_{\alpha}(P(Rz) - \beta P(z)) + \lambda_{1}\left(\frac{mz}{2}\right)D_{\alpha}(P(Rz) - \beta P(z))'\n+ \lambda_{2}\left(\frac{mz}{2}\right)^{2}\frac{D_{\alpha}(P(Rz) - \beta P(z))''}{2!} \right|
$$
\n
$$
\leq \frac{n}{2}\left[\left\{ |\alpha||R^{n} - \beta| \left| \lambda_{o}z^{n-1} + \lambda_{1}\left(\frac{(n-1)z}{2}\right)(n-1)z^{n-2} + \lambda_{2}\left(\frac{(n-1)z}{2}\right)^{2}\frac{(n-1)(n-2)z^{n-3}}{2!} \right| + |1 - \beta||\lambda_{o}|\right\} \max_{|z|=1} |P(z)|
$$
\n
$$
- \left\{ |\alpha||R^{n} - \beta| \left| \lambda_{o}z^{n-1} + \lambda_{1}\left(\frac{(n-1)z}{2}\right)(n-1)z^{n-2} + \lambda_{2}\left(\frac{(n-1)z}{2}\right)^{2}\frac{(n-1)(n-2)z^{n-3}}{2!} \right| - |1 - \beta||\lambda_{o}|\right\} \min_{|z|=1} |P(z)| \right],
$$
\n(1.37)

where $0 \leq m \leq n-1$ and λ_o , λ_1 and λ_2 are such that all the zeros of $u(z)$ defined by (1.15) lie in the half place $Re\ z \leq \frac{m}{4}$ $\frac{m}{4}$.

Remark 1.18. If we take $\beta = 0$ and letting $R \rightarrow 1$, inequality (1.36) will reduce to inequality (1.14).

Remark 1.19. Taking $\lambda_1 = 0 = \lambda_2$ with $\beta = 0$ and let $R \rightarrow 1$, inequality (1.37) will reduce to the following result due to Aziz and Shah [5].

If $P(z)$ is a polynomial of degree n which does not vanish in $|z| < 1$, then for every complex number α with $|\alpha| \geq 1$,

$$
\max_{|z|=1} |D_{\alpha} P(z)| \leq \frac{n}{2} \bigg\{ (|\alpha|+1) \max_{|z|=1} |P(z)| - (|\alpha|-1) \min_{|z|=1} |P(z)| \bigg\}.
$$

Dividing both sides by $|\alpha|$ and letting $|\alpha| \to \infty$, in the above inequality, it follows that if $P(z) \neq 0$ in $|z| < 1$, then

$$
\max_{|z|=1} |P'(z)| \leq \frac{n}{2} \bigg\{ \max_{|z|=1} |P(z)| - \min_{|z|=1} |P(z)| \bigg\}.
$$

The above result is an interesting refinement of Erdös-Lax theorem (inequality (1.3)) and was proved by Aziz and Dawood [2].

If we take $\lambda_o = 0 = \lambda_2$ with $\beta = 0$ and let $R \to 1$ in (1.37), we get the following result:

Corollary 1.20. If $P(z)$ is a polynomial of degree at most n, having no zero in $|z| \leq 1$, then for every α with $|\alpha| \geq 1$ and $|z| \geq 1$,

$$
|mD_{\alpha}P(z)| \le \frac{n(n-1)^2}{2} |\alpha||z^{n-2}| \left\{ \max_{|z|=1} p(z)| - \min_{|z|=1} |p(z)| \right\}.
$$
 (1.38)

The result is best possible and equality holds in inequality (1.38) for $P(z) =$ $z^{n}+1$. Dividing both sides of the inequality (1.38) by $|\alpha|$ and letting $|\alpha| \to \infty$, then $m = n - 1$ and we get

$$
|P''(z)| \le \frac{n(n-1)}{2} |z^{n-2}| \left\{ \max_{|z|=1} |p(z)| - \min_{|z|=1} |p(z)| \right\}.
$$
 (1.39)

2. Lemmas

For the proof of above theorems we need the following lemmas. The first lemma follows from [9].

Lemma 2.1. If all the zeros of polynomial $P(z)$ of degree n lie in $|z| \leq k$, where $k \leq 1$, then for $|\alpha| \geq k$, the polar derivative $D_{\alpha}[P(z)]$ of $P(z)$ at the point α also has all its zeros in $|z| \leq k$.

The following lemma which we need is in fact implicit in [11, Lemma 14.5.7, p.540].

Lemma 2.2. If all the zeros of the polynomial $P(z)$ of degree n lie in a circle $|z| \leq 1$, then all the zeros of the polynomial $B[P(z)]$ also lie in $|z| \leq 1$.

As an application of Lemmas 2.1 and 2.2 we have the following lemma.

Lemma 2.3. If all the zeros of polynomial $P(z)$ of degree n lie in $|z| \leq 1$, then for $|\alpha| \geq 1$, all the zeros of the polynomial $B[D_{\alpha}P(z)]$ also lie in $|z| \leq 1$.

Proof. From Lemma 2.1 for $k = 1$, all the zeros of the polynomial $D_{\alpha}P(z)$ lie in $|z| \leq 1$ and so from Lemma 2.2 the polynomial $B[D_{\alpha}P(z)]$ has all its zeros in $|z| \leq 1$. The next lemma is due to Aziz and Rather [3].

Lemma 2.4. If $P(z)$ is a polynomial of degree at most n having all its zeros in $|z| < k$, where $k \leq 1$, then $|P(Rz)| > |P(z)|$, for $|z| \geq 1$ and $R > 1$.

Lemma 2.5. If $P(z)$ is a polynomial of degree n which does not vanish in $|z| < 1$, then for every real or complex numbers α , β with $|\alpha| \geq 1$, $|\beta| \leq 1$ and $R > 1$.

$$
|B[D_{\alpha}(P(Rz) - \beta P(z))]| \le |B[D_{\alpha}(Q(Rz) - \beta Q(z))]|, \tag{2.1}
$$

for $|z| \geq 1$, where $Q(z) = z^n p(\frac{1}{z})$ $\frac{1}{\overline{z}}$).

Proof. For $R = 1$, the result reduces to Bidkham and Mezerji [7, Lemma 4, p.597. Now we will prove the result for $R > 1$. Since all the zeros of $P(z)$ lie in $|z| \geq 1$ and for every real or complex number λ with $|\lambda| > 1$, the polynomial $G(z) = P(z) - \lambda Q(z)$, where $Q(z) = z^n p(\frac{1}{z})$ $(\frac{1}{z})$ has all its zeros in $|z| \leq 1$. Applying lemma 4 to the polynomial $G(z)$ with $k = 1$, we get

$$
|G(z)| < |G(Rz)|
$$
 for $|z| = 1$ and $R > 1$.

Since all the zeros $G(Rz)$ lie in $|z| \leq \frac{1}{R} < 1$, therefore for any real or complex number β with $|\beta| \leq 1$, the polynomial $H(z) = G(Rz) - \beta G(z)$, has all its zeros in $|z| < 1$, for every λ with $|\lambda| > 1$ and $R > 1$, by Lemma 2.3 all the zeros of $B[D_{\alpha}H(z)]$ lie in $|z| < 1$. This implies

$$
B[D_{\alpha}(G(Rz) - \beta G(z))]
$$

=
$$
B[D_{\alpha}(P(Rz) - \beta P(z))] - \lambda B[D_{\alpha}(Q(Rz) - \beta Q(z))],
$$
 (2.2)

for $|z| \geq 1$ and $R > 1$. Inequality (2.2) implies

$$
|B[D_{\alpha}(P(Rz) - \beta P(z))]| \le |B[D_{\alpha}(Q(Rz) - \beta Q(z))]|, \tag{2.3}
$$

for $|z| \geq 1$ and $R > 1$. For if it is not true, then there is a point $z = z_0$ with $|z_o| \geq 1$, such that

$$
|B[D_{\alpha}(P(Rz_{o}) - \beta P(z_{0}))]| \ge |B[D_{\alpha}(Q(Rz_{o}) - \beta Q(z_{o}))]|, \qquad (2.4)
$$

for $|z| \geq 1$ and $R > 1$. Since all the zeros of $Q(z)$ lie in $|z| \leq 1$, therefore it follows that all the zeros of $Q(Rz) - \beta Q(z)$, lie in $|z| \leq 1$ for every β with $|\beta| \leq 1$. Hence $Q(Rz_o) - \beta Q(z_o) \neq 0$, for $|z_o| \geq 1$. Which implies

$$
B[D\alpha(Q(Rz_o) - \beta Q(z_o))] \neq 0 \text{ for } |z| \geq 1 \text{ and } R > 1.
$$

We take

$$
\lambda = \frac{B[D_{\alpha}(P(Rz_o) - P(z_o))]}{B[D\alpha(Q(Rz_o) - Q(z_o))]},
$$

so that $|\lambda| > 1$. Which shows that $B[D_{\alpha}H(z)]$ has a zero in $|z| \geq 1$. Which is contradiction to the fact that all the zeros of $B[D_{\alpha}H(z)]$ lie in $|z| < 1$. Thus

$$
|B[D_{\alpha}(P(Rz) - \beta P(z))]| \leq |B[D_{\alpha}(Q(Rz) - \beta Q(z))]|,
$$

for $|z| \ge 1$ and $R \ge 1$.

3. Proof of theorems

Proof of Theorem 1.1. Let $M = \max_{|z|=1} |P(z)|$, then $|P(z)| \leq M$ for $|z| =$ 1. Therefore, by Rouche's Theorem we have all the zeros of the polynomial $G(z) = P(z) + \lambda z^n M$, lie in $|z| < 1$ for every λ with $|\lambda| > 1$. Now from Lemma 2.4, we have

$$
|G(z)| < |G(Rz)|
$$
 for $|z| = 1$ and $R > 1$.

Since all the zeros of $G(Rz)$ lie in $|z| < \frac{1}{R} < 1$, therefore if β is any real or complex number with $|\beta| \leq 1$, we have all the zeros of the polynomial

$$
G(Rz) - \beta G(z) = (P(Rz) - \beta P(z)) + \lambda (R^{n} - \beta) z^{n} M,
$$

also lie in $|z|$ < 1 for every $R > 1$ and $|\lambda| > 1$. Therefore by Lemma 2.3, all the zeros of $B[D_\alpha(G(Rz)-\beta G(z))]$, lie in $|z|<1$ for every $R>1$ and $|\lambda|>1$. Which implies

$$
B[D_{\alpha}(G(Rz) - \beta G(z))]
$$

=
$$
B[D_{\alpha}(P(Rz) - \beta P(z))] + \lambda \alpha n (R^{n} - \beta) M B[z^{n-1}],
$$
 (3.1)

for $|z| < 1$ and $R > 1$. Inequality (3.1) implies

$$
|B[D_{\alpha}(P(Rz) - \beta P(z))]|
$$

\n
$$
\leq |\alpha|n|R^{n} - \beta||B[z^{n-1}]|M \text{ for } |z| \geq 1 \text{ and } R > 1,
$$
 (3.2)

for if this is not true, then there is a point $z = z_0$ with $|z_0| \ge 1$ such that

$$
|B[D_{\alpha}(P(Rz_o) - \beta P(z_o))]| > |\alpha|n|R^n - \beta||B[z_o^{n-1}|M.
$$

We take

$$
\lambda = -\frac{B[D_{\alpha}(P(Rz_o) - \beta P(z_o))]}{\alpha n(R^n - \beta)B[z^{n-1}]},
$$

so that $|\lambda| > 1$, for this choice of $|\lambda|$, we have $B[D_{\alpha}(G(Rz_{o}) - \beta G(z_{o}))] =$ 0 for $|z_0| \geq 1$. Which is a contradiction to the fact that all the zeros of $B[D_{\alpha}(G(Rz) - \beta G(z))]$ lie in $|z| < 1$. Thus

$$
|B[D_{\alpha}(P(Rz) - \beta P(z))]| \le \alpha n |R^n - \beta| |B[z^{n-1}| \max_{|z|=1} |P(z)|,
$$

for $|z| \ge 1$ and $R > 1$.

Proof of Theorem 1.5. Let $M = \max_{|z|=1} |P(z)|$, then $|P(z)| \leq M$ for $|z| = 1$. Now for every real or complex number γ with $|\gamma| > 1$, it follows from Rouche's Theorem, the polynomial $G(z) = P(z) + \gamma M$ does not vanish

in $|z|$ < 1. Now applying Lemma 2.4 and 2.5 to the polynomial $G(z)$, we have for every real or complex number β with $|\beta| \leq 1$,

$$
|B[D_{\alpha}(P(Rz) - \beta P(z) + \gamma(1 - \beta)M)]|
$$

\n
$$
\leq |B[D_{\alpha}(Q(Rz) - \beta Q(z) + \overline{\gamma}(R^{n} - \beta)z^{n}M)]|,
$$
\n(3.3)

for $|z| \geq 1$ and $R > 1$, where $Q(z) = z^n p(\frac{1}{z})$ $\frac{1}{\overline{z}}$). Inequality (3.3) implies

$$
|B[D_{\alpha}(P(Rz) - \beta P(z))] + n\gamma (1 - \beta) M\lambda_o|
$$

\n
$$
\leq |B[D_{\alpha}(Q(Rz) - \beta Q(z))] + \alpha n \overline{\gamma}(R^n - \beta) B[z^{n-1}]M|,
$$
\n(3.4)

for $|z| \geq 1$ and $R > 1$.

Now choosing the argument of $\overline{\gamma}$ on the R.H.S of inequality (3.4), such that

$$
|B[D_{\alpha}(Q(Rz) - \beta Q(z))] + \alpha n \overline{\gamma}(R^{n} - \beta)B[z^{n-1}]M|
$$

= $|\alpha|n|\gamma||R^{n} - \beta||B[z^{n-1}]|M - |B[D_{\alpha}(Q(Rz) - \beta Q(z))]|,$ (3.5)

for $|z| \ge 1$ and $R > 1$. Therefore we get from inequality (3.4),

$$
|B[D_{\alpha}(P(Rz) - \beta P(z))]| - |n\gamma(1 - \beta)\lambda_{o}M|
$$

\n
$$
\leq |\alpha|n|\gamma||R^{n} - \beta||B[z^{n-1}]|M - |B[D_{\alpha}(Q(Rz) - \beta Q(z))]|,
$$
\n(3.6)

for $|z| \ge 1$ and $R > 1$. Therefore, inequality (3.6) implies

$$
|B[D_{\alpha}(P(Rz) - \beta P(z))]| + |B[D_{\alpha}(Q(Rz) - \beta Q(z))]|
$$

\n
$$
\leq |\alpha|n|\gamma||R^{n} - \beta||B[z^{n-1}]|M + n|\gamma||1 - \beta||\lambda_{o}|M,
$$
\n(3.7)

for $|z| \ge 1$ and $R > 1$. Letting $|\gamma| \to 1$, in inequality (3.7), we get

$$
|B[D_{\alpha}(P(Rz) - \beta P(z))]| + |B[D_{\alpha}(Q(Rz) - \beta Q(z))]|
$$

\n
$$
\leq n(|\alpha||R^{n} - \beta||B[z^{n-1}]| + |1 - \beta||\lambda_{o}|) \max_{|z|=1} |P(z)|,
$$

for $|z| \ge 1$ and $R > 1$. Which proves the theorem.

Proof of Theorem 1.9. We have from Lemma 2.5,

$$
|B[D_{\alpha}(P(Rz) - \beta P(z))]| \leq |B[D_{\alpha}(Q(Rz) - \beta Q(z))]|,
$$

for $|z| \geq 1$ and $R \geq 1$, where $Q(z) = z^n \overline{p(\frac{1}{z})}$ $\frac{1}{\overline{z}}$). Also from Theorem 1.5, we have

$$
|B[D_{\alpha}(P(Rz) - \beta P(z))]| + |B[D_{\alpha}(Q(Rz) - \beta Q(z))|
$$

\n
$$
\leq n(|\alpha||R^{n} - \beta||B[z^{n-1}]| + |1 - \beta||\lambda_{o}|) \max_{|z|=1} |P(z)|,
$$

for $|z| \geq 1$ and $R > 1$, where $Q(z) = z^n p(\frac{1}{z})$ $\frac{1}{\overline{z}}$). Combining the above two inequalities, we get

$$
|B[D_{\alpha}(P(Rz) - \beta P(z))]|
$$

\n
$$
\leq \frac{n}{2} \{ |\alpha| |R^{n} - \beta| |B[z^{n-1}]| + |1 - \beta| |\lambda_{o}| \} \max_{|z|=1} |P(z)|,
$$

for $|z| \ge 1$ and $R > 1$. Which proves the theorem.

Proof of Theorem 1.13. If $P(z)$ has a zero on $|z|=1$, then the result is trivial. So we suppose that $P(z)$ has all its zeros in $|z| < 1$. If $m =$ $\min_{|z|=1} |P(z)|$, then $m > 0$ and $m \leq |P(z)|$ for $|z|=1$. Therefore, if γ is any complex number with $|\gamma| < 1$, we have the polynomial $G(z) = P(z) - \gamma m z^n$ of degree *n* has all its zeros in $|z| < 1$. Now from Lemma 2.4, we have

$$
|G(z)| < |G(Rz)|
$$
 for $|z| = 1$ and $R > 1$.

Since all the zeros of $G(Rz)$ lie in $|z| < \frac{1}{R} < 1$, therefore for any real or complex number β with $|\beta| \leq 1$ and $R > 1$, it follows from Rouche's Theorem, the polynomial $H(z) = G(Rz) - \beta G(z)$ has all its zeros in $|z| < 1$. Therefore from Lemma 2.3, all the zeros of $B[D_{\alpha}H(z)]$ lie in $|z| < 1$. This implies

$$
B[D_{\alpha}(G(Rz) - \beta G(z))]
$$

=
$$
B[D_{\alpha}(P(Rz) - \beta P(z))] - \alpha n \gamma (R^{n} - \beta) B[z^{n-1}]m,
$$
 (3.8)

for $|z| \ge 1$ and $R > 1$. Inequality (3.8) implies for $|z| \ge 1$ and $R > 1$,

$$
|B[D_{\alpha}(P(Rz) - \beta P(z))]| \ge |\alpha|n|R^{n} - \beta||B[z^{n-1}]|m.
$$
 (3.9)

If inequality (3.9) is not true, then there is a point $z = z_0$ with $|z_0| \ge 1$ such that

$$
|B[D_{\alpha}(P(Rz_{o})-\beta P(z_{o}))]| < |\alpha|n|R^{n}-\beta||B[z^{n-1}|m.
$$

We take

$$
\gamma = \frac{B[D_{\alpha}(P(Rz_o) - \beta P(z_o))]}{\alpha n (R^n - \beta) B[z_o^{n-1}]m},
$$

so that $|\gamma| < 1$. For this choice of $|\gamma|$, we have $B[D_{\alpha}H(z)] = 0$, for $|z| \geq 1$. Which is a contradiction to the fact that all the zeros of $B[D_{\alpha}H(z)]$ lie in $|z|$ < 1. Thus we have

$$
|B[D_{\alpha}(P(Rz) - \beta P(z))]| \ge |\alpha|n|R^{n} - \beta||B[z^{n-1}]| \min_{|z|=1} |P(z)|.
$$

Hence the theorem follows. \Box

Proof of Theorem 1.17. Since the polynomial $P(z)$ does not vanish in $|z|$ 1, therefore if $m = \min_{|z|=1} |P(z)|$, then $m \leq |P(z)|$ for $|z| \leq 1$. Now for any real or complex number λ with $|\lambda| \leq 1$, the polynomial $G(z) = P(z) + \lambda m z^n$ does not vanish in $|z| < 1$. For if this is not true, then there is a point $z = z_0$,

with $|z_0| < 1$, such that $G(z_0) = P(z_0) + \lambda m z_0^n = 0$. Which implies $|P(z_0)| =$ $|m\lambda z_o^n| \le m|z_o|^n < m$, contradicting the fact that $m \le |P(z)|$ for $|z| \le 1$. Thus $G(z)$ has no zero in $|z| < 1$ for every λ with $|\lambda| \leq 1$. Applying Lemma 2.5 to the polynomial $G(z)$, we have for $|\beta| \leq 1$ and $R > 1$,

$$
|B[D_{\alpha}(P(Rz) - \beta P(z) + (R^{n} - \beta)\lambda mz^{n})]|
$$

\n
$$
\leq |B[D_{\alpha}(Q(Rz) - \beta Q(z) + (1 - \beta)\overline{\lambda}m)]|,
$$
\n(3.10)

for $|z| \geq 1$ and $R > 1$, where $Q(z) = z^n p(\frac{1}{z})$ $\frac{1}{\overline{z}}$). Inequality (3.10) implies

$$
|B[D_{\alpha}(P(Rz) - \beta P(z))] + \alpha (R^{n} - \beta) \lambda m n B[z^{n-1}]|
$$

\n
$$
\leq |B[D_{\alpha}(Q(Rz) - \beta Q(z))] + n \lambda_{o}(1 - \beta) \overline{\lambda} m|,
$$
\n(3.11)

for $|z| \ge 1$ and $R > 1$. Choosing λ in inequality (3.11) such that

$$
|B[D_{\alpha}(P(Rz) - \beta P(z))] + \alpha n \lambda (R^{n} - \beta) B[z^{n-1}]m|
$$

= |B[D_{\alpha}(P(Rz) - \beta P(z))]| + |\alpha|n|\lambda||R^{n} - \beta||B[z^{n-1}]|m, (3.12)

for $|z| \ge 1$ and $R > 1$. Inequality (3.12) implies

$$
|B[D_{\alpha}(P(Rz) - \beta P(z))]| + |\alpha|n|\lambda||R^{n} - \beta||B[z^{n-1}]|m
$$

\n
$$
\leq |B[D_{\alpha}(Q(Rz) - \beta Q(z))]| + n|\lambda_{o}||1 - \beta||\lambda|m,
$$
\n(3.13)

for $|z| \geq 1$ and $R > 1$. Inequality (3.13) implies

$$
|B[D_{\alpha}(P(Rz) - \beta P(z))]|
$$

\n
$$
\leq |B[D_{\alpha}(Q(Rz) - \beta Q(z))]|
$$

\n
$$
+ n||\lambda_{o}|1 - \beta||\lambda|m - |\alpha|n|\lambda||R^{n} - \beta||B[z^{n-1}]|m,
$$
\n(3.14)

for $|z| \ge 1$ and $R > 1$. Letting $|\lambda| \to 1$, we have for $|z| \ge 1$ and $R > 1$ $2|D[D(D\omega) - \beta D(\omega))]$

$$
2|B[D_{\alpha}(P(Rz) - \beta P(z))]|
$$

\n
$$
\leq |B[D_{\alpha}(P(Rz) - \beta P(z))]| + |B[D_{\alpha}(Q(Rz) - \beta Q(z))]|
$$

\n
$$
+ n|\lambda_0||1 - \beta||m - |\alpha|n||R^n - \beta||B[z^{n-1}]|m,
$$
\n(3.15)

for
$$
|z| \ge 1
$$
 and $R > 1$. Applying Theorem 1.5, we get from inequality (3.15)
\n $|B[D_{\alpha}(P(Rz) - \beta P(z))]|$
\n $\le \frac{n}{2} \Big[\{ |\alpha| |R^n - \beta| |B[z^{n-1}]| + |\lambda_o||1 - \beta| \} \max_{|z|=1} |P(z)|$
\n $- \{ |\alpha| |R^n - \beta| |B[z^{n-1}]| - |\lambda_o||1 - \beta| \} \min_{|z|=1} |P(z)| \Big] \text{ for } |z| \ge 1.$ (1.36)

Hence the Theorem follows. \Box

REFERENCES

- [1] A. Aziz, Inequalities for the polar derivative of a polynomial, J. Approx. Theory, 55 (1988), 183–193.
- [2] A. Aziz and Q.M. Dawood, Inequalities for a polynomial and its derivative, J. Approx. Theory, 54 (1988), 306–313.
- [3] A. Aziz and N.A. Rather, New l^p inequalities for polynomials, Mathematicki Inequal. and Appl., 1 (1998), 177–191.
- [4] A. Aziz and N.A. Rather, On an inequality of S. Bernstein and Gauss-Lucas Theorem, Analytic and Geometric inequalities and Their Applications, (Th.M. Rassias and H.M. Sarivastavaeds) Kluwer Acad. Pub., (1999), 29–35.
- [5] A. Aziz and W.M. Shah, Inequalities for the polar derivatives of a polynomial, Indian J. Pure Appl. Math., 29 (1998), 163–173.
- [6] S. Bernstein, Sur La Limitation des derivées des polnômes, C. R. Acad. Sci, Paris, 190 (1930), 338–341.
- [7] M. Bidkham and H.A. Solieman Mezerji, An operator preserving inequalities between polar derivative of a polynomial, J. of Interdisciplinary Math., $14(5-6)$ (2011), 591–601.
- [8] N.K. Govil and Q.I. Rahman, Functions of exponential type not vanishing in a half plane and related polynomials, Trans. Amer. Math. Soc., 13 (1969), 501–517.
- [9] E. Laguerre, Oeuvres, Gauthier-Villars, Paris I (1898).
- [10] P.D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc., 50 (1944), 509–513.
- [11] Q.I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford Scientific Publication, (2002).
- [12] M. Riesz, Über einen Satz des Herrn Serge Bernstein, Acta Math., 40 (1916), 337–347.
- [13] W.M. Shah and A. Liman, An operator preserving inequalities between polynomials, J. Inequalities Pure Applied Math., 9 (2008), 1–16.
- [14] P. Turán, Uber die ableitung von polynomen, Compositio Math., 7 (1939), 89–95.