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Abstract. In this paper, by combining the operators B and Dα, we investigate the depen-

dence of B[Dα(P (Rz)− βP (z))] on the maximum modulus of P (z) on |z| = 1 for every real

or complex numbers α and β with |α| ≥ 1, |β| ≤ 1 and R > 1. Our results include not only

some known polynomial inequalities as special case, but also the results recently proved by

Bidkham and Mezerji as a particular case.

1. Introduction

If P (z) =
n∑
j=0

ajz
j is a polynomial of degree at most n and P ′(z) is its

derivatives, then
max
|z|=1

|P ′(z)| ≤ nmax
|z|=1

|P (z)| (1.1)

and
max
|z|=R>1

|P ′(z)| ≤ Rn max
|z|=1

|P (z)|. (1.2)

Inequality (1.1) is an immediate consequence of S. Bernstein’s inequality on
the derivative of a trigonometric polynomial (for reference see [6, 11]), where
as inequality (1.2) is a simple deduction from the maximum modulus principle
[12, p.346]. In both inequalities (1.1) and (1.2) equality holds only when P (z)
is a constant multiple of zn.
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If, we restrict ourselves to a class of polynomials having no zero in |z| < 1,
then the above inequality can be sharpened. In fact, Erdös conjectured and
latter Lax [10] proved that if P (z) 6= 0 in |z| ≤ 1, then

max
|z|=1

|P ′(z)| ≤ n

2
max
|z|=1

|P (z)| (1.3)

and

max
|z|=R>1

≤ Rn + 1

2
max
|z|=1

|P (z)|. (1.4)

Turán [14] proved that, if P (z) has all its zeros in |z| ≤ 1, then

max
|z|=1

|P ′(z)| ≥ n

2
max
|z|=1

|P (z)|. (1.5)

Concerning the minimum modulus of a polynomial P (z) and its derivative
P ′(z), Aziz and Dawood [2] proved that, if P (z) has all its zeros in |z| ≤ 1,
then

min
|z|=1
|P ′(z)| ≥ n min

|z|=1
|P (z)|. (1.6)

Let α be any complex number, the polynomial DαP (z) = nP (z) + (α −
z)P ′(z) denote the polar derivative of the polynomial P (z) of degree at most
n with respect to α. The polynomial DαP (z) is of degree at most n − 1 and
it generalizes the ordinary derivative in the sense that

lim
α→∞

DαP (z)

α
= P ′(z).

Aziz [1] extended inequality (1.3) and (1.5) to the polar derivative of a
polynomial and proved that if P (z) is a polynomial of degree n which does
not vanish in |z| < 1, then for every complex number α with |α| ≥ 1,

max
|z|=1

|DαP (z)| ≤ n

2
{|αzn−1|+ 1} max

|z|=1
|P (z)| for |z| ≥ 1. (1.7)

Rahman [11, p.538] introduced a class Bn of operators B that map P ∈ Pn
into itself. That is, the operator B carries P ∈ Pn into

B[P (z)] = λoP (z) + λ1

(
nz

2

)
P ′(z) + λ2

(
nz

2

)2P ′′(z)

2!
,

where λo, λ1, and λ2 are real or complex numbers such that all the zeros of

u(z) := λo + C(n, 1)λ1z + C(n, 2)λ2z
2, C(n, r) =

n!

r!(n− r)!
, (1.8)

lie in the half plane

|z| ≤
∣∣∣∣z − n

2

∣∣∣∣.
Concerning this operator Shah and Liman [13] proved:
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Theorem A. If P (z) ∈ Pn and P (z) 6= 0 in |z| > 1, then for |z| ≥ 1,

|B[P (z)]| ≥ |B[zn]|min
|z|=1
|P (z)|. (1.9)

Theorem B. If P (z) ∈ Pn and P (z) 6= 0 in |z| < 1, then for |z| ≥ 1,

|B[P (z)]| ≤ 1

2

[
{|B[zn]|+|λo|}max

|z|=1
|P (z)|−{|B[zn]|−|λo|}min

|z|=1
|P (z)|

]
. (1.10)

Concerning the dependence of |P (Rz) − P (z)| on |P (z)| Aziz and Rather
[4] proved:

Theorem C. If P (z) is a polynomial of degree n, then for every real or
complex number β with |β| ≤ 1 and R ≥ 1,

|P (Rz)− βP (z)| ≤ |Rn − β||z|n max
|z|=1

|P (z)| for |z| ≥ 1. (1.11)

Theorem D. If P (z) is a polynomial of degree n which does not vanish in
|z| < 1, then for every real or complex number β with |β| ≤ 1 and R ≥ 1,

|P (Rz)− βP (z)| ≤
{
|Rn − β||zn|+ |1− β|

2

}
max
|z|=1

|P (z)| for |z| ≥ 1. (1.12)

Recently Bidkham and Mezerji [7] have generalised some of the above in-
equalities by combining B and Dα operators and proved the following results:

Theorem E. If P (z) is a polynomial of degree at most n, having all its zeros
in |z| ≤ 1, then for every complex number α with |α| ≥ 1,

|B[DαP (z)]| ≥ n|α||B[zn−1]| min
|z|=1
|P (z)| for |z| ≥ 1. (1.13)

Theorem F. If P (z) is a polynomial of degree at most n, having no zero in
|z| < 1, then for every α with |α| ≥ 1,

|B[DαP (z)]| ≤ n

2

{
{|α||B[zn−1]|+ |λo|} max

|z|=1
|P (z)|

− {|α||B[zn−1]| − |λo|} min
|z|=1
|P (z)|

}
for |z| ≥ 1.

(1.14)

In this paper we combine the different ideas and techniques used above and
consider the operator B and Dα such that the operator B carries DαP (z) into

B[DαP (z)] = λoDαP (z) + λ1

(
mz

2

)
DαP

′(z) + λ2

(
mz

2

)2DαP
′′(z)

2!
,
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where 0 ≤ m ≤ n − 1 and λo, λ1, and λ2 are real or complex numbers such
that all zeros of

u(z) := λo + C(m, 1)λ1z + C(m, 2)λ2z
2, C(m, r) =

m!

r!(m− r)!
, (1.15)

lie in the half plane

|z| ≤
∣∣∣∣z − m

2

∣∣∣∣
and obtain compact generalizations of some well-known polynomial inequali-
ties. We first prove the following:

Theorem 1.1. If P (z) is a polynomial of degree n, then for every real or
complex numbers α, β with |α| ≥ 1, |β| ≤ 1 and R > 1

|B[Dα(P (Rz)− βP (z))]| ≤ |α|n|Rn − β||B[zn−1]| max
|z|=1

|P (z)|, (1.16)

for |z| ≥ 1.

The result is sharp and equality holds in inequality (1.16) for P (z) =
azn, a 6= 0.

Substituting for B[Dα(P (Rz)− βP (z))], we have for |z| ≥ 1,∣∣∣∣λoDα(P (Rz)− βP (z)) + λ1

(
mz

2

)
Dα(P (Rz)− βP (z))′

+ λ2

(
mz

2

)2Dα(P (Rz)− βP (z))′′

2!

∣∣∣∣
≤ |α|n|Rn − β|

∣∣∣∣λozn−1 + λ1

(
(n− 1)z

2

)
(n− 1)zn−2

+ λ2

(
(n− 1)z

2

)2 (n− 1)(n− 2)zn−3

2!

∣∣∣∣max
|z|=1

|P (z)|,

(1.17)

where 0 ≤ m ≤ n − 1 and λo, λ1 and λ2 are such that all the zeros of u(z)
defined by inequality (1.15) lie in the half plane Re z ≤ m

4 .

If, we choose β = 0 and let R→ 1 in inequality (1.16) we get the following
result:

Corollary 1.2. If P (z) is a polynomial of degree n, then for every real or
complex number α with |α| ≥ 1,

|B[DαP (z)]| ≤ |α|n|B[zn−1]| max
|z|=1

|P (z)| for |z| ≥ 1.

The result is sharp and equality holds for the polynomial P (z) = azn, a 6= 0.
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Remark 1.3. If, we choose λ1 = 0 = λ2 with β = 0 and letting R → 1
inequality (1.17) will reduce to

|DαP (z)| ≤ |α|n|zn−1|max
|z|=1

|P (z)| for |z| ≥ 1. (1.18)

Dividing both side of inequality (1.18) by |α| and letting |α| → ∞, inequality
(1.18) will reduce to inequality (1.1).

Choosing λo = 0 = λ2 in inequality (1.17) will give the following result:

Corollary 1.4. If P (z) is a polynomial of degree n, then for every real or
complex numbers α, β with |α| ≥ 1, |β| ≤ 1 and R > 1,∣∣∣∣m2 Dα(P (Rz)−βP (z))′

∣∣∣∣ ≤ |α|n|Rn−β|∣∣∣∣((n− 1)2

2

)
zn−2

∣∣∣∣max
|z|=1

|P (z)|. (1.19)

Dividing both side of inequality (1.19) by |α| and letting |α| → ∞, then
m = n− 1 and for β = 0 and R→ 1, inequality (1.19) will reduce to,

|P ′′(z)| ≤ n(n− 1)|zn−2|max
|z|=1

|P (z)| for|z| ≥ 1. (1.20)

The result is best possible and equality holds in inequality (1.20) for P (z) =
azn.

We now prove the theorem which gives the extension of [13, Lemma (2.3)]
to the polar derivative.

Theorem 1.5. If P (z) is a polynomial of degree n, then for every real or
complex numbers α, β with |α| ≥ 1, |β| ≤ 1 and R > 1,

|B[Dα(P (Rz)− βP (z))]|+ |B[Dα(Q(Rz)− βQ(z))]

≤ n(|α||Rn − β||B[zn−1]|+ |1− β||λo|) max
|z|=1

|P (z)|, (1.21)

for |z| ≥ 1, where Q(z) = znP (1z ).

The result is best possible and the equality holds in inequality (1.21) for
P (z) = zn + 1. Substituting for B[Dα(P (Rz) − βP (z))] in inequality (1.21),
we have for |z| ≥ 1,∣∣∣∣λoDα(P (Rz)− βP (z)) + λ1

(
mz

2

)
Dα(P (Rz)− βP (z))′

+ λ2

(
mz

2

)2Dα(P (Rz)− βP (z))′′

2!

∣∣∣∣+

∣∣∣∣λoDα(Q(Rz)− βQ(z))

+ λ1

(
mz

2

)
Dα(Q(Rz)− βQ(z))′ + λ2

(
mz

2

)2Dα(Q(Rz)− βQ(z))′′

2!

∣∣∣∣
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≤ n
{
|α||Rn − β|

∣∣∣∣λozn−1 + λ1

(
(n− 1)z

2

)
(n− 1)zn−2

+ λ2

(
(n− 1)z

2

)2 (n− 1)(n− 2)zn−3

2!

∣∣∣∣+ |1− β||λo|
}

max
|z|=1

|P (z)|,
(1.22)

where 0 ≤ m ≤ n − 1 and λo, λ1 and λ2 are such that all the zeros of u(z)
defined by inequality (1.15) lie in the half plane Re z ≤ m

4 .

If, we choose β = 0 and let R→ 1 in inequality (1.21), we get the following
extension of [13, Lemma (2.3)] to polar derivatives.

Corollary 1.6. If P (z) is a polynomial of degree n, then for every real or
complex numbers α with |α| ≥ 1 and for |z| ≥ 1

|B[DαP (z)]|+ |B[DαQ(z)]| ≤ n(|α||B[zn−1]|+ |λo|) max
|z|=1

|P (z)|,

which implies

|B[nP (z) + (α− z)P ′(z)]|+ |B[nQ(z) + (α− z)Q′(z)]|
≤ n(|B[αzn−1]|+ |λo|) max

|z|=1
|P (z)|,

taking α = z in the above inequality, we get [13, Lemma (2.3)] that is

|B[P (z)]|+ |B[Q(z)]| ≤ (|B[zn]|+ |λo|) max
|z|=1

|P (z)| for |z| ≥ 1.

Taking λ1 = 0 = λ2 with β = 0 and letting R → 1 in inequality (1.22), we
get the following result:

Corollary 1.7. If P (z) is a polynomial of degree n, then for every real or
complex number α with |α| ≥ 1,

|DαP (z)|+ |DαQ(z)| ≤ n{|α||zn−1|+ 1}max
|z|=1

|P (z)| for |z| ≥ 1. (1.23)

Dividing both sides by |α| and letting |α| → ∞, inequality (1.23) will reduce
to,

|P ′(z)|+ |Q′(z)| ≤ n|zn−1|max
|z|=1

|P (z)| for |z| ≥ 1. (1.24)

The result is best possible and equality holds in inequality (1.24) for P (z) =
zn+1. The above result is a special case of the result due to Govil and Rahman
[8, Inequality (3.2)].

Taking λo = 0 = λ2 with β = 0 and letting R → 1 in inequality (1.22), we
get the following result:
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Corollary 1.8. If P (z) is a polynomial of degree n, then for every real or
complex number α with |α| ≥ 1,

m{|DαP
′(z)|+|DαQ

′(z)|} ≤ n|α|(n−1)2|zn−2|max
|z|=1

|P (z)| for |z| ≥ 1. (1.25)

Dividing both sides by |α| and letting |α| → ∞, then m = n− 1, inequality
(1.25) will reduce to

|P ′′(z)|+ |Q′′(z)| ≤ n(n− 1)|zn−2|max
|z|=1

|P (z)| for |z| ≥ 1. (1.26)

The result is best possible and equality holds in inequality (1.26) for P (z) =
zn + 1.

Next, we prove a result for the class of polynomials not vanishing in a unit
disc and obtain compact generalization of inequalities (1.7). Infact we prove:

Theorem 1.9. If P (z) is a polynomial of degree n which does not vanish in
|z| < 1, then for every real or complex numbers α, β with |α| ≥ 1, |β| ≤ 1
and R > 1,

|B[Dα(P (Rz)− βP (z))]|

≤ n

2
{|α||Rn − β||B[zn−1]|+ |1− β||λo|} max

|z|=1
|P (z)|, (1.27)

for |z| ≥ 1.

The result is best possible and equality in inequality (1.27) holds for P (z) =
zn + 1. Substituting for B[Dα(P (Rz)− βP (z))] in inequality (1.27), we have
for |z| ≥ 1,∣∣∣∣λoDα(P (Rz)− βP (z)) + λ1

(
mz

2

)
Dα(P (Rz)− βP (z))′

+ λ2

(
mz

2

)2Dα(P (Rz)− βP (z))′′

2!

∣∣∣∣
≤ n

2

{
|α||Rn − β|

∣∣∣∣λozn−1 + λ1

(
(n− 1)z

2

)
(n− 1)zn−2

+ λ2

(
(n− 1)z

2

)2 (n− 1)(n− 2)zn−3

2!

∣∣∣∣+ |1− β||λo|
}

max
|z|=1

|P (z)|,

(1.28)

where 0 ≤ m ≤ n − 1 and λo, λ1 and λ2 are such that all the zeros of u(z)
defined by inequality (1.15) lie in the half plane Re z ≤ m

4 .

Remark 1.10. If we take β = 0 and let R→ 1, inequality (1.27) will reduce
to the following result due to Bidkham and Mezerji [7].
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If P (z) is a polynomial of degree at most n, having no zero in |z| ≤ 1, then
for every α with |α| ≥ 1,

|B[DαP (z)]| ≤ n

2
{|α||B[zn−1]|+ |λo|} max

|z|=1
|P (z)| for |z| ≥ 1.

Remark 1.11. If we take λ1 = 0 = λ2 with β = 0 and letting R → 1,
inequality (1.28) reduces to inequality (1.7) that is

|DαP (z)| ≤ n

2
{|αzn−1|+ 1} max

|z|=1
|P (z)| for |z| ≥ 1.

On dividing both sides of above inequality by |α| and letting |α| → ∞, we
get inequality (1.3).

Choosing λo = 0 = λ2 with β = 0 and letting R → 1 in inequality (1.28),
we get the following result:

Corollary 1.12. If P (z) is a polynomial of degree n which does not vanish in
|z| < 1, then for every real or complex number α with |α| ≥ 1

|mDαP
′(z)| ≤ n(n− 1)2

2
|α||zn−2|max

|z|=1
|P (z)| for |z| ≥ 1. (1.29)

Dividing both sides of inequality (1.29) by |α| and letting |α| → ∞, then
m = n− 1 and we have

|P ′′(z)| ≤ n(n− 1)

2
|zn−2|max

|z|=1
|P (z)| for |z| ≥ 1. (1.30)

The result is best possible and equality in inequality (1.30) holds for P (z) =
zn + 1.

We now prove the following interesting result, which provides the compact
generalisation of inequality (1.13).

Theorem 1.13. If P (z) is a polynomial of degree n having all its zeros in
|z| ≤ 1, then for every real or complex numbers α, β with |α| ≥ 1, |β| ≤ 1 and
R > 1

|B[Dα(P (Rz)− βP (z))]| ≥ |α|n|Rn − β||B[zn−1]|min
|z|=1
|P (z)|, (1.31)

for |z| ≥ 1.

The result is sharp and equality holds in inequality (1.31) for P (z) = azn.
Substituting for B[Dα(P (Rz)− βP (z))], we have for |z| ≥ 1,∣∣∣∣λoDα(P (Rz)− βP (z)) + λ1

(
mz

2

)
Dα(P (Rz)− βP (z))′
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+ λ2

(
mz

2

)2Dα(P (Rz)− βP (z))′′

2!

∣∣∣∣
≥ |α|n|Rn − β|

∣∣∣∣λozn−1 + λ1

(
(n− 1)z

2

)
(n− 1)zn−2

+ λ2

(
(n− 1)z

2

)2 (n− 1)(n− 2)zn−3

2!

∣∣∣∣min
|z|=1
|P (z)|,

(1.32)

where 0 ≤ m ≤ n − 1 and λo, λ1 and λ2 are such that all the zeros of u(z)
defined by (1.15) lie in the half plane Re z ≤ m

4 .

Remark 1.14. If we take β = 0 and let R→ 1, inequality (1.31) will reduce
to inequality (1.13).

Taking λ1 = 0 = λ2 with β = 0 and letting R → 1 in inequality (1.32), we
will get the following result from which result of Aziz and Dawood [2] follows
as a special case.

Corollary 1.15. If P (z) is a polynomial of degree at most n having all its
zeros in |z| ≤ 1, then for every real or complex number α with |α| ≥ 1,

|DαP (z)| ≥ n|α||zn−1|min
|z|=1
|P (z)| for |z| ≥ 1. (1.33)

The result is best possible and equality holds in inequality (1.33) for P (z) =
azn. Dividing the inequality (1.33) both sides by |α| and letting |α| → ∞, then
m = n− 1, we obtain the inequality (1.5) as a special case.

Choosing λo = 0 = λ2 with β = 0 and letting R → 1 in inequality (1.32),
we get the following result:

Corollary 1.16. If P (z) is a polynomial of degree at most n, having all its
zeros in |z| ≤ 1, then for every real or complex number α with |α| ≥ 1,

|mDαP
′(z)| ≥ n(n− 1)2|α||zn−2|min

|z|=1
|P (z)|. (1.34)

Dividing both sides of the inequality (1.34) by |α| and letting |α| → ∞,
then m = n− 1 we obtain

|P ′′(z)| ≥ n(n− 1)|zn−2|min
|z|=1
|P (z)|. (1.35)

The result is best possible and the equality holds in inequality (1.35) for P (z) =
azn.

As an improvement of inequality (1.31) and generalisation of inequality
(1.10), we prove the following result:
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Theorem 1.17. If P (z) is a polynomial of degree at most n which does not
vanish in |z| < 1, then for every real or complex numbers α, β with |α| ≥ 1,
|β| ≤ 1 and R > 1

|B[Dα(P (Rz)− βP (z))]|

≤ n

2

[ {
|α||Rn − β||B[zn−1]|+ |λo||1− β|

}
max
|z|=1

|P (z)|

−
{
|α||Rn − β||B[zn−1]| − |λo||1− β|

}
min
|z|=1
|P (z)|

]
for |z| ≥ 1.

(1.36)

The result is sharp and equality in inequality (1.36) holds for the polynomial
having all the zeros on the unit disk. Substituting for B[Dα(P (Rz) − P (z))]
in inequality (1.36), we have for |z| ≥ 1,∣∣∣∣λoDα(P (Rz)− βP (z)) + λ1

(
mz

2

)
Dα(P (Rz)− βP (z))′

+ λ2

(
mz

2

)2Dα(P (Rz)− βP (z))′′

2!

∣∣∣∣
≤ n

2

[{
|α||Rn − β|

∣∣∣∣λozn−1 + λ1

(
(n− 1)z

2

)
(n− 1)zn−2

+ λ2

(
(n− 1)z

2

)2 (n− 1)(n− 2)zn−3

2!

∣∣∣∣+ |1− β||λo|
}

max
|z|=1

|P (z)|

−
{
|α||Rn − β|

∣∣∣∣λozn−1 + λ1

(
(n− 1)z

2

)
(n− 1)zn−2

+ λ2

(
(n− 1)z

2

)2 (n− 1)(n− 2)zn−3

2!

∣∣∣∣− |1− β||λo|}min
|z|=1
|P (z)|

]
,

(1.37)

where 0 ≤ m ≤ n − 1 and λo, λ1 and λ2 are such that all the zeros of u(z)
defined by (1.15) lie in the half place Re z ≤ m

4 .

Remark 1.18. If we take β = 0 and letting R → 1, inequality (1.36) will
reduce to inequality (1.14).

Remark 1.19. Taking λ1 = 0 = λ2 with β = 0 and let R → 1, inequality
(1.37) will reduce to the following result due to Aziz and Shah [5].

If P (z) is a polynomial of degree n which does not vanish in |z| < 1, then
for every complex number α with |α| ≥ 1,

max
|z|=1

|DαP (z)| ≤ n

2

{
(|α|+ 1) max

|z|=1
|P (z)| − (|α| − 1) min

|z|=1
|P (z)|

}
.
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Dividing both sides by |α| and letting |α| → ∞, in the above inequality, it
follows that if P (z) 6= 0 in |z| < 1, then

max
|z|=1

|P ′(z)| ≤ n

2

{
max
|z|=1

|P (z)| − min
|z|=1
|P (z)|

}
.

The above result is an interesting refinement of Erdös-Lax theorem (inequality
(1.3)) and was proved by Aziz and Dawood [2].

If we take λo = 0 = λ2 with β = 0 and let R → 1 in (1.37), we get the
following result:

Corollary 1.20. If P (z) is a polynomial of degree at most n, having no zero
in |z| ≤ 1, then for every α with |α| ≥ 1 and |z| ≥ 1,

|mDαP (z)| ≤ n(n− 1)2

2
|α||zn−2|

{
max
|z|=1

p(z)| − min
|z|=1
|p(z)|

}
. (1.38)

The result is best possible and equality holds in inequality (1.38) for P (z) =
zn+1. Dividing both sides of the inequality (1.38) by |α| and letting |α| → ∞,
then m = n− 1 and we get

|P ′′(z)| ≤ n(n− 1)

2
|zn−2|

{
max
|z|=1

|p(z)| − min
|z|=1
|p(z)|

}
. (1.39)

2. Lemmas

For the proof of above theorems we need the following lemmas. The first
lemma follows from [9].

Lemma 2.1. If all the zeros of polynomial P (z) of degree n lie in |z| ≤ k,
where k ≤ 1, then for |α| ≥ k, the polar derivative Dα[P (z)] of P (z) at the
point α also has all its zeros in |z| ≤ k.

The following lemma which we need is in fact implicit in [11, Lemma 14.5.7,
p.540].

Lemma 2.2. If all the zeros of the polynomial P (z) of degree n lie in a circle
|z| ≤ 1, then all the zeros of the polynomial B[P (z)] also lie in |z| ≤ 1.

As an application of Lemmas 2.1 and 2.2 we have the following lemma.

Lemma 2.3. If all the zeros of polynomial P (z) of degree n lie in |z| ≤ 1,
then for |α| ≥ 1, all the zeros of the polynomial B[DαP (z)] also lie in |z| ≤ 1.

Proof. From Lemma 2.1 for k = 1, all the zeros of the polynomial DαP (z) lie
in |z| ≤ 1 and so from Lemma 2.2 the polynomial B[DαP (z)] has all its zeros
in |z| ≤ 1. �
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The next lemma is due to Aziz and Rather [3].

Lemma 2.4. If P (z) is a polynomial of degree at most n having all its zeros
in |z| < k, where k ≤ 1, then |P (Rz)| > |P (z)|, for |z| ≥ 1 and R > 1.

Lemma 2.5. If P (z) is a polynomial of degree n which does not vanish in
|z| < 1, then for every real or complex numbers α, β with |α| ≥ 1, |β| ≤ 1 and
R ≥ 1.

|B[Dα(P (Rz)− βP (z))]| ≤ |B[Dα(Q(Rz)− βQ(z))]|, (2.1)

for |z| ≥ 1, where Q(z) = znp(1z ).

Proof. For R = 1, the result reduces to Bidkham and Mezerji [7, Lemma
4, p.597]. Now we will prove the result for R > 1. Since all the zeros of
P (z) lie in |z| ≥ 1 and for every real or complex number λ with |λ| > 1, the

polynomial G(z) = P (z) − λQ(z), where Q(z) = znp(1z ) has all its zeros in
|z| ≤ 1. Applying lemma 4 to the polynomial G(z) with k = 1, we get

|G(z)| < |G(Rz)| for |z| = 1 and R > 1.

Since all the zeros G(Rz) lie in |z| ≤ 1
R < 1, therefore for any real or complex

number β with |β| ≤ 1, the polynomial H(z) = G(Rz) − βG(z), has all its
zeros in |z| < 1, for every λ with |λ| > 1 and R > 1, by Lemma 2.3 all the
zeros of B[DαH(z)] lie in |z| < 1. This implies

B[Dα(G(Rz)− βG(z))]

= B[Dα(P (Rz)− βP (z))]− λB[Dα(Q(Rz)− βQ(z))],
(2.2)

for |z| ≥ 1 and R > 1. Inequality (2.2) implies

|B[Dα(P (Rz)− βP (z))]| ≤ |B[Dα(Q(Rz)− βQ(z))]|, (2.3)

for |z| ≥ 1 and R > 1. For if it is not true, then there is a point z = zo with
|zo| ≥ 1, such that

|B[Dα(P (Rzo)− βP (z0))]| ≥ |B[Dα(Q(Rzo)− βQ(zo))]|, (2.4)

for |z| ≥ 1 and R > 1. Since all the zeros of Q(z) lie in |z| ≤ 1, therefore
it follows that all the zeros of Q(Rz) − βQ(z), lie in |z| ≤ 1 for every β with
|β| ≤ 1. Hence Q(Rzo)− βQ(zo) 6= 0, for |zo| ≥ 1. Which implies

B[Dα(Q(Rzo)− βQ(zo))] 6= 0 for |z| ≥ 1 and R > 1.

We take

λ =
B[Dα(P (Rzo)− P (zo))]

B[Dα(Q(Rzo)−Q(zo))]
,

so that |λ| > 1. Which shows that B[DαH(z)] has a zero in |z| ≥ 1. Which is
contradiction to the fact that all the zeros of B[DαH(z)] lie in |z| < 1. Thus

|B[Dα(P (Rz)− βP (z))]| ≤ |B[Dα(Q(Rz)− βQ(z))]|,
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for |z| ≥ 1 and R ≥ 1. �

3. Proof of theorems

Proof of Theorem 1.1. Let M = max|z|=1 |P (z)|, then |P (z)| ≤M for |z| =
1. Therefore, by Rouche’s Theorem we have all the zeros of the polynomial
G(z) = P (z)+λznM , lie in |z| < 1 for every λ with |λ| > 1. Now from Lemma
2.4, we have

|G(z)| < |G(Rz)| for |z| = 1 and R > 1.

Since all the zeros of G(Rz) lie in |z| < 1
R < 1, therefore if β is any real or

complex number with |β| ≤ 1, we have all the zeros of the polynomial

G(Rz)− βG(z) = (P (Rz)− βP (z)) + λ(Rn − β)znM,

also lie in |z| < 1 for every R > 1 and |λ| > 1. Therefore by Lemma 2.3, all
the zeros of B[Dα(G(Rz)−βG(z))], lie in |z| < 1 for every R > 1 and |λ| > 1.
Which implies

B[Dα(G(Rz)− βG(z))]

= B[Dα(P (Rz)− βP (z))] + λαn(Rn − β)MB[zn−1],
(3.1)

for |z| < 1 and R > 1. Inequality (3.1) implies

|B[Dα(P (Rz)− βP (z))]|
≤ |α|n|Rn − β||B[zn−1]|M for|z| ≥ 1 and R > 1,

(3.2)

for if this is not true, then there is a point z = zo with |zo| ≥ 1 such that

|B[Dα(P (Rzo)− βP (zo))]| > |α|n|Rn − β||B[zn−1o |M.

We take

λ = −B[Dα(P (Rzo)− βP (zo))]

αn(Rn − β)B[zn−1]
,

so that |λ| > 1, for this choice of |λ|, we have B[Dα(G(Rzo) − βG(zo))] =
0 for |zo| ≥ 1. Which is a contradiction to the fact that all the zeros of
B[Dα(G(Rz)− βG(z))] lie in |z| < 1. Thus

|B[Dα(P (Rz)− βP (z))]| ≤ αn|Rn − β||B[zn−1|max
|z|=1

|P (z)|,

for |z| ≥ 1 and R > 1. �

Proof of Theorem 1.5. Let M = max|z|=1 |P (z)|, then |P (z)| ≤ M for
|z| = 1. Now for every real or complex number γ with |γ| > 1, it follows
from Rouche’s Theorem, the polynomial G(z) = P (z) + γM does not vanish



586 A. Liman and I. A. Faiq

in |z| < 1. Now applying Lemma 2.4 and 2.5 to the polynomial G(z), we have
for every real or complex number β with |β| ≤ 1,

|B[Dα(P (Rz)− βP (z) + γ(1− β)M)]|
≤ |B[Dα(Q(Rz)− βQ(z) + γ(Rn − β)znM)]|,

(3.3)

for |z| ≥ 1 and R > 1, where Q(z) = znp(1z ). Inequality (3.3) implies

|B[Dα(P (Rz)− βP (z))] + nγ(1− β)Mλo|
≤ |B[Dα(Q(Rz)− βQ(z))] + αnγ(Rn − β)B[zn−1]M |,

(3.4)

for |z| ≥ 1 and R > 1.

Now choosing the argument of γ on the R.H.S of inequality (3.4), such that

|B[Dα(Q(Rz)− βQ(z))] + αnγ(Rn − β)B[zn−1]M |
= |α|n|γ||Rn − β||B[zn−1]|M − |B[Dα(Q(Rz)− βQ(z))]|,

(3.5)

for |z| ≥ 1 and R > 1. Therefore we get from inequality (3.4),

|B[Dα(P (Rz)− βP (z))]| − |nγ(1− β)λoM |
≤ |α|n|γ||Rn − β||B[zn−1]|M − |B[Dα(Q(Rz)− βQ(z))]|,

(3.6)

for |z| ≥ 1 and R > 1. Therefore, inequality (3.6) implies

|B[Dα(P (Rz)− βP (z))]|+ |B[Dα(Q(Rz)− βQ(z))]|
≤ |α|n|γ||Rn − β||B[zn−1]|M + n|γ||1− β||λo|M,

(3.7)

for |z| ≥ 1 and R > 1. Letting |γ| → 1, in inequality (3.7), we get

|B[Dα(P (Rz)− βP (z))]|+ |B[Dα(Q(Rz)− βQ(z))]|
≤ n(|α||Rn − β||B[zn−1]|+ |1− β||λo|) max

|z|=1
|P (z)|,

for |z| ≥ 1 and R > 1. Which proves the theorem. �

Proof of Theorem 1.9. We have from Lemma 2.5,

|B[Dα(P (Rz)− βP (z))]| ≤ |B[Dα(Q(Rz)− βQ(z))]|,

for |z| ≥ 1 and R ≥ 1, where Q(z) = znp(1z ). Also from Theorem 1.5, we have

|B[Dα(P (Rz)− βP (z))]|+ |B[Dα(Q(Rz)− βQ(z))]

≤ n(|α||Rn − β||B[zn−1]|+ |1− β||λo|) max
|z|=1

|P (z)|,
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for |z| ≥ 1 and R > 1, where Q(z) = znp(1z ). Combining the above two
inequalities, we get

|B[Dα(P (Rz)− βP (z))]|

≤ n

2
{|α||Rn − β||B[zn−1]|+ |1− β||λo|} max

|z|=1
|P (z)|,

for |z| ≥ 1 and R > 1. Which proves the theorem. �

Proof of Theorem 1.13. If P (z) has a zero on |z| = 1, then the result
is trivial. So we suppose that P (z) has all its zeros in |z| < 1. If m =
min|z|=1 |P (z)|, then m > 0 and m ≤ |P (z)| for |z| = 1. Therefore, if γ is any
complex number with |γ| < 1, we have the polynomial G(z) = P (z) − γmzn
of degree n has all its zeros in |z| < 1. Now from Lemma 2.4, we have

|G(z)| < |G(Rz)| for |z| = 1 and R > 1.

Since all the zeros of G(Rz) lie in |z| < 1
R < 1, therefore for any real or

complex number β with |β| ≤ 1 and R > 1, it follows from Rouche’s Theorem,
the polynomial H(z) = G(Rz)− βG(z) has all its zeros in |z| < 1. Therefore
from Lemma 2.3, all the zeros of B[DαH(z)] lie in |z| < 1. This implies

B[Dα(G(Rz)− βG(z))]

= B[Dα(P (Rz)− βP (z))]− αnγ(Rn − β)B[zn−1]m,
(3.8)

for |z| ≥ 1 and R > 1. Inequality (3.8) implies for |z| ≥ 1 and R > 1,

|B[Dα(P (Rz)− βP (z))]| ≥ |α|n|Rn − β||B[zn−1]|m. (3.9)

If inequality (3.9) is not true, then there is a point z = zo with |zo| ≥ 1 such
that

|B[Dα(P (Rzo)− βP (zo))]| < |α|n|Rn − β||B[zn−1|m.
We take

γ =
B[Dα(P (Rzo)− βP (zo))]

αn(Rn − β)B[zn−1o ]m
,

so that |γ| < 1. For this choice of |γ|, we have B[DαH(z)] = 0, for |z| ≥ 1.
Which is a contradiction to the fact that all the zeros of B[DαH(z)] lie in
|z| < 1. Thus we have

|B[Dα(P (Rz)− βP (z))]| ≥ |α|n|Rn − β||B[zn−1]|min
|z|=1
|P (z)|.

Hence the theorem follows. �

Proof of Theorem 1.17. Since the polynomial P (z) does not vanish in |z| <
1, therefore if m = min|z|=1 |P (z)|, then m ≤ |P (z)| for |z| ≤ 1. Now for any
real or complex number λ with |λ| ≤ 1, the polynomial G(z) = P (z) + λmzn

does not vanish in |z| < 1. For if this is not true, then there is a point z = zo,
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with |zo| < 1, such that G(zo) = P (zo) + λmzno = 0. Which implies |P (zo)| =
|mλzno | ≤ m|zo|n < m, contradicting the fact that m ≤ |P (z)| for |z| ≤ 1.
Thus G(z) has no zero in |z| < 1 for every λ with |λ| ≤ 1. Applying Lemma
2.5 to the polynomial G(z), we have for |β| ≤ 1 and R > 1,

|B[Dα(P (Rz)− βP (z) + (Rn − β)λmzn)]|
≤ |B[Dα(Q(Rz)− βQ(z) + (1− β)λm)]|,

(3.10)

for |z| ≥ 1 and R > 1, where Q(z) = znp(1z ). Inequality (3.10) implies

|B[Dα(P (Rz)− βP (z))] + α(Rn − β)λmnB[zn−1]|
≤ |B[Dα(Q(Rz)− βQ(z))] + nλo(1− β)λm|,

(3.11)

for |z| ≥ 1 and R > 1. Choosing λ in inequality (3.11) such that

|B[Dα(P (Rz)− βP (z))] + αnλ(Rn − β)B[zn−1]m|
= |B[Dα(P (Rz)− βP (z))]|+ |α|n|λ||Rn − β||B[zn−1]|m,

(3.12)

for |z| ≥ 1 and R > 1. Inequality (3.12) implies

|B[Dα(P (Rz)− βP (z))]|+ |α|n|λ||Rn − β||B[zn−1]|m
≤ |B[Dα(Q(Rz)− βQ(z))]|+ n|λo||1− β||λ|m,

(3.13)

for |z| ≥ 1 and R > 1. Inequality (3.13) implies

|B[Dα(P (Rz)− βP (z))]|
≤ |B[Dα(Q(Rz)− βQ(z))]|

+ n||λo|1− β||λ|m− |α|n|λ||Rn − β||B[zn−1]|m,
(3.14)

for |z| ≥ 1 and R > 1. Letting |λ| → 1, we have for |z| ≥ 1 and R > 1

2|B[Dα(P (Rz)− βP (z))]|
≤ |B[Dα(P (Rz)− βP (z))]|+ |B[Dα(Q(Rz)− βQ(z))]|

+ n|λo||1− β||m− |α|n||Rn − β||B[zn−1]|m,
(3.15)

for |z| ≥ 1 and R > 1. Applying Theorem 1.5, we get from inequality (3.15)

|B[Dα(P (Rz)− βP (z))]|

≤ n

2

[ {
|α||Rn − β||B[zn−1]|+ |λo||1− β|

}
max
|z|=1

|P (z)|

−
{
|α||Rn − β||B[zn−1]| − |λo||1− β|

}
min
|z|=1
|P (z)|

]
for |z| ≥ 1.

(1.36)

Hence the Theorem follows. �
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