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Abstract. In this paper, by combining the operators B and Da, we investigate the depen-
dence of B[Do(P(Rz) — fP(z))] on the maximum modulus of P(z) on |z| =1 for every real
or complex numbers « and 3 with |a| > 1, || <1 and R > 1. Our results include not only
some known polynomial inequalities as special case, but also the results recently proved by
Bidkham and Mezerji as a particular case.

1. INTRODUCTION
n .
If P(z) = ) aj2’ is a polynomial of degree at most n and P’'(z) is its
5=0
derivatives, then

max [P'(2)] < nl‘m'@flP(Z)l (1.1)
and
max |P'(z)] < R" max |P(z)|. (1.2)
|2|=R>1 l2]=1

Inequality (1.1) is an immediate consequence of S. Bernstein’s inequality on
the derivative of a trigonometric polynomial (for reference see [6, 11]), where
as inequality (1.2) is a simple deduction from the maximum modulus principle
[12, p.346]. In both inequalities (1.1) and (1.2) equality holds only when P(z)
is a constant multiple of 2.
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If, we restrict ourselves to a class of polynomials having no zero in |z| < 1,
then the above inequality can be sharpened. In fact, Erdos conjectured and
latter Lax [10] proved that if P(z) # 0 in |z| < 1, then

max | P'(z)| < n max |P(z)| (1.3)
|z|=1 2 |z=1
and .
< P . 1.4
S ST P (14)

Turdn [14] proved that, if P(z) has all its zeros in |z| < 1, then

max|P'(2)] > = max |P(z)|. (1.5)
|z|=1 2 |z|=1

Concerning the minimum modulus of a polynomial P(z) and its derivative
P'(z), Aziz and Dawood [2]| proved that, if P(z) has all its zeros in |z| < 1,
then

‘HlliI} |P'(2)| > n lrrlmi |P(2)]- (1.6)

Let a be any complex number, the polynomial D,P(z) = nP(z) + (o —
z)P'(z) denote the polar derivative of the polynomial P(z) of degree at most
n with respect to a. The polynomial D, P(z) is of degree at most n — 1 and
it generalizes the ordinary derivative in the sense that

D,P
lim ———%2 (2) = P'(2).
a—00 o

Aziz [1] extended inequality (1.3) and (1.5) to the polar derivative of a
polynomial and proved that if P(z) is a polynomial of degree n which does
not vanish in |z| < 1, then for every complex number a with |a| > 1,

‘m|ax|DaP(z)| < g{|az”_1| + 1} Tn‘aX|P(z)| for |z| > 1. (1.7)
z|=1 z|=1

Rahman [11, p.538] introduced a class By, of operators B that map P € P,
into itself. That is, the operator B carries P € P, into

B[P(2)] = M\P(2) + A (”2”)13’(2) T (”22)2]3;(!2),

where A\,, A1,and Ay are real or complex numbers such that all the zeros of

|
u(2) := Ao + C(n,1)A\12 + C(n,2)Xa2%, C(n,r) = e , (1.8)

lie in the half plane

n

lz| < |z —=|.

Concerning this operator Shah and Liman [13] proved:
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Theorem A. If P(z) € P, and P(z) # 0 in |z| > 1, then for |z| > 1,

IBIP) 2 [B="]| min |P(2)]. (1.9)

Theorem B. If P(z) € P, and P(z) # 0 in |z| < 1, then for |z| > 1,
1 n n :
BIP@)] < 5 |IBE"[F Aol max [P(2)|{IBI2"]|=[Ao[} min [ P(2)] | (1.10)
Concerning the dependence of |P(Rz) — P(z)| on |P(z)| Aziz and Rather

[4] proved:

Theorem C. If P(z) is a polynomial of degree n, then for every real or
complex number 4 with |5 <1 and R > 1,

IP(R2) — BP(:)| < [R" = Bllz|" max |P(2)] for |2| 2 1. (1.11)

Theorem D. If P(z) is a polynomial of degree n which does not vanish in
|z| <1, then for every real or complex number 8 with |3| <1 and R > 1,

[R™ — Bll="| + \1—ﬂ\}
2

|P(Rz) — BP(2)] < { mfi)ldP(z)\ for [z| > 1. (1.12)

||

Recently Bidkham and Mezerji [7] have generalised some of the above in-
equalities by combining B and D, operators and proved the following results:

Theorem E. If P(z) is a polynomial of degree at most n, having all its zeros
in |z| <1, then for every complex number a with |a| > 1,

| B[DaP(2)]| > nlal|Blz""1| min [P(2)] for[z] > 1. (1.13)

Theorem F. If P(z) is a polynomial of degree at most n, having no zero in
|z| < 1, then for every a with |a| > 1,

BIDWPE < 5{ Uall B+ N} ma|PG:)
- (1.14)
~ {allBE" = Ay min P for Jo > 1

In this paper we combine the different ideas and techniques used above and

consider the operator B and D, such that the operator B carries D, P(z) into

2Dy P"(2)
21 7

BIDaP(2)] = ADaP(2) + M <”’2LZ>DQP/(Z) o <rr;z>
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where 0 < m <n —1and \,, A,and X9 are real or complex numbers such
that all zeros of

m!

u(z) := Ao + C(m, D)A12 + C(m, 2)X22%, C(m,r) = (1.15)

rli(m —r)!’
lie in the half plane
2] <

m
Z_i
2

and obtain compact generalizations of some well-known polynomial inequali-
ties. We first prove the following:

Theorem 1.1. If P(z) is a polynomial of degree n, then for every real or
complex numbers o, B with |a| > 1, || <1 and R > 1

| B[Da(P(Rz) — BP(2))]| < |aln|R" — ||B["~"]] max |[P(2)],  (1.16)
for |z| > 1.

The result is sharp and equality holds in inequality (1.16) for P(z) =
az™ a # 0.

Substituting for B[D,(P(Rz) — SP(z))], we have for |z| > 1,
z

ADu(P(R) ~ 5P() + 3 (") Da(P(Re) - 5P

+ X <mz>2Da(P(Rz) — BP(2))"

2 2!

(1.17)
< |aln|R" — B

A2+ (m;l)z) (n—1)z""2

+ A2<(” — 1)Z>2(” —1)(n—2)z""?

max |P(2)|,

2 2! |z|=1

where 0 < m < n—1and \,, A\; and A2 are such that all the zeros of u(z)
defined by inequality (1.15) lie in the half plane Re z < 7.

If, we choose 8 =0 and let R — 1 in inequality (1.16) we get the following
result:

Corollary 1.2. If P(z) is a polynomial of degree m, then for every real or
complex number o with o] > 1,

| BIDoP()]| < |aln| Blz"""]] l‘fgglp(@! for |z] = 1.

The result is sharp and equality holds for the polynomial P(z) = az™, a # 0.
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Remark 1.3. If, we choose \y = 0 = Ao with § = 0 and letting R — 1
inequality (1.17) will reduce to
|DoP(z)] < ]a]n\z"71|‘nl|ax|P(z)| for |z] > 1. (1.18)
z|=1

Dividing both side of inequality (1.18) by |a| and letting |a| — oo, inequality
(1.18) will reduce to inequality (1.1).

Choosing A\, = 0 = Ag in inequality (1.17) will give the following result:

Corollary 1.4. If P(z) is a polynomial of degree n, then for every real or
complex numbers o, B with |a] > 1, |5 <1 and R > 1,

< lapolrr - (25 ) e

%DQ(P(RZ) — BP(2))

T?'i}l{ |P(z)]. (1.19)

Dividing both side of inequality (1.19) by |a| and letting |a| — oo, then
m =mn—1 and for § =0 and R — 1, inequality (1.19) will reduce to,

[P"(2)] < n(n —1)[z" lnzﬂ‘i)flp(z)l for|z| > 1. (1.20)

The result is best possible and equality holds in inequality (1.20) for P(z) =

az™.

We now prove the theorem which gives the extension of [13, Lemma (2.3)]
to the polar derivative.
Theorem 1.5. If P(z) is a polynomial of degree n, then for every real or
complex numbers o, [ with |a| > 1, |f| <1 and R > 1,
|B[Da(P(Rz) — SP(2))]| + |B[Da(Q(R2) — SQ(2))]
< nflal|B" = BBE" )+ L= Bl max P()), (12D

for |z| > 1, where Q(2) = 2"P(2).

The result is best possible and the equality holds in inequality (1.21) for
P(z) = 2" + 1. Substituting for B[D,(P(Rz) — SP(z))] in inequality (1.21),
we have for |z| > 1,

mz

AD(P(:) = 57()) 4 Au () DalPUR2) — 6P

+ Ao (mz>2Da(P(Rz) — BP(2))"

+ | Ao Da(Q(Rz) — fQ(2))

+ A1 (”;z) Da(Q(R2) = Q(2)) + A2 <n;z> 2 DQ(Q(RZ)z!_ Er

2 2!
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< nflalire = et a () - e
+ >\2<(n —2 1)z>2(n - 1)(712‘_ 2)zn=3

where 0 < m <n—1and A,, \; and A2 are such that all the zeros of u(z)
defined by inequality (1.15) lie in the half plane Re z < 7.

(1.22)

1= Bl f max P

2=

If, we choose 5 = 0 and let R — 1 in inequality (1.21), we get the following
extension of [13, Lemma (2.3)] to polar derivatives.

Corollary 1.6. If P(z) is a polynomial of degree n, then for every real or
complex numbers o with |a| > 1 and for |z| > 1

|B[DaP(2)]] + |B[DaQ(2)]] < n(|al|B[=""1]| + I/\o\)gg)f\P(Z)l,

which implies

|B[nP(2) + (a — 2) P'(2)]] + [B[nQ(2) + (a — 2)Q'(2)]|
< n(|Blaz""1| + o)) max 1P ()],

taking a = z in the above inequality, we get [13, Lemma (2.3)] that is
IBIP@+ BRG] = (IBI"]l + ol) max|P(2)] for || > 1.

Taking A\; = 0 = A2 with § = 0 and letting R — 1 in inequality (1.22), we
get the following result:

Corollary 1.7. If P(z) is a polynomial of degree n, then for every real or
complex number o with |a| > 1,

|DaP(2)| + [DaQ(2)] < n{lallz" " + 1}|m|g>1<|P(Z)I for |z = 1. (1.23)

Dividing both sides by |a| and letting |a| — oo, inequality (1.23) will reduce
to,

|P'(2)] +1Q'(2)| < n\z”_ll‘mla)ldP(z)] for |z| > 1. (1.24)

The result is best possible and equality holds in inequality (1.24) for P(z) =
z"+1. The above result is a special case of the result due to Govil and Rahman
[8, Inequality (3.2)].

Taking A\, = 0 = Ay with 8 = 0 and letting R — 1 in inequality (1.22), we
get the following result:
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Corollary 1.8. If P(z) is a polynomial of degree n, then for every real or
complex number o with |a| > 1,

m{|DeP'(2)] +1DoQ'(2)]} < nla(n=1)%|"*|max |P(z)| for|z] > 1. (1.25)

Dividing both sides by || and letting |a] — oo, then m = n — 1, inequality
(1.25) will reduce to

[P"(2)| +1Q"(2)] < n(n — 1)|Z"_2!1‘fnla><|P(Z)! for |z > 1. (1.26)
z|=1
The result is best possible and equality holds in inequality (1.26) for P(z) =
2" 4 1.

Next, we prove a result for the class of polynomials not vanishing in a unit
disc and obtain compact generalization of inequalities (1.7). Infact we prove:

Theorem 1.9. If P(z) is a polynomial of degree n which does not vanish in
|z| < 1, then for every real or complex numbers o,  with |of > 1, [8] < 1
and R > 1,

|B[Da(P(Rz) = SP(2))]]

< g{laHRn = BIIBE"T1 + (1 = BlIA[} ‘rg'gfIP(Z)I,

(1.27)

for |z| > 1.

The result is best possible and equality in inequality (1.27) holds for P(z) =
2" + 1. Substituting for B[D,(P(Rz) — BP(z))] in inequality (1.27), we have
for |z| > 1,

AD(P(E) = 5PG)) 4 s () DalP(RS) = 6P())

+ Ao (mz>2Da(P(Rz) — BP(2))"

2 2!

(1.28)
S )

+ AQ((n - 1)z>2(n (- 2y

2 2!

1= Bl | max )L

where 0 < m <n—1and A,, \; and A2 are such that all the zeros of u(z)
defined by inequality (1.15) lie in the half plane Re z < 7.

Remark 1.10. If we take § = 0 and let R — 1, inequality (1.27) will reduce
to the following result due to Bidkham and Mezerji [7].
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If P(z) is a polynomial of degree at most n, having no zero in |z| < 1, then
for every a with |a| > 1,

BIDaP()] < G {lall Bl + X} max|P(z)] for [¢] > 1.

Remark 1.11. If we take \y = 0 = Ay with § = 0 and letting R — 1,
inequality (1.28) reduces to inequality (1.7) that is

|DoP(2)| < g{|az"_1\ +1} ‘mla}1<|P(z)] for |z| > 1.
zZ|l=

On dividing both sides of above inequality by |a| and letting |a| — oo, we
get inequality (1.3).

Choosing A, = 0 = A9 with 8 = 0 and letting R — 1 in inequality (1.28),
we get the following result:

Corollary 1.12. If P(z) is a polynomial of degree n which does not vanish in
|z| < 1, then for every real or complex number o with |a| > 1

n—1)

2
DL ()] < n(2|aHzn2’?ﬁ>1(|P(z)] for |2] > 1. (1.29)

Dividing both sides of inequality (1.29) by |«| and letting |a| — oo, then
m =n — 1 and we have
n(n —1)

P// <
P(e)] < M

|22 |nr1|aX|P(z)| for |z] > 1. (1.30)
z|=1

The result is best possible and equality in inequality (1.30) holds for P(z) =

2" 4 1.

We now prove the following interesting result, which provides the compact
generalisation of inequality (1.13).

Theorem 1.13. If P(z) is a polynomial of degree n having all its zeros in
|z| < 1, then for every real or complex numbers o, 5 with || > 1, |5] <1 and
R>1

|B[Da(P(Rz) — BP(2))]] > |aln|R" — B]| B[="~1]] min [P(z)[,  (1.31)
for |z| > 1.

n

The result is sharp and equality holds in inequality (1.31) for P(z) = az".
Substituting for B[D,(P(Rz) — BP(z))], we have for |z| > 1,

AoDa(P(R2) — BP(2)) + Ay (”;) Da(P(Rz) — BP(2))
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+ Ao <m>2Da(P(Rz) —BP(2))

2 2!
> |a|n|R™ — Bl Aozt + N\ ((71—21)z> (n—1)z"2 (1.32)
n—12z\2(n—1)(n—2)z"3
+A2<( 21) ) ( 1>(2! 2 g‘li:q!P(Z)l,

where 0 < m < n—1and \,, A1 and Ao are such that all the zeros of u(z)
defined by (1.15) lie in the half plane Re z < .

Remark 1.14. If we take 5 = 0 and let R — 1, inequality (1.31) will reduce
to inequality (1.13).

Taking A\; = 0 = A2 with § = 0 and letting R — 1 in inequality (1.32), we
will get the following result from which result of Aziz and Dawood [2] follows
as a special case.

Corollary 1.15. If P(z) is a polynomial of degree at most n having all its
zeros in |z| < 1, then for every real or complex number o with |a| > 1,
|DoP(2)| > nla|z" 7Y ‘Ir|11n |P(2)| for|z| > 1. (1.33)
z|=1
The result is best possible and equality holds in inequality (1.33) for P(z) =

az". Dividing the inequality (1.33) both sides by |«| and letting |a| — oo, then
m =n — 1, we obtain the inequality (1.5) as a special case.

Choosing A, = 0 = A2 with 8 = 0 and letting R — 1 in inequality (1.32),

we get the following result:

Corollary 1.16. If P(z) is a polynomial of degree at most n, having all its
zeros in |z| < 1, then for every real or complex number o with || > 1,

|mDaP'(2)] > n(n —1)%a|[z" 2| |n|1111 |P(2)]. (1.34)
z|l=

Dividing both sides of the inequality (1.34) by |a| and letting |a| — oo,
then m = n — 1 we obtain

[P()] 2 n(n = D]" =2 min |P(2). (1.35)

The result is best possible and the equality holds in inequality (1.35) for P(z) =

az".

As an improvement of inequality (1.31) and generalisation of inequality
(1.10), we prove the following result:
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Theorem 1.17. If P(z) is a polynomial of degree at most n which does not
vanish in |z| < 1, then for every real or complex numbers o, B with |a| > 1,
Bl <1 and R>1

|B[Da(P(Rz) — SP(2))]|

n n n—1
< 3 [ {lall " = 1B 1+ it = 51} max ) a6

— {lal|R" = BIIB""1] = o[ — B} min [P(2)[| for|z| = 1.

The result is sharp and equality in inequality (1.36) holds for the polynomial
having all the zeros on the unit disk. Substituting for B[D,(P(Rz) — P(z))]
in inequality (1.36), we have for |z| > 1,

mz

AoDal(P(R2) = BP(2)) + Ay (2)DQ<P<Rz> — BP(2)Y

+ Ao <m2>2Da(P(Rz) — BP(2))"

2 2!

< g HIQHR” — Bl Aoz H 4+ N ((71—21)z> (n— 1)2'”_2

n A2<(n - 1)z)2 (n— 1)(7@2!_ 9)5n-3

(1.37)

11 Bl f max (o)

||

— {|04HR” - A Aoz N <(n—21)z> (n— 1)2”_2

n A2((n - 1)z>2 (n— 1)(7;!_ 9)2n3

~ 11 8l § min [P,

|21=1

where 0 < m < n—1and \,, A\ and Ay are such that all the zeros of u(z)
defined by (1.15) lie in the half place Re z < .

Remark 1.18. If we take 8 = 0 and letting R — 1, inequality (1.36) will
reduce to inequality (1.14).

Remark 1.19. Taking Ay = 0 = Ay with 8 = 0 and let R — 1, inequality
(1.37) will reduce to the following result due to Aziz and Shah [5].

If P(z) is a polynomial of degree n which does not vanish in |z| < 1, then
for every complex number o with |a| > 1,

ﬁl‘ffl(\DaP(Z)\ < 2{(!a + 1)g1|i>1<|P(z)\ — (la] = 1) g‘lg \p(z)|}.
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Dividing both sides by |a| and letting || — oo, in the above inequality, it
follows that if P(z) # 0 in |2| < 1, then

n
max |P'(z)| < { max |P(z)| — min |P(z)]}
|z]=1 2 | |z|=1 |z|=1

The above result is an interesting refinement of Erdos-Lax theorem (inequality

(1.3)) and was proved by Aziz and Dawood [2].

If we take A\, = 0 = Ao with § = 0 and let R — 1 in (1.37), we get the
following result:

Corollary 1.20. If P(z) is a polynomial of degree at most n, having no zero
in |z| <1, then for every a with |a] > 1 and |z| > 1,

n(n — 1)2 e .
mDap() < " S a2 mapo) - min ). 139)

The result is best possible and equality holds in inequality (1.38) for P(z) =
2"+ 1. Dividing both sides of the inequality (1.38) by |a| and letting |a| — o0,
then m =n — 1 and we get

n(n—1 _ .
Pl e o) - win b | (139
2. LEMMAS

For the proof of above theorems we need the following lemmas. The first
lemma follows from [9].

Lemma 2.1. If all the zeros of polynomial P(z) of degree n lie in |z| < k,
where k < 1, then for |a| > k, the polar derivative Do[P(z)] of P(z) at the
point « also has all its zeros in |z| < k.

The following lemma which we need is in fact implicit in [11, Lemma 14.5.7,
p.540].

Lemma 2.2. If all the zeros of the polynomial P(z) of degree n lie in a circle
|z| <1, then all the zeros of the polynomial B[P(z)] also lie in |z| < 1.

As an application of Lemmas 2.1 and 2.2 we have the following lemma.

Lemma 2.3. If all the zeros of polynomial P(z) of degree n lie in |z| < 1,
then for |a| > 1, all the zeros of the polynomial B[D,P(z)] also lie in |z| < 1.

Proof. From Lemma 2.1 for k = 1, all the zeros of the polynomial D, P(z) lie
in |z] <1 and so from Lemma 2.2 the polynomial B[D,P(z)] has all its zeros
in |z] < 1. O
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The next lemma is due to Aziz and Rather [3].

Lemma 2.4. If P(z) is a polynomial of degree at most n having all its zeros
in |z| < k, where k <1, then |P(Rz)| > |P(z)|, for |z| > 1 and R > 1.

Lemma 2.5. If P(z) is a polynomial of degree m which does not vanish in
|z| < 1, then for every real or complex numbers a, B with |o| > 1, |8] <1 and
R>1.

|B[Do(P(Rz) — BP(2))]| < |B[Da(Q(R2) — BQ(2))], (2.1)
for |z] > 1, where Q(z) = 2"p(L).
Proof. For R = 1, the result reduces to Bidkham and Mezerji [7, Lemma

4, p.597]. Now we will prove the result for R > 1. Since all the zeros of
P(z) lie in |z| > 1 and for every real or complex number A with |[A\| > 1, the

polynomial G(z) = P(z) — AQ(z), where Q(z) = 2"p(2) has all its zeros in
|z| < 1. Applying lemma 4 to the polynomial G(z) with k = 1, we get

|G(2)] < |G(Rz)| for |z| =1and R > 1.
Since all the zeros G(Rz) lie in |z| < R < 1, therefore for any real or complex
number S with |8 < 1, the polynomial H(z) = G(Rz) — fG(z), has all its
zeros in |z| < 1, for every A with [A| > 1 and R > 1, by Lemma 2.3 all the
zeros of B[DyH (z)] lie in \z\ < 1. This implies

B[Da(G(Rz) — fG(2))]

= BIDW(P(R2) — BP(2))] — ABIDa(@(R2) — Q) )
for |z > 1 and R > 1. Inequahty (2.2) implies
|B[Da(P(Rz) — BP(2))]| < |B[Da(Q(Rz) — BQ(2))]], (2.3)

for |z] > 1 and R > 1. For if it is not true, then there is a point z = 2, with
|z| > 1, such that

|B[Da(P(Rzo) = BP(20))]| = |B[Da(Q(Rzo) — BQ(20))]l,  (2.4)
for |[z| > 1 and R > 1. Since all the zeros of Q(z) lie in |z| < 1, therefore
it follows that all the zeros of Q(Rz) — fQ(z), lie in |z| < 1 for every 5 with
|8 < 1. Hence Q(Rz,) — SQ(20) # 0, for |2,| > 1. Which implies

B[Da(Q(Rz,) — BQ(2,))] # 0 for |z| > 1 and R > 1.

_ B[Du(P(Rz,) — P(20))]

(
B[Da(Q(Rz,) — Q(20))]’
so that |[A| > 1. Which shows that B[D,H (z)] has a zero in |z| > 1. Which is
contradiction to the fact that all the zeros of B[DyH(z)] lie in |z| < 1. Thus

|B[Do(P(Rz) — SP(2))]| < |B[Da(Q(Rz) — SQ(2))]l;

We take
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for |[z| > 1 and R > 1. O

3. PROOF OF THEOREMS

Proof of Theorem 1.1. Let M = max,—; |P(z)], then |P(2)| < M for |z| =
1. Therefore, by Rouche’s Theorem we have all the zeros of the polynomial
G(z) = P(2)+A2"M, lie in |z| < 1 for every A with |A\| > 1. Now from Lemma
2.4, we have

|G(2)| < |G(Rz)| for|z]=1 and R > 1.

Since all the zeros of G(Rz) lie in |z| < % < 1, therefore if g is any real or
complex number with |3] < 1, we have all the zeros of the polynomial

G(R2) — BG(2) = (P(Rz) — BP(2)) + M(R" — B)2"M,

also lie in |z| < 1 for every R > 1 and |\| > 1. Therefore by Lemma 2.3, all
the zeros of B[D,(G(Rz) — pG(2))], liein |z| < 1 for every R > 1 and |\| > 1.
Which implies

B[Da(G(Rz) — fG(2))] (3.1)
= B[Do(P(Rz) — BP(2))] + Aan(R" — B)M B[z""], '
for |z| <1 and R > 1. Inequality (3.1) implies
|B[Da(P(Rz) = SP(2))]] (3.2)

< |a|n|R™ — B||B[z""'||M for|z| > 1 and R > 1,
for if this is not true, then there is a point z = z, with |z,| > 1 such that
| B[Da(P(Rz,) — BP(20))]| > |aln|R" — B||Blzg~*|M.
We take
B[Da(P(Rz) — BP(2))]
an(R" — B)B[z""1]
so that |A| > 1, for this choice of |A|, we have B[D,(G(Rz,) — BG(2,))] =

0 for |z,] > 1. Which is a contradiction to the fact that all the zeros of
B[D,(G(Rz) — pG(z))] lie in |z| < 1. Thus

| B[Da(P(Rz) — BP(2))]] < an|R" — §|| B[z" "] max [P(2)],

A=—

for |z2] > 1 and R > 1. O

Proof of Theorem 1.5. Let M = max,—; |P(2)|, then |P(z)] < M for
|z| = 1. Now for every real or complex number v with |y| > 1, it follows
from Rouche’s Theorem, the polynomial G(z) = P(z) + vM does not vanish
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in |z| < 1. Now applying Lemma 2.4 and 2.5 to the polynomial G(z), we have
for every real or complex number § with |5 < 1,

|B[Da(P(Rz) = BP(2) +~(1 = B)M)]|

< |BIDA(QUR2) — BQ(2) +7(R" ~ B)*M)]|, &)
for [z| > 1 and R > 1, where Q(z) = 2"p(1). Inequality (3.3) implies
|B[Da(P(Rz) = BP(2))] + ny(1 = B)MA,| (3.4

< |B[Da(Q(Rz) — BQ(2))] + any(R" — ) B[z"~'|M],
for |z| > 1 and R > 1.
Now choosing the argument of 7 on the R.H.S of inequality (3.4), such that
|BIDa(Q(R2) — AQ(2)] + an(R" — 8)B="""]M|
= |aln]y||R" — BI|B[z""Y]|M — |B[Da(Q(R2) — BQ(2))]l,
for |z] > 1 and R > 1. Therefore we get from inequality (3.4),
|BIDa(P(Rz) — BP(2))]| - In(1 — B)AoM|
< lalnly||R" = B||Blz"1|M — | B[Da(Q(Rz2) — Q(2))]],

(3.5)

(3.6)

for |z| > 1 and R > 1. Therefore, inequality (3.6) implies

|B[Da(P(Rz) = BP(2))]] + | B[Da(Q(R2) — 5Q(2))]| (37
< lafny||R" = Bl B[z" 1M +nlyl|1 = Bl|Ao| M, '

for |z| > 1 and R > 1. Letting |y| — 1, in inequality (3.7), we get
|B[Da(P(Rz) — BP(2))]| + [B[Da(Q(R2) — BQ(2))]]
< n(laf|R" = BI|B[" ]| + 1~ »3||>\o|)glli>1<|P(Z)|,

for |z] > 1 and R > 1. Which proves the theorem. O

Proof of Theorem 1.9. We have from Lemma 2.5,

|B[Da(P(Rz) — BP(2))]] < [B[Da(Q(R2) — BQ(2))]],

for |z| > 1 and R > 1, where Q(z) = z"p(2). Also from Theorem 1.5, we have

|B[Da(P(Rz2) = BP(2))]| + | B[Da(Q(R2) — SQ(2))]
< n(laf|R" = BI|B[" Y]] + 1~ BH)‘ODT?@)IC [P(2)],
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for |2 > 1 and R > 1, where Q(z) = 2"p(Z). Combining the above two
inequalities, we get

|B[Da(P(Rz) — BP(2))]|
< g{\aHR” = BIIBE"T1+ (1= Bl |} max [ P(2)],

for |z] > 1 and R > 1. Which proves the theorem. O

Proof of Theorem 1.13. If P(z) has a zero on |z| = 1, then the result
is trivial. So we suppose that P(z) has all its zeros in |z| < 1. If m =
min;—; |P(z)[, then m > 0 and m < |P(z)| for |z| = 1. Therefore, if v is any
complex number with |y| < 1, we have the polynomial G(z) = P(z) — ymz"
of degree n has all its zeros in |z| < 1. Now from Lemma 2.4, we have

|G(2)] < |G(Rz)| for |z| =1and R > 1.

Since all the zeros of G(Rz) lie in |z| < £ < 1, therefore for any real or
complex number § with |3] < 1 and R > 1, it follows from Rouche’s Theorem,
the polynomial H(z) = G(Rz) — SG(z) has all its zeros in |z| < 1. Therefore

from Lemma 2.3, all the zeros of B[Dy,H(z)] lie in |z| < 1. This implies
B[Da(G(Rz) — 5G(2))]
= B[Do(P(Rz) — BP(2))] — any(R" — B)B["~"m,

for |z| > 1 and R > 1. Inequality (3.8) implies for |z| > 1 and R > 1,
| BIDa(P(R2) = BP(2))]| > |aln|R" — B||B[="~]|m. (3.9)

If inequality (3.9) is not true, then there is a point z = z, with |z,| > 1 such
that

(3.8)

| B[Da(P(Rzo) — BP(20))]] < laln|R" — B||B[=""|m.

We take
_ B[Da(P(Rzo) — BP(20))]

an(Rm — B)B[z8 Y \m
so that |y| < 1. For this choice of |y|, we have B[D,H(z)] = 0, for |z| > 1.
Which is a contradiction to the fact that all the zeros of B[D,H(z)] lie in
|z| < 1. Thus we have

| B[Da(P(Rz) = BP(2))]] > |aln|R" — B]| B[="~"]] min [P (2)]-

Hence the theorem follows. O

Proof of Theorem 1.17. Since the polynomial P(z) does not vanish in |z| <
1, therefore if m = min|,;—; [P(2)], then m < |P(z)| for |z| < 1. Now for any
real or complex number A with |[A\| < 1, the polynomial G(z) = P(z) + Amz"
does not vanish in |z| < 1. For if this is not true, then there is a point z = z,,
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with |z,| < 1, such that G(z,) = P(2,) + Amz = 0. Which implies |P(z,)| =
|mAz}| < m|zo|" < m, contradicting the fact that m < |P(z)| for |z| < 1.
Thus G(z) has no zero in |z| < 1 for every A with |A\| < 1. Applying Lemma
2.5 to the polynomial G(z), we have for |5| <1 and R > 1,

|B[Da(P(Rz) = fP(2) + (R" — B)Amz")]]

< |B[Da(Q(R2) — BQ(2) + (1 — B)Am)],

for [z| > 1 and R > 1, where Q(z) = 2"p(%). Inequality (3.10) implies

| B[Da(P(Rz) = BP(2))] + a(R" = B)AmnB["""]]

(3.10)

= (3.11)
< |B[Da(Q(Rz) — BQ(2))] + nAo(1 — B)Am],
for |z] > 1 and R > 1. Choosing A in inequality (3.11) such that
| B[Da(P(Rz) = BP(2))] + anA(R" — B)B[z""'Im|
~ |BIDA(P(R2) ~ BP))| + aln IR = BB,
for |z| > 1 and R > 1. Inequality (3.12) implies
|B[Da(P(Rz) — BP(2))]] + |aln|\[|R" — 8||B[z"""]jm (3.13)

< [B[Da(Q(Rz2) — BQ(2))]] 4 n|Aol[1 = B[[A[m,
for |z| > 1 and R > 1. Inequality (3.13) implies
IBIDu(P(R2) — 8P())]
< [B[Da(Q(R2) — BQ(2))]| (3.14)
+nl[ o[l = BlIAIm — [aln|A||R" — B]| B[="~"]m,
for |z| > 1 and R > 1. Letting |A\| — 1, we have for |z| > 1 and R > 1
2 BDa(P(R2) — 5P(2))]
< [B[Da(P(R2) — BP(2))]]| + [B[Da(Q(R2) — BQ(2))]] (3.15)
+nXoll1 = Bllm — Jaln||R" — B||B[="]|m,
for |z] > 1 and R > 1. Applying Theorem 1.5, we get from inequality (3.15)
|BIDa(P(R2) — BP(2)]

n n n—
< 7| {lalIR" = BIBE="""11+ Dol = 51} max | P(2)] (1.36)

_ {|OéHRn —5HB[Z’”_1]| — | Ao]|1 —5|} llglllzri |P(2)|| for |z] > 1.

Hence the Theorem follows. O
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