
Nonlinear Functional Analysis and Applications
Vol. 21, No. 4 (2016), pp. 591-596

http://nfaa.kyungnam.ac.kr/journal-nfaa
Copyright c© 2016 Kyungnam University Press KUPress

EXPANDING THE APPLICABILITY OF THE
SHADOWING LEMMA FOR OPERATORS WITH

CHAOTIC BEHAVIOR USING RESTRICTED
CONVERGENCE DOMAINS

Ioannis K. Argyros1 and Santhosh George2

1Department of Mathematical Sciences
Cameron University, Lawton, OK 73505, USA

e-mail: ioannisa@cameron.edu

2Department of Mathematical and Computational Sciences
NIT Karnataka, India

e-mail: sgeorge@nitk.ac.in

Abstract. We present a weaker version of the celebrated Newton–Kantorovich theorem

based on our new restricted convergence domains to find solutions of discrete dynamical

systems involving operators with chaotic behavior. Our results extend the application of the

shadowing lemma and are given under the same computational cost as in earlier studies.

1. Introduction

It is very difficult to prove mathematically, in general, that a given sys-
tem behaves chaotically [4]–[6]. However, complicated behavior of dynamical
systems can easily be detected via numerical experiments [2], [4]–[6], and the
references therein. The shadowing lemma [4, p.1684] proved via the Newton–
Kantorovich theorem [3] was used in [4] to present a computer-assisted method
that allows us to prove that a discrete dynamical system admits the shift op-
erator as a subsystem. Motivated by this work and using a weaker version
of the Newton–Kantorovich theorem [1, 2] (see Theorem 2.1 that follows) we
show that it is possible to weaken the shadowing Lemma on which the work
in [4]–[6] is based. Using restricted convergence domains (under the same
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computational cost) we obtained a larger upper bound on the crucial norm of
operator M−1 (see (2.7)). Moreover, the information on location of the shad-
owing orbit is more precise. Other advantages have already been reported in
[1, 2]. Clearly this approach widens the applicability of the shadowing lemma.

2. The shadowing lemma

Let U(v, ρ), Ū(v, ρ) stand respectively for the open and closed balls in Rk

with center v ∈ Rk and of radius ρ > 0. We need the definitions: Let D ⊆
Rk be an open subset of Rk (k a natural number), and let f : D → D be
an injective operator. Then the pair (D, f) is a discrete dynamical system.
Denote by S = l∞

(
Z,Rk

)
the space of Rk valued bounded sequences x = {xn}

with norm ‖x‖ = supn∈Z |xn|2 . Here we use the Euclidean norm in Rk and
denote it by |·| , omitting the index 2. A δ0–pseudo–orbit is a sequence y =
{yn} ∈ DZ with |yn+1 − f (yn)| ≤ δ0 (n ∈ Z) . A r-shadowing orbit x = {xn}
of a δ0–pseudo–orbit y is an orbit of (D, f) with |yn − xn| ≤ 2 (n ∈ Z) .

We need the following semilocal convergence theorem for Newton method
[2].

Theorem 2.1. Let X,Y be Banach spaces and D be an open convex subset
of X. Let F : D ⊆ X → Y be a Fréchet differentiable operator. Suppose that
there exist x0 ∈ D, positive constant η, β, L0 and L such that:

F ′ (x0)
−1 ∈ L (Y,X) ,

∥∥∥F ′ (x0)−1∥∥∥ ≤ β, (2.1)∥∥∥F ′ (x0)−1 F (x0)
∥∥∥ ≤ η, (2.2)∥∥F ′ (x)− F ′ (x0)
∥∥ ≤ L0 ‖x− x0‖ for all x ∈ D, (2.3)∥∥F ′ (x)− F ′ (y)
∥∥ ≤ L ‖x− y‖ for all x, y ∈ D0 = D ∩ U

(
x0,

1

L0

)
, (2.4)

hA = β L1 η ≤ 1, (2.5)

and

Ū (x0, s
∗) ⊆ D,

where,

s∗ = lim
n→∞

sn,

s0 = 0, s1 = η, s2 = s1 +
L0 (s1 − s0)2

2 (1− L0s1)
sn+2 = sn+1 +

L (sn+1 − sn)

2 (1− L0sn+1)
(n ≥ 1) ,

L1 =
1

4
(4L0 +

√
L2
0 + 8 L0 L+

√
L0 L).
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Then, sequence {yn} (n ≥ 0) generated by Newton’s method

yn+1 = yn − F ′ (yn)−1 F (yn) , n ≥ 0

is well defined, remains in Ū (x0, s
∗) for all n ≥ 0 and converges to a unique

solution y∗ ∈ Ū (x0, s
∗) , so that estimates

‖yn+1 − yn‖ ≤ sn+1 − sn
and

‖yn − y∗‖ ≤ s∗ − sn ≤ 2η − sn
hold for all n ≥ 0.

Moreover y∗ is the unique solution of equation F (y) = 0 in U (x0, R) pro-
vided that

L0 (s∗ +R) ≤ 2

and
U (x0, R) ⊆ D.

The advantages of Theorem 2.1 over the Newton-Kantorovich theorem [3]
have been explained in detail in [1] and [2].

From now on we set X = Y = Rk.
Sufficient conditions for a δ0-pseudo-orbit y to admit a unique r-shadowing

orbit are given in the following main result.

Theorem 2.2. (Weak version of the shadowing lemma) Let D ⊆ Rk be open,
f ∈ C1,Lip (D,D) be injective, y = {yn} ∈ DZ be a given sequence, {An} be
a bounded sequence of k × k matrices and let δ0, δ,`0, ` be positive constants.
Suppose that for the operator

M : S → S with {M z}n = zn+1 −Azn (2.6)

is invertible and ∥∥M−1∥∥ ≤ a =
1

δ +
√
`∗1 δ0

, (2.7)

where

`∗1 =
1

4
(4`0 +

√
`20 + 8 `0 `+

√
`0 `).

Suppose that (2.5) is satisfied for

`0 = L0, β =

(
1

‖M−1‖
− δ
)−1

and ‖F ′(0)−1F (0)‖ ≤ η.

Then, the numbers t∗, R given by

t∗ = lim
n→∞

tn (2.8)

and

R =
2

`0
− t∗ (2.9)
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satisfy 0 < t∗ ≤ R, where sequence {tn} is given by

t0 = 0, t1 = η, t2 = t1 +
` (t1 − t0)2

2 (1− `0t1)
,

tn+2 = tn+1 +
` (tn+1 − tn)2

2 (1− `0tn+1) ,
n ≥ 1 (2.10)

and

η =
δ0

1
‖M−1‖ − δ

. (2.11)

Let r ∈ [t∗, R] . Suppose that ⋃
n∈Z

U (yn, r) ⊆ D (2.12)

and for every n ∈ Z

|yn+1 − f (yn)| ≤ δ0, (2.13)

|An −Df (yn)| ≤ δ, (2.14)∣∣F ′ (u)− F ′ (0)
∣∣ ≤ `0 |u| (2.15)

and ∣∣F ′ (u)− F ′ (v)
∣∣ ≤ ` |u− v| , (2.16)

for all u, v ∈ U (yn, r) . Then there is a unique t∗-shadowing orbit x∗ = {xn}
of y. Moreover, there is no orbit x̄ other than x∗ such that

‖x̄− y‖ ≤ r. (2.17)

Proof. We shall solve the difference equation

xn+1 = f (xn) , n ≥ 0 (2.18)

provided that xn is close to yn. Setting

xn = yn + zn (2.19)

and
gn (zn) = f (zn + yn)−Anzn − yn+1 (2.20)

we can have
zn+1 = Anzn + gn (zn) . (2.21)

Define D0 = {z = {zn} : ‖z‖ ≤ 2} and nonlinear operator G : D0 → S, by

(G (z))n = gn (zn) . (2.22)

Operator G can naturally be extended to a neighborhood of D0. Equation
(2.21) can be rewritten as

F (x) = M x−G (x) = 0, (2.23)

where F is an operator from D0 into S.
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We will show the existence and uniqueness of a solution x∗ = {xn} (n ≥ 0)
of equation (2.23) with ‖x∗‖ ≤ r using Theorem 2.1. Clearly we need to
express η, L0, L and β in terms of

∥∥M−1∥∥ , δ0, δ, `0 and `.

(i)
∥∥∥F ′ (0)−1 F (0)

∥∥∥ ≤ η.
Using (2.13), (2.14) and (2.20) we get ‖F (0)‖ ≤ δ0 and ‖G′ (0)‖ ≤ δ, since

[G′ (0) (w)]n = (F ′ (yn)−An)wn.

By (2.7) and the Banach lemma on invertible operators [3] we get F ′ (0)−1

exists and ∥∥∥F ′ (0)−1
∥∥∥ ≤ ( 1

‖M−1‖
− δ
)−1

. (2.24)

That is, η can be given by (2.11).

(ii)
∥∥∥F ′ (0)−1

∥∥∥ ≤ β.

By (2.24) we can set

β =

(
1

‖M−1‖
− δ
)−1

. (2.25)

(iii) ‖F ′ (u)− F ′ (v)‖ ≤ L ‖u− v‖.
We can have using (2.16)∣∣(F ′ (u)− F ′ (v)

)
(w)n

∣∣ =
∣∣(F ′ (yn + un)− F ′ (yn + vn)

)
wn

∣∣
≤ ` |un − vn| |wn| . (2.26)

Hence we can set L = `.
(iv) ‖F ′ (u)− F ′ (0)‖ ≤ L0 ‖u‖ .

By (2.17) we get∣∣(F ′ (u)− F ′ (0)
)

(w)n
∣∣ =

∣∣(F ′ (yn + un)− F ′ (yn + 0)
)
wn

∣∣
≤ `0 |un| |wn| . (2.27)

That is, we can take L0 = `0.
Crucial condition (2.5) is satisfied by (2.7) and with the above choices of

η, β, L and L0. Therefore the claims of Theorem 2.2 follow immediately from
the conclusions of Theorem 2.1. That completes the proof of the theorem. �

Remark 2.3. Suppose that (2.4) hold on D (as in [3, 4, 5, 6]) and let L1(i.e..
`1) be the corresponding constant. Then, we have that

L0 ≤ L1 and L ≤ L1. (2.28)

The Kantorovich sufficient convergence condition corresponding to (2.5) and
given in [4] is:

h ≤ L1η ≤ 1. (2.29)
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Then, in view of (2.5), (2.28) and (2.29), we have that

h ≤ 1 =⇒ hA ≤ 1

but not necessarily vice versa unless, if L0 = L = L1. Otherwise our Theorem
2.2 improves Theorem 1 in [4]. Indeed, the upper bound in [4, p.1684] is given
by ∥∥M−1∥∥ ≤ b =

1

δ +
√

2`δ0
. (2.30)

By comparing (2.7) with (2.30), we deduce that

b < a.

Finally notice that the error bounds are tighter (use `0 = ` in (2.10) to obtain
the estimates in [4]) and the information on the location of the solution more
precise than in [4], if L0 < L. Examples where L0 < L can be found in [1, 2].
That is, we have justified the claims made in the introduction.
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