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Abstract. Mathematical model for the effect of antiretroviral therapy on the dynamics of

HIV-1 infection model with three distributed delays are proposed and analyzed. The effect

of time delay on stability of the equilibria of the system has been studied and sufficient

condition for local asymptotic stability infection free and chronic infected equilibrium. The

basic reproduction number of our model reveals that the basic reproduction number of

a model that neglects either cell-to-cell spread or virus-to-cell infection might be under

evaluated.

1. Introduction

Mathematical modeling of within host virus models has flourished over the
past few decades. These models have been used to describe the dynamics inside
the host of various infectious diseases such as HIV, HCV, HTLV, as well as the
flu or even the malaria parasite. However, recent studies have revealed that
a large number of viral particles can also be transformed from infected cells
to uninfected cell through the formation of virally induced structure termed
virological synapses [6]. Indeed, the direct cell to cell transmission of HIV-I
is found to be more potent and efficient means of virus propagation than the
virus to cell transmission mechanism. Cell to cell spread of HIV-I may educe
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the effectiveness of neutralizing antibodies and viral inhibitors. However, it is
unclear whether this mechanism of HIV-I viral spread is susceptible or resistant
to inhibition (by neutralizing antibodies) and to entry inhibition, causing some
controversy in this field of study [2, 10].

On the other hand, great attention has also been paid to the study of in
vitro cell to cell spread of virus since many features are easier to determine
experimentally in tissue cultures than in the blood stream. For example, HIV
is thought to be active in areas such as lymphnodes and the brain where cell
to cell spread would be much more important mode of infection than virus to
cell spread [3, 16]. Nowadays, a large number of deterministic models have
been developed to describe the immune system and its interaction with HIV
as well as the effects of drug therapy [11, 13].

Antiretroviral therapy slows the clinical progression of HIV infection at
the beginning of the therapy. However drug resistance due to viral mutation
typically occurs after some time and poses a challenging problem for long-
term treatments. Some studies have speculated that alternating between drug
regimens on a fixed schedule might forestall therapeutic failure. Early stages
of the virus evolution are assumed to be mutation free. During further stages,
the virus mutation can no longer be ignored. This is considered for instance
in [5] in which the mutation of the virus is modeled using switching systems,
which include 64 virus strains and three drug combinations. This issue remains
the topic of ongoing research. Motivated by the works [12], recently, many
authors discussed HIV-I virus dynamics for both virus to cell and cell to cell
transmissions models in [8, 18].

Here we consider x1(t), x2(t), x3(t) and x4(t) are the concentration of un-
infected target cells, infected cells that are producing virus, after protease
inhibitors are given, virus is classified as either infectious, x3 , i.e., not influ-
enced by the protease inhibitor, or as non-infectious, x4, due to the action of
the protease inhibitor which prevents virion maturation into infectious parti-
cles at time t, respectively. The infected cells may die or be cleared at rate
γ1, before become productively infected and thus after a time period of length
τ1, only a proportion e−γ1τ1 survives. The infectious and non-infectious virion
cells may be die or be cleared at rate γ2 and γ3, before generating new virus
cells, and thus after a time period of length τ2 and τ3, only a proportion
e−γiτi , i = 2, 3 survives. The time for infected cells to become productively
infected may vary from individual to individual, and hence a distribution func-
tion f1(τ1) is introduced to account for such variance. Similarly for generation
of new virus cells may vary from individual to individual, and hence a dis-
tribution function fi(τi) i = 2, 3. Note that τ1, τ2 and τ3 are all integration
variables, withoutloss of generality they all will represented as τ . Now, we
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present the following DDE model for antiretroviral therapy for both virus to
cell and cell to cell transmission model is given by

ẋ1(t) = h− dx1(t)− (1− η1)β1x1(t)x3(t)− (1− η2)β2x1(t)x2(t),

ẋ2(t) =

∫ ∞
0
{(1− η1)β1x1(t− τ)x3(t− τ) + (1− η2)β2x1(t− τ)x2(t− τ)}

×e−γ1τf1(τ)dτ − µ1x2(t),

ẋ3(t) =

∫ ∞
0

(1− η3)bx2(t− τ)e−γ2τf2(τ)dτ − cx3(t),

ẋ4(t) =

∫ ∞
0

η3bx2(t− τ)e−γ3τf3(τ)dτ − cx4(t), (1.1)

where η1 and η2 are the effectiveness of the RTI in preventing new infections
from virus to cell and cell to cell transmission mode. η3 is the efficacy of the
protease inhibitor. Thus, η1, η2, η3 = 1 corresponds to a completely effective
drug therapy while η1, η2, η3 = 0 represents a null therapy.

Table I:
Parameters description and Values

Parameter Description
h Rate at which new uninfected cells are generated
d death rate of uninfected cells
β1 infection rate of free virus
β2 infection rate of productively infected cells
µ1 death rate of infected cells
b Rate at which new virus cells are generated
c death rate of infected cells

2. Preliminaries

In ref [7], we consider, for each α > 0, the Banach space of fading memory
type,

C = {φ ∈ C((−∞, 0],R4) : `→ φ(`)eρ` is uniformly continuous on

(−∞, 0] and sup
`≤0
|φ(`)|eρ` <∞},

where ρ is a positive constant and endowed with the norm ||φ|| = sup
`≤0
|φ(`)|eρ`.

The nonnegative cone of C is defined by C+ = C((−∞, 0],R4
+). For φ ∈

C, let φt ∈ C as φt(θ) = φ(t + θ), θ ∈ (−∞, 0]. We consider solutions
x1(t), x2(t), x3(t), x4(t) of system (1.1) with initial conditions

(x1(0), x2(0), x3(0), x4(0)) ∈ C+
4 = C+ × C+ × C+ × C+. (2.1)
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i.e., initial functions taken from the natural positive cone of this phase space
given by Z := C+ × C+ × C+ × C+, denote Z = Z0

⋃
Z0 = C+, Z

0 is open
and dense set in Z, where C+ = {φ ∈ C : φ(0) ≥ 0 for θ ∈ (−∞, 0]}. By the
standard theory and functional differential equations [7, 4], we can obtain the
existence of solutions for t > 0. Let

δi =

∫ ∞
0

e−γiτfi(τ)dτ, i = 1, 2, 3.

Theorem 2.1. Let x1(t), x2(t), x3(t), x4(t) be the solution of the system (1.1)
with initial conditions (2.1) are ultimately uniformly bounded for t > 0.

Proof. Note that from (1.1), we obtain

x1(t) = x1(0)e−dt +

∫ t

0
he−d(t−ξ)dξ −

∫ t

0
{(1− η1)β1x1(ξ)x3(ξ)

+(1− η2)β2x1(ξ)x2(ξ)} e−d(t−ξ)dξ,

x2(t) = x2(0)e−µ1t +

∫ t

0

∫ ∞
0
{(1− η1)β1x1(ξ)x3(ξ)

+(1− η2)β2x1(ξ)x2(ξ)} e−γ1τf(τ)dτe−µ1(t−ξ)dξ,

x3(t) = x3(0)e−ct +

∫ t

0

∫ ∞
0

(1− η3)bf(τ)e−γ2τdτe−c(t−ξ)dξ,

x4(t) = x3(0)e−ct +

∫ t

0

∫ ∞
0

η3bf(τ)e−γ3τdτe−c(t−ξ)dξ. (2.2)

Using (2.1), we have x1(t) ≥ 0, x2(t) ≥ 0, x3(t) ≥ 0, x4(t) ≥ 0, ∀t ≥ 0. Hence
for all t ≥ 0, our solution (x1(t), x2(t), x3(t), x4(t)) ∈ C+

4 with all parameters
in C+

4.

To prove the boundedness, first by the positivity of solutions we have

ẋ1(t) ≤ h− dx1(t).

It follows that lim supt→∞ ≤
h

d
, implying that x1(t) is bounded.

Next we prove the boundedness of x2(t). To this end, we define

G(t) =

∫ ∞
0

e−γ1τf(τ)x1(t− τ)dτ + x2(t).

Since x1(t) is bounded and
∫∞

0 f(τ)dτ is convergent, the integral in G(t) is
well defined and differentiable with respect to t. Moreover, when taking the
time derivative of G(t), the order of the differentiable and integration can be
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switched. Thus, we have

Ġ(t) = h

∫ ∞
0

e−γ1τf(τ)dτ − d
∫ ∞

0
e−γ1τf(τ)x1(t− τ)dτ

−
∫ ∞

0
{(1− η1)β1x1(t− τ)x3(t− τ) + (1− η2)β2x1(t− τ)x2(t− τ)}

×e−γ1τf(τ)dτ +

∫ ∞
0
{(1− η1)β1x1(t− τ)x3(t− τ)

+(1− η2)β2x1(t− τ)x2(t− τ)} e−γ1τf(τ)dτ − µ1x2(t)

= h

∫ ∞
0

e−γ1τf(τ)dτ − d
∫ ∞

0
e−γ1τf(τ)x1(t− τ)dτ − µ1x2(t),

≤ hδ1 −mG(t),

where

δi =

∫ ∞
0

e−γiτf(τ)dτ, i = 1, 2, 3, m = min{d, µ1} > 0.

Therefore, lim supt→∞G(t) ≤ hδ1

m
, implying that lim supt→∞ x2(t) ≤ hδ1

m
. So,

x2(t) is bounded. Then from the third and fourth equation of system (1.1),
we have

ẋ3(t) + ẋ4(t) ≤ b

∫ ∞
0

(1− η3)x2(t− τ)e−γτf(τ)dτ − c(x3(t) + x4(t)),

≤ bhδ1

m
− c(x3(t) + x4(t)),

where
γ = γ2 + γ3, X = x3 + x4.

Thus, lim supt→∞X(t) ≤ bhδ1

cm
, which implies that lim supt→∞ x3(t) ≤ bhδ1

cm

and lim supt→∞ x4(t) ≤ bhδ1

cm
. Therefore x1(t), x2(t), x3(t) and x4(t) are ulti-

mately uniformly bounded. �

Remark 2.2. Theorem 2.1 implies that omega limit set of system (1.1) are
contained in the following bounded feasible region:

Λ =

{
(x1(t), x2(t), x3(t), x4(t)) ∈ C4

+ : ||x1(t)|| ≤ x0
1, ||x2(t)|| ≤ hδ1

m
,

||x3(t)|| ≤ bhδ1

cm
, ||x4(t)|| ≤ bhδ1

cm

}
.

It can be verified that the region Λ is positively invariant with respect to the
system (1.1) and the system is well posed.
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System (1.1) has an infection free equilibrium I0 = (x0
1, 0, 0, 0), where

x0
1 =

h

d
. We define the basic reproduction number as follows:

R0 = R01 +R02

=
(1− η1)β1x

0
1δ1(1− η3)bδ2

µ1c
+

(1− η2)β2x
0
1δ1

µ1

which represents the average number of secondary infections. In fact,
(1− η1)β1x

0
1δ1(1− η3)b.δ2

µ1c
is the average number of secondary viruses caused

by a virus, that is the basic reproduction number corresponding to virus to cell

transmission mode, while
(1− η2)β2x

0
1δ1

µ1
is the average number of secondary

infected cells caused by an infected cell, that is the basic reproduction number
corresponding to cell to cell transmission mode.

3. Local stability of equilibria

System (1.1) has the infection-free equilibrium I0 = (h/d, 0, 0, 0). In order
to determine the stability of I0, we consider the linearization (1.1) at I0:

ẏ1(t) = −dy1(t)− (1− η1)β1
h

d
y3(t)− (1− η2)β2

h

d
y2(t)

ẏ2(t) =

∫ ∞
0

{
(1− η1)β1

h

d
y3(t− τ) + (1− η2)β2

h

d
y2(t− τ)

}
e−γ1τf(τ)dτ

−µ1y2

ẏ3(t) =

∫ ∞
0

(1− η3)by2(t− τ)e−γ2τf(τ)dτ − cy3,

ẏ4(t) =

∫ ∞
0

η3by2(t− τ)e−γ3τf(τ)dτ − cy4. (3.1)

The characteristic equation of the above system (3.1) is given by

−d− λ −(1− η2)β2
h

d
−(1− η1)β1

h

d
0

0 −µ1 + (1− η2)β2
h

d
α1(λ)− λ (1− η1)β1

h

d
α1(λ) 0

0 (1− η3)bα2(λ) −c− λ 0

0 η3bα3(λ) 0 −c− λ

= 0,
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where

αi(λ) =

∫ ∞
0

e−(γi+λ)τf(τ), i = 1, 2, 3.

We obtain from the above the determinant the above system (3.1) has an
eigenvalue λ = −d,−c, and other eigenvalues are determined by

λ2 + λ

(
c+ µ1 − (1− η2)β2

h

d
α1(λ)

)
+ µ1c (1−R0) = 0. (3.2)

Theorem 3.1. The infection free steady state of model (3.1) is locally asymp-
totically stable when R0 < 1 and unstable when R0 > 1.

Proof. We have to prove the local stability of model (3.1), when R0 < 1. The
characteristic equation (3.2) at the infected free steady state can be rewritten
as,

(λ+ c)(λ+ µ1)

= (λ+ c)β2(1− η2)β2
h

d
α1(λ) + (1− η1)β1

h

d
α1(λ)(1− η3)bα2(λ).

After simplification we get

(λ+ c)

(
λ

µ1
+ 1

)
= R0

(
α1(λ)R02

δ1R0
λc

(
α1(λ)R02

δ1R0
+
α1(λ)α2(λ)R01

δ1δ2R0

))
. (3.3)

We first consider the case R0 < 1. We show that if λ = x + iy is a solutions
of (3.3), then x > 0. Otherwise x ≥ 0 would imply that

|(λ+ c)| >
∣∣∣∣(α1(λ)R02

δ1R0
λ+ c

(
α1(λ)R02

δ1R0
+
α1(λ)α2(λ)R01

δ1δ2R0

))∣∣∣∣ ,∣∣∣∣( λ

µ1
+ 1

)∣∣∣∣ ≥ 1,

∣∣∣∣α1(λ)

δ1

∣∣∣∣ ≤ 1,

∣∣∣∣α2(λ)

δ2

∣∣∣∣ ≤ 1,

and thus∣∣∣∣(λ+ c)

(
λ

µ1
+ 1

)∣∣∣∣ > ∣∣∣∣R0

(
α1(λ)R02

δ1R0
λ+ c

(
α1(λ)R02

δ1R0
+
α1(λ)α2(λ)R01

δ1δ2R0

))∣∣∣∣ ,
which is a contradiction to (3.3). Therefore all roots of (3.3) have negative
real parts and hence the infection free steady state of the model (3.1) is locally
asymptotically stable when R0 < 1.
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For the case of R0 > 1, then we obtain,

ψ(λ) = (λ+ c)

(
λ

µ1
+ 1

)
−R0

(
α1(λ)R02

δ1R0
λ+ c

(
α1(λ)R02

δ1R0
+
α1(λ)α2(λ)R01

δ1δ2R0

))
. (3.4)

Thus, ψ(0) = c(1−R0) < 0. On the other hand, noticing that

αi(λ) =

∫ ∞
0

e−(γi+λ)τf(τ)dτ ≤
∫ ∞

0
f(τ)dτ = 1, i = 1, 2, 3.

Thus,

ψ(λ) ≥ (λ+c)

(
λ

µ1
+1

)
−R0

(
R02

δ1R0
λ+ c

(
R02

δ1R0
+

R01

δ1δ2R0

))
, (3.5)

the above inequality (3.5) leads to ψ(λ) → ∞, as λ → ∞. Now, obtain
form the equation (3.3), which it has atleast one positive root, therefore the
infection free equilibrium I0 is unstable if R0 > 1. �

Theorem 3.2. If R0 > 1, then the system (1.1) has a chronic equilibrium
I∗(x∗1, x

∗
2, x
∗
3, x
∗
4) (i.e., x∗1 > 0, x∗2 > 0, x∗3 > 0, x∗4 > 0) where x∗1, x

∗
2, x

∗
3 and x

∗
4

are given in the proof.

Proof. If R0 > 1, then the system (1.1) becomes as follows:

h− dx∗1 − (1− η1)β1x
∗
1x
∗
3 − (1− η2)β2x

∗
1x
∗
2 = 0,

(1− η1)β1x
∗
1x
∗
3 + (1− η2)β2x

∗
1x
∗
2 − µ1x

∗
2 = 0,

(1− η3)bx∗2 − cx∗3 = 0,

η3bx
∗
2 − cx∗4 = 0. (3.6)

From the above system (3.6), we easily get

x∗1 =
h

dR0
,

x∗2 =
dc

(1− η1)β1(1− η3)b+ (1− η2)β2
(R0 − 1),

x∗3 =
(1− η3)b

c
x∗2,

x∗4 =
η3b

c
x∗2. (3.7)

�

Theorem 3.3. If R0 > 1, then the system (1.1) has a chronic infection equi-
librium I∗(x∗1, x

∗
2, x
∗
3, x
∗
4) given by (3.7), which is locally asymptotically stable.
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Proof. Now, we have to ascertain the stability of I∗(x∗1, x
∗
2, x
∗
3, x
∗
4) for the sys-

tem (1.1) at I∗

ẏ1(t) = −dy1(t)− (1− η1)β1x
∗
1y3(t)− (1− η1)β1x

∗
3y1(t)

−(1− η2)β2x
∗
2y1(t)− (1− η2)β2x

∗
1y2(t),

ẏ2(t) =

∫ ∞
0
{(1− η1)β1x

∗
1y3(t− τ) + (1− η1)β1x

∗
3y1(t− τ)

+(1− η2)β2x
∗
2y1(t− τ) + (1− η2)β2x

∗
1y2(t− τ)} e−γ1τf(τ)dτ

−µ1y2(t),

ẏ3(t) =

∫ ∞
0

(1− η3)by2(t− τ)e−γ2τf(τ)dτ − cy3(t),

ẏ4(t) =

∫ ∞
0

η3by2(t− τ)e−γ3τf(τ)dτ − cy4(t). (3.8)

The determinant of the above linear system (3.8) is given by,

(d+ (1− η1)β1x
∗
3+

(1− η2)β2x
∗
2) + λ

(1− η2)β2x
∗
1 (1− η1)β1x

∗
1 0

−α1(λ)((1− η1)β1x
∗
3

+(1− η2)β2x
∗
2)

−α1(λ)(1− η2)β2x
∗
2+

µ1 + λ
−δ1(1− η1)β1x

∗
1 0

0 −α2(λ)b(1− η3) c+ λ 0

0 −α3(λ)bη3 0 c+ λ

= 0.

Noticing that d+ (1− η1)β1x
∗
3 + (1− η2)β2x

∗
2 = dR0, we have

J̄(λ) =

λ+ dR0 (1− η2)β2x
∗
1 (1− η1)β1x

∗
1 0

α1(λ)(λ+ d) λ+ µ1 0 0

0 −α2(λ)b(1− η3) λ+ c 0

0 0 c+ λ λ+ c

= 0

or

(λ+dR0) {(λ+µ1)(λ+c)(λ+c)}−(1−η2)β2x
∗
1α1(λ)(λ+ d)(λ+ c)(λ+ c)

−(1− η1)β1x
∗
1 {α1(λ)(λ+ d)α2(λ)b(1− η3)(λ+ c)} = 0.
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Thus, one of the eigenvalue of the chronic infection steady state is λ = −c,
then the remaining eigenvalues are calculated as follows:

(λ+dR0) {(λ+µ1)(λ+c)} = (1− η2)β2x
∗
1α1(λ)(λ+ d)(λ+ c)

+(1− η1)β1x
∗
1α1(λ)(λ+ d)α2(λ)b(1− η3)

= (λ+d)α1(λ)

(
(1−η2)β2h

dR0
λ+

µ1c

δ1
(R02+R01)

)
= (λ+ d)α1(λ)

µ1

δ1
(λR02 + cR0)

i.e.,

(λ+ dR0)

{(
λ

µ1
+ 1

)
(λ+ c)

}
= (λ+ d)

α1(λ)

δ1
R0

(
λ
R02

R0
+ c

)
. (3.9)

Assume λ = x + iy is a solution of (3.9), we show that x < 0 is R0 > 1.
Otherwise x ≥ 0 would imply,

|λ+ dR0| > |λ+ d|;
∣∣∣∣ λµ1

+ 1

∣∣∣∣ ≥ 1; |λ+ c| >
∣∣∣∣λR02

R0
+ c

∣∣∣∣ ; ∣∣∣∣α1(λ)

δ1

∣∣∣∣ ≤ 1.

Thus, ∣∣∣∣(λ+ dR0)

(
λ

µ1
+ 1

)
(λ+ c)

∣∣∣∣ > ∣∣∣∣(λ+ d)
α1(λ)

δ1

(
λ
R02

R0
+ c

)∣∣∣∣ .
This leads to contradiction to (3.9). Therefore if R0 > 1, then all the roots of
(3.9) have negative real parts, implying that the chronic infection equilibrium
I∗(x∗1, x

∗
2, x
∗
3, x
∗
4) is locally asymptotically stable. �

Summarizing the above analysis, we’ve the following theorem.

Theorem 3.4.

(i) The infection free steady state I0(x0
1, 0, 0, 0) is Locally asymptotically

stable for all τ > 0, when R0 < 1.
(ii) The chronic infection steady state I∗(x∗1, x

∗
2, x
∗
3, x
∗
4) is Locally asymp-

totically stable for all τ > 0, when R0 > 1.

4. Persistence of infection

In this section, we will show that the model (1.1) is persistent when R0 > 1.
The methods and techniques, we are using have seen recently employed in
[9] Theorem 2, [14] Theorem 6.1, [17] Theorem 3.1 for distributed and infinite
delay systems and in [15] for a discrete delay system. To proceed, we introduce
the following notation and terminology. Let S(t) be the solution semiflow of
model (1.1) with initial conditions (2.1). Then, we shall make use of the



Analysis of HIV-1 model: within host cell to cell viral transmission with ART 607

following theorem on the semiflow S(t) on Z, which does not require S(t) to
be compact.

Theorem 4.1. Suppose we have the following:

(i) Z0 is an open and dense set in X with Z0 ∪Z0 = Z and Z0 ∩Z0 = Ø;
(ii) S(t) satisfies S(t)Z0 ⊂ Z0 and S(t)Z0 ⊂ Z0 for t > 0;

(iii) S(t) is dissipative in Z;
(iv) κ+(N) is bounded in Z if N is bounded in Z;
(v) S(t) is asymptotically smooth;

(vi) A = ∪x∈Ab
ω(x) is isolated and has an acyclic covering Q = ∪ki=1Qi,

where Ab is the global attractor of S(t) restricted to Z0;
(vii) For each Qi ∈ Q,W s(Qi)∩Z0 = Ø, where W s refers to the stable set.

Then S(t) is uniformly persistent; i.e., there is a σ > 0 such that for
any z ∈ Z0,

lim inf
t→∞

d(S(t)x, Z0) ≥ σ.

Applying the above theorem, we can prove the following persistence result
for the system (1.1).

Theorem 4.2. For system (1.1), if R0 > 1, then the solution semiflow S(t)
is uniformly persistent; i.e., there is a σ > 0 such that for any z ∈ Z0,

lim inf
t→∞

x1(t) ≥ σ, lim inf
t→∞

x2(t) ≥ σ, lim inf
t→∞

x3(t) ≥ σ and lim inf
t→∞

x4(t) ≥ σ.

Proof. Let Z0 be as in (2.1) and

Z0 = {φ = (φ1, φ2, φ3, φ4) ∈ X : φ2(θ) = φ3(θ) = φ4(θ) = 0, ∀ θ ∈ (−∞, 0]} .
As based on the above Theorem 4.1, the conditions (i) and (ii) are obvious. It
has to be confirmed in Section 2. Now, we have to prove (iii), i.e., the solutions
of the system (1.1) with initial conditions (2.1) are ultimately bounded. By

lim inft→∞ x1(t) ≤ h

d
, we know that there exists an n1 > 0 such that x1(t) ≤

h

d
+ 1 for all t > n1. Let n1 be the maximum of x1(t) on [0, n1]. Then for any

0 < t ≤ n1, we have

‖x1(t)‖ = sup
−∞<θ≤0

|x1(θ)|e∆θ = sup
−∞<r≤s

|x1(θ)|e∆re−∆s

≤ max
{
‖φ1‖e∆t, n1e

∆te−∆t
}

≤ max {‖φ1‖, n1}
and for t > r1, we obtain

≤ max

{
‖φ1‖e∆t, n1e

∆r1e−∆t,
h

d
+ 1

}
.
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Thus there is an r2 > r1 such that

‖φ1‖e∆t ≤ λ

d1
+ 1 and e∆r1e−∆t ≤ h

d
+ 1 for t ≥ r2

and therefore

‖x1(t)‖ ≤ h

d
+ 1 := x1M for t ≥ r2. (4.1)

Similarly lim supt→∞ x2(t) ≤ hδ1

m
and lim supt→∞ x3(t) ≤ bhδ1

cm
and

lim supt→∞ x4(t) ≤ bhδ1

cm
. We know that there exist r3 > 0 and r4 > 0 such

that

‖x2(t)‖ ≤ hδ1

m
+ 1 := x2M for t ≥ r3, (4.2)

‖x3(t)‖ ≤ bhδ1

cm
+ 1 := x3M for t ≥ r4, (4.3)

‖x4(t)‖ ≤ bhδ1

cm
+ 1 := x4M for t ≥ r5. (4.4)

Thus, the solution (x1(t), x2(t), x3(t), x4(t)) are ultimately bounded. i.e., S(t)
is point dissipative in Z. Hence the condition (iii) proved.

Noticing that the above four bounds in (4.1), (4.2), (4.3) and (4.4) are all
independent of initial functions, conditions (iv) is verified.

Next we verify the condition (v), S(t) is asymptotically smooth; that is for
any bounded subset N of Z, for which S(t)N ⊂ N , for t ≥ 0, there exists a
compact set P such that d(S(t)N,P)→ 0 as t→∞. Let N be an arbitrarily
given bounded set in X, and let (x1, x2, x3, x4) be the segment of solution with
initial condition (φ1, φ2, φ3, φ4) ∈ N . Set

P1 =

{
φ ∈ C+ : sup

θ≤0
φ1(θ)e

4
2 θ ≤ x1P

}
,

P2 =

{
φ ∈ C+ : sup

θ≤0
φ2(θ)e

4
2 θ ≤ x2P

}
,

P3 =

{
φ ∈ C+ : sup

θ≤0
φ3(θ)e

4
2 θ ≤ x3P

}
,

P4 =

{
φ ∈ C+ : sup

θ≤0
φ4(θ)e

4
2 θ ≤ x4P

}
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and let P = P1 × P2 × P3 × P4. It follows from Lemma 3.2 in [1] that
P is compact in Z. Then, by using exactly the same argument in proving
limt→∞ d(Et,M) = 0 in the proof of Theorem 6.1 in [14], we conclude that

lim
t→∞

d(x1,P1) = 0, lim
t→∞

d(x2,P2) = 0, lim
t→∞

d(x3,P3) = 0, lim
t→∞

d(x4,P4) = 0.

For condition (vi), it is obvious that N = {I0}, and it is isolated, where
I0 = (h/d, 0, 0, 0). Thus the covering Q = {I0}, which is acyclic because there
is no orbit connecting I0 to itself in Z0.

Finally we verify condition (vii), to show W s(I0) ∩ Z0 = Ø. We as-
sume the contrary, that is there exists a solution (x1, x2, x3, x4) ∈ Z0 such

that limt→∞ x1(t) ≤ h

d
; limt→∞ x2(t) = 0; limt→∞ x3(t) = 0 and

limt→∞ x4(t) = 0. Note that R0 > 1 is equivalent to

(1− η1)β1x
0
1δ1(1− η3)bδ2µ1c+ (1− η2)cβ2x

0
1δ1µ1

∫ ∞
0

e−γ1τf(τ)dτ > µ1c.

Choose ε1 > 0 be sufficiently small such that(
h

d
− ε1

)(
(1− η1)β1δ1(1− η3)bδ2µ1c+ (1− η2)cβ2δ1µ1

∫ ∞
0

e−γ1τf(τ)dτ

)
> µ1c.

For this ε1, there exists τ̄ > 0 such that x1(t) >
h

d
− ε1 for all t ≥ τ̄ .

Truncating the above integral, there is another τ1 > 0 such that(
h

d
− ε1

)(
(1− η1)β1δ1(1− η3)bδ2µ1c+ (1− η2)cβ2δ1µ1

∫ τ1

0
e−γ1τf(τ)dτ

)
> µ1c. (4.5)

Let τ2 = τ̄ + τ1. Then, for t ≥ τ2, we have

ẋ2(t) ≥
∫ τ1

0
{(1− η1)β1x1(t− τ)x3(t− τ)

+(1− η2)β2x1(t− τ)x2(t− τ)} e−γ1τf(τ)dτ − µ1x2(t),

=

∫ t

t−τ1
{(1− η1)β1x1(ζ)x3(ζ) + (1− η2)β2x1(ζ)x2(ζ)} e−γ1(t−ζ)f(t− ζ)dζ

− µ1x2(t)

≥
(
h

d
− ε1

)∫ t

t−τ1
{(1− η1)β1x3(ζ) + (1− η2)β2x2(ζ)} e−γ1(t−ζ)f(t− ζ)dζ

− µ1x2(t)
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=

(
h

d
− ε1

)∫ τ1

0
{(1− η1)β1x3(t− τ) + (1− η2)β2x2(t− τ)} e−γ1τf(τ)dτ

− µ1x2(t).

This suggests that the following comparison system for (x2(t), x3(t), x4(t)):

ṅ1(t) =

(
h

d
− ε1

)∫ τ1

0
{(1− η1)β1n2(t− τ) + (1− η2)β2n1(t− τ)}

e−γ1τf(τ)dτ − µ1n1(t),

ṅ2(t) =

∫ τ1

0
(1− η3)bn1(t− τ)e−γ2τf(τ)dτ − cn2,

ṅ3(t) =

∫ τ1

0
η3bn1(t− τ)e−γ3τf(τ)dτ − cn3. (4.6)

for t ≥ τ2. Noticing that this is a monotone system and hence by the com-
parison theorem and the equations limt→∞ x2(t) = 0, limt→∞ x3(t) = 0 and
limt→∞ x4(t) = 0, one should have limt→∞(x2(t), x3(t), x4(t)) = (0, 0, 0). On
the other hand, the above system (4.6) are in the same forms of the system

(3.1), except the upper limit ∞ in the integral is replaced by τ1 and the
h

d

is perturbed to
h

d
− ε1. Repeating the same argument for proving instability

of I0 in Theorem 3.1 and replacing the condition R0 > 1 by (4.5), we con-
clude that the characteristic equation of (4.6) has a positive real eigenvalue,
which is a contradiction to limt→∞(x2(t), x3(t), x4(t)) = (0, 0, 0). Thus, we
have W s(I0)

⋂
Z0 = Ø. confirming the condition (vii).

Now, by Theorem 4.1, there exist σ1 > 0 such that lim inft→∞ d(S(t)φ,Z0) ≥
σ1 for every φ ∈ Z0, implying that x2(t), x3(t) and x4(t) components of the
solution with initial function φ ∈ Z0 satisfy

lim inf
t→∞

‖x2(t)‖ ≥ σ1, lim inf
t→∞

‖x3(t)‖ ≥ σ1 and lim inf
t→∞

‖x4(t)‖ ≥ σ1.

By estimates similar to those in the proof of Theorem 2.1, we obtain

lim inf
t→∞

x2(t) ≥ σ1, lim inf
t→∞

x3(t) ≥ σ1 and lim inf
t→∞

x4(t) ≥ σ1.

It remains to show that the persistence of x1(t). From (4.1) and (4.2), we have

ẋ1(t) > h− (d+ (1− η1)β1x3 + (1− η2)β2x2)x1(t) for t ≥ r6.

Where r6 = max{r3, r4, r5}. This means that whenever

x1(t) < σ2 := h/(d+ (1− η1)β1x3 + (1− η2)β2x2)

with t ≥ r6, x1(t) will be increasing which implies that lim inft→∞ x1(t) >
σ2/2, taking σ = min{σ1, σ2/2}. Hence the proof. �
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5. Conclusion

Mathematical analysis of HIV-1 viral dynamics and immune responses has
led to a number of important insights about the dynamics and pathogenesis of
HIV infection. Modeling plasma virus decay under therapy demonstrated the
fast turnover of virus, explaining the potential for generation of mutants and
the development of drug resistance Our article is focused on antiretroviral ther-
apy for both virus to cell and cell to cell transmission mode. HIV-I infection
can be very effectively a combination of drugs that block various steps in the
HIV-1 lifecycle such as the ability of the virus to reversely transcribe its RNA
genome to DNA (RT inhibitor), integrate DNA into the cell genome, or make
viable new virions by the cleavage of viral protein precursors (protease in-
hibitor). However, these antiretroviral therapies cannot completely eliminate
HIV-1 infection, and the infection can re-establish itself within weeks after
therapy interruption in virus to cell transmission mode. But our proposed
model overcomes all the difficulties from the virus to cell infection mode.
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