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1. Introduction and Main Results

Consider the following Neumann boundary value problem involving the
p−Laplacian 

4p(u) = f(x, u), in Ω

∂u
∂n = 0, on ∂Ω

(1.1)

where Ω ⊂ RN is a C0,1 boundary domain, N ≥ 1, p > N, f : Ω × R → R is
a Carathéodory function, that is, f(x, t) is measurable in x for every t ∈ R
and continuous in t for a. e. x ∈ Ω. Moreover, for every s > 0 we assume
sup|t|≤s |f(·, t)| ∈ L1(Ω). Here 4p is the p−Laplacian, i. e. 4p(u) = div(| 5
u|p−2 5 u).

The energy functional associated to problem (1.1) given by

ϕ(u) =
1

p

∫
Ω
| 5 u|pdx−

∫
Ω
F (x, u)dx

is continuously differentiable and weakly lower semi-continuous on W 1,p(Ω)
(see [12] or Lemma 2.4 in section 2) and

〈ϕ′(u), v〉 =

∫
Ω
| 5 u|p−2 5 u · 5vdx−

∫
Ω
f(x, u)vdx

for all u, v ∈W 1,p(Ω), where F (x, t) =
∫ t

0 f(x, s)ds. And the space W 1,p(Ω) is
equipped with the norm

‖u‖ = [

∫
Ω
| 5 u|pdx+

∫
Ω
|u|pdx]

1
p .

It is well known that the weak solutions of problem (1.1) correspond to the
critical points of functional ϕ.

As p = 2 problem (1.1) were studied in [2-9], and some well known solvabil-
ity conditions were given, such as sign condition (see [2] and its references),
the monotonicity condition (see [4], [5] and their references) and sublinear
condition (see [7-9] ).

Recently, Wu and Tan [12] studied problem (1.1) under some another mono-
tone type condition and some sub-order condition, they obtained the following
theorem:

Theorem A: If the following conditions hold:
(i) there exist g, h ∈ L1(Ω;R),M > 0 and α ∈ [0, p− 1) such that

f(x, t)

t
≤ g(x)tα + h(x)

t
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for all |t| ≥M and a. e. x ∈ Ω;
(ii) there exist constants 0 < ε < cp and some η ∈ R such that

f(x, s)− f(x, t)

s− t
≤ (cp − ε)λ̄|s− t|p−2(s− t) + η

s− t
for any s 6= t ∈ R and a. e. x ∈ Ω, where λ̄ and cp are the constants appearing
in the following Lemma 2.1 and Lemma 2.2;
(iii) ∫

Ω
F (x, r)dx→ +∞ as |r| → ∞;

then the problem (1.1) has at least one solution in W 1,p(Ω).
If adding the following condition
(iv) f(x, 0) = 0 for a. e. x ∈ Ω and there exists a δ > 0 such that as

0 < |t| < δ, f(x,t)
t < 0 for a. e. x ∈ Ω, then the problem (1.1) has at least one

nontrivial solution in W 1,p(Ω).

We point out that the condition (i) in Theorem A is unnecessary, and in
this paper we will give a new approach to obtain the same result in Theorem
A without condition (i), and will give some new conditions to guarantee the
existence of the nontrivial solutions of problem (1.1) by using a new method
motivated by [1] and [11]. To state our main results, we need the following
conceptions:

If W 1,p(Ω) = X
⊕
Y , for each x ∈ X and each y ∈ Y , let ψ(x, y) = ϕ(x+y).

The solution u = x+ y of problem (1.1) is said to be of correlated property if
there exists a continuous function θ such that y = θ(x) and either ψ(x, θ(x)) =
miny∈Y ψ(x, y) or ψ(x, θ(x)) = supy∈Y ψ(x, y). The solution u = x + y of
problem (1.1) is said to possess saddle point character if it is correlated and
is a saddle point of ψ(x, y).

Briefly, we have the following main results:

Theorem 1.1. If the following conditions hold:
(i) there exist constants 0 < ε < cp and some η ∈ R such that

[f(x, s)− f(x, t)](s− t) ≤ (cp − ε)λ̄|s− t|p + η(s− t)

for any s, t ∈ R and a. e. x ∈ Ω, where cp and λ̄ are the constants as in
Theorem A;
(ii) ∫

Ω
F (x, r)dx→ +∞ as |r| → ∞;

then the problem (1.1) has at least one solution with saddle point character in
W 1,p(Ω).

If adding the following condition
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(iii) f(x, 0) = 0 for a. e. x ∈ Ω and there exists a δ > 0 such that as
0 < |t| < δ, f(x, t) t < 0 for a. e. x ∈ Ω, then the problem (1.1) has at least
one nontrivial solution with saddle point character in W 1,p(Ω).

Theorem 1.2. Suppose that f satisfies the conditions (i), (ii) in Theorem 1.1
and the following condition hold:
(iii) f(x, 0) = 0 for a. e. x ∈ Ω and there exists some t0 ∈ R such that
f(x, t0) = 0 for a. e. x ∈ Ω and

∫
Ω F (x, t0)dx < 0.

Then the problem (1.1) has at least one nontrivial solution with saddle point
character in W 1,p(Ω).

Theorem 1.3. Suppose that f satisfies the conditions (i), (ii) in Theorem 1.1
and the following condition hold:
(iii) f(x, 0) = 0 for a. e. x ∈ Ω and there exists a δ > 0 such that

F (x, t) < 0

for all t ∈ R with 0 < |t| ≤ δ and for a. e. x ∈ Ω.
Then the problem (1.1) has at least one nontrivial solution with saddle point

character in W 1,p(Ω).

Remark 1.1. In above statements we give the terminology of a solution with
saddle point character, and it can be seen that the conditions for guaranteeing
the existence of nontrivial solutions are different from that in other papers,
hence our results are novel and are significant improvement, compare to the
results in the list references.

Especially, for the solutions with correlated property, we have the following:

Theorem 1.4. If the following conditions hold:
(i) there exist constants 0 < ε ≤ cp and some η ∈ R such that

[f(x, s)− f(x, t)](s− t) ≤ (cp − ε)λ̄|s− t|p + η(s− t)
for any s, t ∈ R and a. e. x ∈ Ω, where cp and λ̄ are the constants as in
Theorem A;
(ii)there exist g ∈ L1(0, T ;R+) and M > 1 such that

F (x, t) ≤ −g(x)|t|
for all |t| ≥M and a. e. x ∈ Ω;
then the problem (1.1) has at least one solution with correlated property in
W 1,p(Ω) which minimizing the energy functional ϕ.

If adding the following condition
(iii) f(x, 0) = 0 for a. e. x ∈ Ω and there exists some t0 ∈ R such that
f(x, t0) = 0 for a. e. x ∈ Ω and

∫
Ω F (x, t0)dx > 0.

Then the problem (1.1) has at least one nontrivial solution with correlated
property in W 1,p(Ω) which minimizing the energy functional ϕ.
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Remark 1.2. Noticing that in condition (i) in Theorem 1.4, ε may equal cp,
this is the main distinction to the previous theorems, and if let ε = cp and
η = 0, this condition implies that −f(x, t) is monotone, which will contravene
with condition (ii) in Theorem 1.1.

2. Lemmas for the proofs of theorems

To prove our main results, we need the following lemmas:

Lemma 2.1 ([12], Proposition 1). Let E = {u ∈ W 1,p(Ω) :
∫

Ω u(x)dx = 0}
and p > 1. Then W 1,p(Ω) = R

⊕
E and there exists a number λ̄ such that∫

Ω
|∇u|pdx ≥ λ̄

∫
Ω
|u|pdx

for all 0 6= u ∈ E. And the λ̄ can be supposed to be the biggest constant
satisfying the above inequality throughout this paper.

Lemma 2.2 ([12], Proposition 2, and see [7]). There exists a positive constant
cp such that

(|x|p−2x− |y|p−2y, x− y) ≥ cp|x− y|p

for any x, y ∈ RN .

Remark 2.1. Note that in Lemma 2.2, let y = 0 one has that cp ≤ 1.

Lemma 2.3 ([12], Proposition 3). If the sequence {un} converges weakly to u
in W 1,p(Ω) and p > N. Then {un} converges to u uniformly in Ω.

Lemma 2.4 ([12], in Theorem 1). The energy functional ϕ associated to prob-
lem (1.1) is weakly lower semi-continuous on W 1,p(Ω).

For the sake of completeness and the convenience of quotation, here, we
would like to introduce the proof of Lemma 2.4 in detail as in Theorem 1 in
[12].

Proof of Lemma 2.4. It is enough to prove that the functional ω defined by

ω(u) =

∫
Ω
F (x, u(x))dx

is weakly upper semi-continuous. If {un} ⊂ W 1,p(Ω) is such that un ⇀ u in
W 1,p(Ω), then by Lemma 2.3 ‖un − u‖∞ → 0 for n→∞. We claim that∫

Ω
F (x, u(x))dx ≥ lim sup

n→∞

∫
Ω
F (x, un(x))dx.

Otherwise, there exists a positive number ε0 > 0 and a subsequence {unk
} of

{un} such that ∫
Ω
F (x, u(x))dx+ ε0 <

∫
Ω
F (x, unk

(x))dx,
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that is, ∫
Ω
F (x, unk

(x))dx−
∫

Ω
F (x, u(x))dx > ε0

for all positive integer k. On the other hand, since p > N , by the embedding
theorem there exists a constant c such that ‖v‖∞ ≤ c‖v‖ for all v ∈W 1,p(Ω).
Since again ‖un−u‖∞ → 0 for n→∞, there is a constant M1 > 0 such that

|u(x) + s[unk
(x)− u(x)]| ≤M1

for all s ∈ (0, 1), x ∈ Ω and for all nk. Consequently, by the mean value
theorem, one has

|
∫

Ω
F (x, unk

(x))dx−
∫

Ω
F (x, u(x))dx|

= |
∫

Ω

∫ 1

0
f(x, u(x) + s[unk

(x)− u(x)])[unk
(x)− u(x)]dsdx|

≤
∫

Ω

∫ 1

0
|f(x, u(x) + s[unk

(x)− u(x)])| |unk
(x)− u(x)|dsdx

≤ ‖unk
− u‖∞

∫
Ω

[ sup
|t|≤M1

|f(x, t)|]dx

< ε0

for large k, a contradiction proving the assertion. Therefore, ϕ is weakly lower
semi-continuous on W 1,p(Ω).

3. Proofs Of Theorems

Now we can give the proofs of our main results.

Proof of Theorem 1.1. Let W 1,p(Ω) = R
⊕
E, for each v ∈ R, define the

functional Jv(w) : E → R as follows:

Jv(w) = ϕ(v +w) =
1

p

∫
Ω
| 5w|pdx−

∫
Ω
F (x, v +w(x))dx. (3.1)

For any w1, w2 ∈ E, by (i), Lemmas 2.1 and 2.2, there exists some constant
number C > 0 such that
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(J ′v(w1)− J ′v(w2), w1 − w2)

= (ϕ′(v + w1)− ϕ′(v + w2), w1 − w2)

= cp

∫
Ω
| 5 (w1 − w2)|pdx−

∫
Ω

[f(x, v + w1)− f(x, v + w2)] (w1 − w2)dx

≥ cp
∫

Ω
| 5 (w1 − w2)|pdx− (cp − ε)λ

∫
Ω
|w1 − w2|pdt− η

∫
Ω

(w1 − w2)dx

≥ ε
∫

Ω
| 5 (w1 − w2)|pdx

− (cp − ε)[
∫

Ω
| 5 (w1 − w2)|pdx− λ

∫
Ω
|w1 − w2|p]dx

≥ ε
∫

Ω
| 5 (w1 − w2)|pdx

≥ C‖w1 − w2‖p

= ‖w1 − w2‖h(‖w1 − w2‖),

(3.2)

where h(s) = Csp−1 is a strictly increasing function from R+ to R+ such that
h(s)→ +∞ as s→ +∞.

Since ϕ ∈ C1(W 1,p(Ω), R), then Jv(·) ∈ C1(E,R), by (3.2) Jv has at most
one critical point. If J ′v(0) = 0, then Jv has the only critical point w = 0. If
J ′v(0) 6= 0, we claim that Jv(·) is coercive on E. In fact, since

Jv(w) = Jv(0) +

∫ 1

0
〈J ′v(sw), w〉ds

= Jv(0) +

∫ 1

0
〈J ′v(0), w〉ds+

∫ 1

0
〈J ′v(sw)− J ′v(0), w〉ds

≥ Jv(0)− ‖J ′v(0)‖‖w‖+

∫ 1

0
‖w‖h(‖sw‖)ds

By the property of h, we may choose R large enough such that

h(‖sw‖) ≥ 4 ‖J ′v(0)‖ uniformly for ‖w‖ ≥ R, s ∈ [
1

2
, 1].

Therefore
Jv(w) ≥ Jv(0) + ‖J ′v(0)‖ ‖w‖ (3.3)

which implies that Jv(w) → +∞ as ‖w‖ → ∞. Hence Jv is coercive on E.
Moreover, it follows from ϕ(·) is weakly lower semicontinuous that Jv(·) is
weakly lower semicontinuous on E. By Theorem 1.1 in [6] we know that Jv
has a unique critical point which minimize Jv(·). We denote the only critical
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point of Jv(·) by θ(v), then θ(·) is a well defined mapping from R to E and
such that Jv(θ(v)) = minw∈E ϕ(v+w), that is, for all v ∈ R, θ(v) is the unique
critical point for Jv in E such that Jv(θ(v)) = minw∈E ϕ(v + w). Hence

〈J ′v(θ(v)), w〉 = 0

for all w ∈ E.
For each v ∈ R, we set

Ψ(v) = ϕ(v + θ(v)) = min
w∈E

ϕ(v + w).

We shall show that Ψ(v) is continuously differentiable on R and Ψ ′(v) = ϕ′(v+
θ(v))|R for every v ∈ R.

First we prove that θ(·) is a bounded mapping. Otherwise, if there exists
a bounded sequence {vn} in R such that {θ(vn)} is unbounded. By the com-

pactness of {vn} and ϕ ∈ C1(W 1,p(Ω), R), we know ϕ({vn}) is compact, and
hence ϕ({vn}) is bounded, i.e., there exists some C1 > 0 such that

ϕ(vn) ≤ C1, n = 1, 2, · · · . (3.4)

On the other hand, (3.3) implies that

ϕ(vn) ≥ ϕ(vn + θ(vn)) ≥ Jvn(0) + ‖J ′vn(0)‖‖θ(vn)‖ → +∞
as n→∞; which is a contradiction with (3.4).

Next we prove that θ(·) is continuous. Suppose that {vn} in R be such that
vn → v0. By ϕ ∈ C1(W 1,p(Ω), R), and since

J ′vn(θ(v0)) = ϕ′(vn + θ(v0))|E
→ ϕ′(v0 + θ(v0))|E = J ′v0(θ(v0))

and

(J ′vn(θ(v0)), θ(v0)− θ(vn)) =(J ′vn(θ(v0))− J ′vn(θ(vn)), θ(v0)− θ(vn))

≥ C‖θ(v0)− θ(vn)‖p,
one has ‖θ(v0)− θ(vn)‖ → 0. Hence θ : R→ E is a continuous mapping, and
it can be shown as in [11] that Ψ(v) ∈ C1(R,R) and

(Ψ ′(v), z) = (ϕ′(v + θ(v)), z), ∀v, z ∈ R.
For the sake of completeness we reproduce that rather short proof here.
Indeed, for s > 0,

Ψ(v + sz)−Ψ(v)

s
=
ϕ(v + sz + θ(v + sz))− ϕ(v + θ(v))

s

≤ ϕ(v + sz + θ(v))− ϕ(v + θ(v))

s

=

∫ 1

0
〈ϕ′(v + θ(v) + tsz), z〉dt



On existence of nontrivial solutions of Neumann boundary problems 553

In a similar way, we have

Ψ(v + sz)−Ψ(v)

s
≥

∫ 1

0
〈ϕ′(v + θ(v + sz) + tsz), z〉dt

Combining above two inequalities proving the assertions.
Hence it follows from above facts that u ∈W 1,p(Ω) is a critical point of ϕ(·)

if and only if u = v + θ(v) and v is a critical point of Ψ(·) on R.
Condition (ii) implies that ϕ(v) → −∞ (as ‖v‖ → ∞) on R, then one has

by Ψ(v) = ϕ(v + θ(v)) ≤ ϕ(v) that

Ψ(v)→ −∞ as ‖v‖ → ∞.

Hence there exists a v0 ∈ R such that

Ψ(v0) = sup
v∈R

Ψ(v),

so v0 is a critical point of Ψ(·), and hence u = v0 + θ(v0) is a critical point
of ϕ(·). Therefore problem (1.1) has at least a solution with saddle point
character in W 1,p(Ω). Then the rest part is same as in Theorem 1 in [12], we
omit it and complete the proof of Theorem 1.1.

Remark 3.1. From the above proof of Theorem 1.1 we see that no form need
to impose upon the potential function in the process proving the coerciveness,
the method is simple and elegant for proving the coerciveness and is different
from the methods in the others, compare to the proofs in [6-8, 10].

Proof of Theorem 1.2. Under the present conditions, Theorem 1.1 has
showed that there exists v0 ∈ R such that u = v0 + θ(v0) is a solution with
saddle point character in W 1,p(Ω). To show that the solution u in Theorem
1.2 is nontrivial if adding condition (iii), we shall show that θ(t) = 0 for all
t ∈ R such that f(x, t) = 0. For each w ∈ E one has

〈J ′t(θ(t)), w〉 = 〈ϕ′(t+ θ(t)), w〉

=

∫
Ω
| 5 (θ(t))|p−2 5 (θ(t)) · 5wdx−

∫
Ω
f(x, t+ θ(t))wdx

= 0.

Set w = θ(t), hence one has∫
Ω
| 5 (θ(t))|pdx−

∫
Ω
f(x, t+ θ(t)) θ(t)dx = 0.
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That is

0 =

∫
Ω
| 5 (θ(t))|pdx−

∫
Ω
f(x, t+ θ(t)) θ(t)dx

=

∫
Ω
| 5 (θ(t))|pdx−

∫
Ω

[f(x, t+ θ(t))− f(x, t)] θ(t)dx

≥ cp
∫

Ω
| 5 (θ(t))|pdx− (cp − ε)λ

∫
Ω
|θ(t)|pdx− η

∫
Ω
θ(t)dx

≥ C‖θ(t)‖p ≥ 0

which implies that ‖θ(t)‖ = 0, hence θ(t) = 0. Hence by condition (iii) one
has θ(t0) = 0 and θ(0) = 0 and Ψ(t0) − Ψ(0) =

∫
Ω[F (x, 0) − F (x, t0)]dx > 0.

This implies

Ψ(v0) = sup
v∈R

Ψ(v) ≥ Ψ(t0) > Ψ(0).

Hence v0 6= 0 and u = v0 + θ(v0) is a nontrivial critical point of ϕ, and
problem (1.1) has at least one nontrivial solution with saddle point character
in W 1,p(Ω). This completes the proof of Theorem 1.2.

Proof of Theorem 1.3. Similarly, we only need to show that the solution
u in Theorem 1.1 is nontrivial if adding condition (iii), we have showed that
θ(0) = 0 as f(x, 0) = 0, hence Ψ(0) = 0. Since p > N , by the embedding
theorem there exists a constant c such that ‖u‖∞ ≤ c‖u‖ for all u ∈W 1,p(Ω),
then by the continuity of θ(·) there is δ > ρ > 0 such that

0 < ‖ρ+ θ(ρ)‖∞ ≤ δ.

If θ(ρ) = 0, then Ψ(ρ) − Ψ(0) =
∫

Ω[F (x, 0) − F (x, ρ)]dx > 0. If θ(ρ) 6= 0,
then we have

Ψ(ρ)−Ψ(0) = ϕ(ρ+ θ(ρ))− ϕ(0)

=
1

p

∫
Ω
| 5 (θ(ρ))|pdx−

∫
Ω
F (x, ρ+ θ(ρ))dx

≥ 1

p

∫
Ω
| 5 (θ(ρ))|pdx

> 0.

Hence one has

Ψ(v0) = sup
v∈R

Ψ(v) ≥ Ψ(ρ) > Ψ(0).

Then v0 6= 0 and u = v0 + θ(v0) is a nontrivial critical point of ϕ, and
problem (1.1) has at least one nontrivial solution with saddle point character
in W 1,p(Ω). This completes the proof of Theorem 1.3.
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Proof of Theorem 1.4. Let W 1,p(Ω) = R
⊕
E, for each v ∈ R, define the

functional Jv(w) : E → R as follows:

Jv(w) = ϕ(v + w) =
1

p

∫
Ω
| 5 w|pdx−

∫
Ω
F (x, v + w(x))dx.

As same as in Theorem 1.1, we know that for each v ∈ R, there exists a well
defined continuous mapping θ(·) from R to E such that

Jv(θ(v)) = min
w∈E

ϕ(v + w),

and for each v ∈ R, we set

Ψ(v) = ϕ(v + θ(v)) = min
w∈E

ϕ(v + w).

And hence we know that u ∈ W 1,p(Ω) is a critical point of ϕ(·) if and only if
u = v + θ(v) and v is a critical point of Ψ(·) on R.

Moreover, for u = v+w, v ∈ R,w ∈ E, as ‖u‖ → ∞ in W 1,p(Ω) if and only
if |v|+

∫
Ω |5w|

pdx→∞ by Lemma 2.1, and noticing that |a+b|c ≥ |a|c−|bc|
for all real numbers a, b, c, hence for |v| large, by condition (ii) we have

Ψ(v) = ϕ(v + θ(v))

=
1

p

∫
Ω
| 5 (θ(v))|pdx−

∫
Ω
F (x, v + θ(v))dx

≥ 1

p

∫
Ω
| 5 (θ(v))|pdx+

∫
Ω
g(x)|v + θ(v)|dx

≥ 1

p

∫
Ω
| 5 (θ(v))|pdx+

∫
Ω
g(x)|v|dx−

∫
Ω
|g(x)| |θ(v)|dx

≥ 1

p

∫
Ω
| 5 (θ(v))|pdx+ |v|

∫
Ω
g(x)dx− [

∫
Ω
|g(x)|q]

1
q dx− [

∫
Ω
|θ(v)|p]

1
pdx

≥ 1

p

∫
Ω
| 5 (θ(v))|pdx+ c1|v| − c2 − c3[

∫
Ω
| 5 (θ(v))|pdx]

1
p

which implies that Ψ(v)→ +∞ as |v| → ∞, where c1 =
∫

Ω g(x)dx > 0. Hence
there exists a v0 ∈ R such that

Ψ(v0) = inf
v∈R

Ψ(v),

so v0 is a critical point of Ψ(·), and hence u = v0 + θ(v0) is a critical point of
ϕ(·). Moreover, for any z = v + w, v ∈ R,w ∈ E, one has

ϕ(z) = ϕ(v + w) ≥ inf
w∈E

ϕ(v + w) = Ψ(v) ≥ Ψ(v0) = ϕ(u)

Therefore u minimize the energy functional ϕ.
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It is easy to show that this solution u = v0 + θ(v0) is nontrivial if adding
condition (iii). Indeed, we have θ(t0) = 0 and θ(0) = 0 and

Ψ(t0)−Ψ(0) =

∫
Ω

[F (x, 0)− F (x, t0)]dx < 0.

This implies
Ψ(v0) = inf

v∈R
Ψ(v) ≤ Ψ(t0) < Ψ(0).

Hence v0 6= 0 and u = v0 +θ(v0) is a nontrivial critical point of ϕ, and problem
(1.1) has at least one nontrivial solution with correlated property in W 1,p(Ω)
which minimize the energy functional ϕ. This completes the proof of Theorem
1.4.
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