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Abstract. In this paper, we prove some coupled coincidence point theorems for maps

satisfying contractive conditions involving a rational expression in the setting of partially

ordered metric spaces using monotone property instead of the often used mixed monotone

property. We also give some sufficient conditions for the existence and uniqueness of coupled

coincidence points. In particular, it is shown that the results existing in the literature are

extended, generalized, unified and improved by using monotone property. Also, examples

are given to support these improvements. As an application, we give a result of existence

and uniqueness for the solutions of a class of nonlinear integral equations.

1. Introduction

Over the past ten decades, we are witness of flourishing of the field of non-
linear functional analysis and it particular, fixed point theory in variety of
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directions either in the form of deriving new results or applications. In the
journey of fixed point theory, in year 1912, Polish Mathematician, Stephen Ba-
nach [1] introduced the notion of Banach Contraction Principle and achieved
fixed point theorems. The Banach Contraction Principle is one of the corner-
stones in the development of Nonlinear Analysis, in general, and metric fixed
point theory, in particular. This principle was extended and improved in many
directions and various fixed point theorems were established. Two usual ways
for extending and improving the Banach Contraction Principle are obtained
by:

(1) replacing the underlying metric space by certain generalized metric
space;

(2) changing the contraction condition to more general ones.

The Banach contraction principle is a power tool for solving many problems
in applied mathematics and sciences, it has been improved and extended in
many ways. It is well known that the metric fixed point theory is still very
actual, important and useful in all area of Mathematics. It can be applied,
for instance in variational inequalities, optimization, dynamic programming,
approximation theory, etc.

On the other hand, fixed point theory has developed rapidly in metric spaces
endowed with a partial ordering. The first result in this direction was given
by Ran and Reurings [22] who presented its applications to matrix equations.
Subsequently, Nieto and Rodrguez-Lpez [19] extended this result for nonde-
creasing mappings and applied it to obtain a unique solution for a first order
ordinary differential equation with periodic boundary conditions. Thereafter,
several authors obtained many fixed point theorems in ordered metric spaces.
For more details see [8, 9, 14, 18, 20, 25] and the references cited therein.

The study of mixed monotone mapping is an active area of research due
to its wide scope of application. The theory of mixed monotone mapping in
ordered Banach space was extensively investigated in [28]. Guo and Laksh-
mikantham [4] introduced the notion of a coupled fixed point for two mappings.
Bhaskar and Lakshmikantham [3] proved some interesting coupled fixed point
theorems for mappings satisfying a mixed monotone property and coupled
coincidence point in partial ordered metric spaces. Coupled common fixed
point and coincidence point problems were first addressed by Lakshmikan-
tham and Ciric [11] in which the authors extended the work of Bhaskar and
Lakshmikantham [3] by defining the mixed g-monotone property and proved
the existence and uniqueness of a coupled coincidence point for such property
in partially ordered metric spaces. Some of the coupled fixed point results
on mixed monotone property can be seen in the papers [2, 5, 6, 7], [12]-[18],
[23]-[27].
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Recently, Radenović [21] introduced a notion of monotone mappings and
derived coupled fixed results without use of mixed monotone property. After
that Kadelburg and Kumam [10] proved common coupled fixed point theorems
for Geraghty-type contraction mappings using this property.

Motivated with the notion of monotone mappings, we establish two coupled
coincidence point results for mappings F : X × X → X and g : X → X for
two different form of contraction conditions involving rational terms in the
frame of partially ordered metric space using monotone property. Examples
are given in support of results and it is showed that it is distinguish from the
results having mixed monotone property. Basically in first result compatibility
of F and g is taken on the condition of continuity and closeness of g, while in
second result w∗-compatible is assumed with completeness of g in X. Finally
we apply the obtained result to investigate the existence of unique solutions
to a class of nonlinear integral equations.

2. Preliminaries

We recall the following definitions used throughout the paper.

Definition 2.1. Let X be a nonempty set. Then (X, d,�) is called an ordered
metric space iff

(i) (X, d) is a metric space,
(ii) (X,�) is a partial order.

Definition 2.2. Let (X,�) be a partially ordered set. Let F : X ×X → X
and g : X → X. Then for all x, y ∈ X

(1) X is comparable if x � y or y � x holds.
(2) F is said to have the mixed monotone property if F (x, y) is monotone

nondecreasing in x and is monotone nonincreasing in y; that is

x1, x2 ∈ X, (x1 � x2)⇒ F (x1, y) � F (x2, y)

and
y1, y2 ∈ X, (y1 � y2)⇒ F (x, y1) � F (x, y2).

(3) F is said to have the mixed g-monotone property if F (x, y) is monotone
g-nondecreasing in x in its first argument and is monotone g-non-
increasing in y in its second argument; that is; for any x, y ∈ X,

g(x1) � g(x2)⇒ F (x1, y) � F (x2, y) for all x1, x2 ∈ X
and

g(y1) � g(y2)⇒ F (x, y1) � F (x, y2) for all y1, y2 ∈ X.
Note that if g is the identity mapping, then F is said to have the mixed
monotone property.
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(4) X is regular, if
(a) a non-decreasing sequence {xn} holds d(xn, x) imply 0, then xn �

x for all n, and
(b) a non-decreasing sequence {yn} holds d(yn, y) imply 0, then yn �

y for all n.
(5) F : X×X → X is said to have monotone property ([21]) if the following

two conditions are satisfied:

(∀x1, x2, y ∈ X) x1 � x2 ⇒ F (x1, y) � F (x2, y),

(∀x, y1, y2 ∈ X) y1 � y2 ⇒ F (x, y1) � F (x, y2).

(6) F is said to have the g-monotone property ([10]) if F is monotone
g-nondecreasing in both of its arguments, that is, x, y ∈ X,

g(x1) � g(x2)⇒ F (x1, y) � F (x2, y) for all x1, x2 ∈ X
and

g(y1) � g(y2)⇒ F (x, y1) � F (x, y2) for all y1, y2 ∈ X.
Note that if g is the identity mapping, then F is said to have the
monotone property.

Definition 2.3. ([4, 24]) Let X be a nonempty set and F : X × X → X,
g : X → X be two mappings. A pair (x, y) ∈ X ×X is called:

(a) a coupled fixed point of F if x = F (x, y) and y = F (y, x);
(b) a coupled coincidence point of mappings g and F if

gx = F (x, y) and gy = F (y, x).

and in this case (gx, gy) is called a coupled point of coincidence;
(c) a common coupled fixed point of mappings g and F if

x = gx = F (x, y) and y = gy = F (y, x).

Definition 2.4. ([17]) Let (X, d) be a metric space, F : X × X → X and
g : X → X. Then, we say that F and g are compatible if

d(gF (xn, yn), F (gxn, gyn))→ 0 and

d(gF (yn, xn)), F (gyn, gxn))→ 0, as n→∞
whenever {xn} and {yn} are sequences in X, such that

lim
n→∞

F (xn, yn) = lim
n→∞

g(xn) = x and lim
n→∞

F (yn, xn) = lim
n→∞

g(yn) = y

for all x, y ∈ X.

Definition 2.5. Let X be a nonempty set. Mappings F : X ×X → X and
g : X → X are said to be
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(W1) w-compatible if gF (x, y) = F (gx, gy) whenever gx = F (x, y) and gy =
F (y, x);

(W2) w
∗-compatible if gF (x, x) = F (gx, gx) whenever gx = F (x, x).

It is note that F and g may be w∗-compatible but not w-compatible.

3. Result-I

Now we are standing in a position to prove our first main result.

Theorem 3.1. Let (X, d,�) be a complete partially ordered metric space. Let
F : X ×X → X and g : X → X be mappings such that F has the g-monotone
property. Suppose that the following hold:

(i) g is continuous and g(X) is closed;
(ii) F (X ×X) ⊆ g(X) and g and F are compatible;

(iii) there exist x0, y0 ∈ X such that g(x0) � F (x0, y0) and g(y0) � F (y0, x0);
(iv) there exists α, β, γ, δ ≥ 0 with α+β+2γ+2δ < 1 for all (x, y), (u, v) ∈

X × X satisfying g(x) � g(u) and g(y) � g(v) (or g(x) � g(u) and
g(y) � g(v)),

d(F (x, y), F (u, v)) (3.1)

≤ α

2
[d(gx, gu) + d(gy, gv)] + βM((x, y), (u, v))

+
γ

2
[d(gx, F (x, y)) + d(gu, F (u, v)) + d(gy, F (y, x)) + d(gv, F (v, u))]

+
δ

2
[d(gx, F (u, v)) + d(gy, F (v, u)) + d(gu, F (x, y)) + d(gv, F (y, x))],

where

M((x, y), (u, v)) (3.2)

= min

{
d(gx, F (x, y))

2 + d(gu, F (u, v)) + d(gv, F (v, u))

2 + d(gx, gu) + d(gy, gv)
,

d(gu, F (u, v))
2 + d(gx, F (x, y)) + d(gy, F (y, x))

2 + d(gx, gu) + d(gy, gv)

}
;

(v) F is continuous.

Then there exists x̄, ȳ ∈ X, gx̄ = F (x̄, ȳ) and gȳ = F (ȳ, x̄), that is, F and g
have a coupled coincidence point (x̄, ȳ) ∈ X ×X.

Proof. Starting from x0, y0 by condition(iii) and using that F (X×X) ⊆ g(X)
(condition (ii)), we can choose x1, y1 ∈ X such that g(x1) = F (x0, y0) and
g(y1) = F (y0, x0). Then g(x0) � g(x1) and g(y0) � g(y1). Analogously, there
exist x2, y2 ∈ X such that g(x2) = F (x1, y1) and g(y2) = F (y1, x1).
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Continuing the above procedure, we can construct two sequences {xn} and
{yn} in X such that

F (xn, yn) = g(xn+1) and F (yn, xn) = g(yn+1)

for all n ∈ {0, 1, 2, . . .}. Now by induction, we prove that

g(xn) � g(xn+1) and g(yn) � g(yn+1). (3.3)

By using g-monotone property of F and g, we have

g(x2) = F (x1, y1) � F (x0, y1) � F (x0, y0) � g(x1)

and

g(y2) = F (y1, x1) � F (y0, x1) � F (y0, x0) � g(y1)

for all n ≥ 0. Since g(x2) � g(x1) and g(y2) � g(y1), so the initial step of
the induction is true. Suppose that (3.3) holds. Then using the g-monotone
property of F and (3.3), we obtain, for n = 1, 2, . . . ,

g(xn+1) = F (xn, yn) � F (xn+1, yn) � F (xn+1, yn+1) = g(xn+2),

and consequently g(xn+1) � g(xn+2). Similarly, we can show that g(yn+1) �
g(yn+2). In general, we conclude that

g(xn) � g(xn+1) and g(yn) � g(yn+1) for all n ≥ 0.

Thus by the mathematical induction, we conclude that (3.3) holds for all n ≥ 0.
We easily check

g(x0) � g(x1) � g(x2) � · · · � g(xn+1) � · · · (3.4)

and

g(y0) � g(y1) � g(y2) � · · · � g(yn+1) � · · · . (3.5)

If g(xn+1) = g(xn) and g(yn+1) = g(yn) for some n, then F (xn, yn) = g(xn)
and F (yn, xn) = g(yn), hence (gxn, gyn) is a coupled coincidence point of F
and g. Suppose, further, that

g(xn) 6= g(xn+1) or g(yn) 6= g(yn+1) for each n ∈ N0.

Now, we claim that, for n ∈ N0,

d(g(xn+1), g(xn)) + d(g(yn+1), g(yn)) (3.6)

≤
(

α+ γ + δ

1− β − γ − δ

)n
[d(g(x1), g(x0)) + d(g(y1), g(y0))].
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Indeed, for n = 1, using g(x1) � g(x0), g(y1) � g(y0) and (3.1), we get:

d(g(x2), g(x1)) (3.7)

= d(F (x1, y1), F (x0, y0))

≤ α

2
[d(g(x1), g(x0)) + d(g(y1), g(y0))] + βM((x1, y1), (x0, y0))

+
γ

2
[d(g(x1), F (x1, y1)) + d(g(x0), F (x0, y0)) + d(g(y1), F (y1, x1))

+ d(g(y0), F (y0, x0))]

+
δ

2
[d(g(x1), F (x0, y0)) + d(g(y1), F (y0, x0)) + d(g(x0), F (x1, y1))

+ d(g(y0), F (y1, x1))]

≤ α

2
[d(g(x0), g(x1)) + d(g(y0), g(y1))]

+ βd(g(x1), F (x1, y1))
2 + d(g(x0), F (x0, y0)) + d(g(y0), F (y0, x0))

2 + d(g(x0), g(x1)) + d(g(y0), g(y1))

+
γ

2
[d(g(x1), g(x2)) + d(g(x0), g(x1)) + d(g(y1), g(y2)) + d(g(y0), g(y1))]

+
δ

2
[d(g(x1), g(x1)) + d(g(y1), g(y1)) + d(g(x0), g(x2)) + d(g(y0), g(y2))]

≤ α

2
[d(g(x0), g(x1)) + d(g(y0), g(y1))] + βd(g(x1), g(x2))

+
γ + δ

2
[d(g(x0), g(x1)) + d(g(y0), g(y1)) + d(g(x1), g(x2)) + d(g(y1), g(y2))].

Similarly, using that

d(g(y2), g(y1)) = d(F (y1, x1), F (y0, x0)) = d(F (y0, x0), F (y1, x1))

and

M((x1, y1), (x0, y0))

≤ d(g(y1), F (y1, x1))
2 + d(g(y0), F (y0, x0)) + d(g(x0), F (x0, y0))

2 + d(g(y0), g(y1)) + d(g(x0), g(x1))

= d(g(y1), g(y2)),

we get

d(g(y2), g(y1)) ≤
α

2
[d(g(x0), g(x1)) + d(g(y0), g(y1))] + βd(g(y1), g(y2)) (3.8)

+
γ + δ

2
[d(g(x0), g(x1)) + d(g(y0), g(y1))

+ d(g(x1), g(x2)) + d(g(y1), g(y2))].
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Adding (3.7) and (3.8), we have

d(g(x2), g(x1)) + d(g(y2), g(y1))

≤
(

α+ γ + δ

1− β − γ − δ

)
[d(g(x0), g(x1)) + d(g(y0), g(y1))].

In a similar way, proceeding by induction, if we assume that (3.6) holds, we
get that

d(g(xn+2), g(xn+1)) + d(g(yn+2), g(yn+1))

≤
(

α+ γ + δ

1− β − γ − δ

)
[d(g(xn+1), g(xn)) + d(g(yn+1), g(yn))]

≤
(

α+ γ + δ

1− β − γ − δ

)n+1

[d(g(x0), g(x1)) + d(g(y0), g(y1))].

Hence, by induction, (3.6) is proved.
Set

hn := d(g(xn), g(xn+1)) + d(g(yn), g(yn+1)), n ∈ N
and ∆ := α+γ+δ

1−β−γ−δ < 1. Then, the sequence {hn} is decreasing and

hn ≤ ∆nh0

which implies that

lim
n→∞

hn = lim
n→∞

[d(g(xn), g(xn+1)) + d(g(yn), g(yn+1))] = 0.

Thus,

lim
n→∞

d(g(xn), g(xn+1)) = 0 and lim
n→∞

d(g(yn), g(yn+1)) = 0.

We shall prove that {g(xn)} and {g(yn)} are Cauchy sequences. By assumption
(3.4), hn > 0 for n ∈ N0. Then, for each n ≥ m we have

d(g(xn), g(xm))

≤ d(g(xn), g(xn−1)) + d(g(xn−1), g(xn−2)) + · · ·+ d(g(xm+1), g(xm))

and

d(g(yn), g(ym))

≤ d(g(yn), g(yn−1)) + d(g(yn−1), g(yn−2)) + · · ·+ d(g(ym+1), g(ym)).

Therefore,

d(g(xn), g(xm)) + d(g(yn), g(ym)) ≤ hn−1 + hn−2 + · · ·+ hm

≤ (∆n−1 + ∆n−2 + · · ·+ ∆m)h0

≤ ∆m

1−∆
h0
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which implies that

lim
m,n→∞

[d(g(xn), g(xm)) + d(g(yn), g(ym))] = 0.

This imply that {g(xn)} and {g(yn)} are cauchy sequences in X since 0 ≤
∆ < 1. Since g(X) is a closed subset of a complete metric space, there exists
x̄, ȳ ∈ g(X) such that

lim
n→∞

F (x̄n, ȳn)= lim
n→∞

g(x̄n)= x̄ and lim
n→∞

F (ȳn, x̄n)= lim
n→∞

g(ȳn) = ȳ. (3.9)

Using (3.9) and the continuity of g, we get

lim
n→∞

g(g(x̄n)) = gx̄ and lim
n→∞

g(g(ȳn)) = gȳ. (3.10)

From g(x̄n+1) = F (x̄n, ȳn) and g(ȳn+1) = F (ȳn, x̄n), and by condition (ii), the
compatibility of F and g, we have

lim
n→∞

d(g(F (xn, yn)), F (g(xn), g(yn))) = 0,

lim
n→∞

d(g(F (yn, xn)), F (g(yn), g(xn))) = 0.
(3.11)

Now, we claim that (x̄, ȳ) is a coupled coincidence point of F and g.
Passing to the limit as n → ∞ in (3.11), by using (3.9), (3.10) and the

continuity of F we get

g(x̄) = lim
n→∞

g(g(x̄n+1)) = lim
n→∞

F (g(x̄n), g(ȳn))

= F ( lim
n→∞

(gx̄n), lim
n→∞

(gȳn)) = F (x̄, ȳ),

g(ȳ) = lim
n→∞

g(g(ȳn+1)) = lim
n→∞

F (g(ȳn), g(x̄n))

= F ( lim
n→∞

(gȳn), lim
n→∞

(gx̄n)) = F (ȳ, x̄).

Thus, we proved that gx̄ = F (x̄, ȳ) and gȳ = F (ȳ, x̄). This completes the
proof of the theorem. �

Remark 3.2. In Theorem 3.1, the condition that F has the g-monotone
property is a substitution for the g-mixed monotone property that was used
in most of the coupled fixed point results so far. Note that this condition
may be more natural than the mixed g-monotone property and can be used
in various examples.

Remark 3.3. Comparing the conditions in Theorem 3.1 and Theorem 2.3 of
Nashine and Zoran [18], we see that our result is a generalization of Theorem
2.3 in [18].
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If g = IX , the identity mapping in Theorem 3.1, then we deduce the follow-
ing result of coupled fixed point.

Corollary 3.4. Let (X, d,�) be a complete partially ordered metric space. Let
F : X ×X → X has the monotone property. Suppose that the following hold:

(i) F is continuous;
(ii) there exist x0, y0 ∈ X such that x0 � F (x0, y0) and y0 � F (y0, x0);

(iii) there exists α, β, γ, δ ≥ 0 for all (x, y), (u, v) ∈ X satisfying x � u and
y � v ( or x � u and y � v),

d(F (x, y), F (u, v))

≤ α

2
[d(x, u) + d(y, v)] + βM((x, y), (u, v))

+
γ

2
[d(x, F (x, y)) + d(u, F (u, v)) + d(y, F (y, x)) + d(v, F (v, u))]

+
δ

2
[d(x, F (u, v)) + d(y, F (v, u)) + d(u, F (x, y)) + d(v, F (y, x))],

where

M((x, y), (u, v))

= min

{
d(x, F (x, y))

2 + d(u, F (u, v)) + d(v, F (v, u))

2 + d(x, u) + d(y, v)
,

d(u, F (u, v))
2 + d(x, F (x, y)) + d(y, F (y, x))

2 + d(x, u) + d(y, v)

}
with α+ β + 2γ + 2δ < 1.

Then there exists x0, y0 ∈ X, x = F (x, y) and y = F (y, x), that is, F has a
coupled fixed point.

By choosing α, β, γ and δ suitably, one can deduce some corollaries from
Theorem 3.1. For example, if we take β = δ = 0 in Theorem 3.1, then we
obtain the following corollary.

Corollary 3.5. Let (X, d,�) be a complete partially ordered metric space.
Let F : X ×X → X and g : X → X be two mapping having the g-monotone
property. Suppose that the following hold:

(i) g is continuous and g(X) is closed;
(ii) F (X ×X) ⊆ g(X) and g and F are compatible;

(iii) there exist x0, y0 ∈ X such that g(x0) � F (x0, y0) and g(y0) � F (y0, x0);
(iv) there exists α, γ,≥ 0 with α + 2γ < 1, for all (x, y), (u, v) ∈ X × X

satisfying g(x) � g(u) and g(y) � g(v),
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d(F (x, y), F (u, v))

≤ α

2
[d(gx, gu) + d(gy, gv)]

+
γ

2
[d(gx, F (x, y)) + d(gu, F (u, v)) + d(gy, F (y, x)) + d(gv, F (v, u))]

holds true. Then there exists x0, y0 ∈ X, gx = F (x, y) and gy = F (y, x), that
is, F and g have a coupled coincidence point (x̄, ȳ) ∈ X ×X.

Theorem 3.6. Let (X, d,�) be a partially ordered complete metric space. Let
F : X ×X → X and g : X → X be mappings such that F has the g-monotone
property on X. Suppose that the following hold:

(i) g is continuous and g(X) is closed;
(ii) F (X ×X) ⊆ g(X) and g and F are compatible;

(iii) there exist x0, y0 ∈ X such that g(x0) � F (x0, y0) and g(y0) � F (y0, x0);
(iv) there exists α, β, γ, δ ≥ 0 with α+β+2γ+2δ < 1, for all (x, y), (u, v) ∈

X ×X satisfying g(x) � g(u) and g(y) � g(v),

d(F (x, y), F (u, v)) (3.12)

≤ α

2
[d(gx, gu) + d(gy, gv)] + βM((x, y), (u, v))

+
γ

2
[d(gx, F (x, y)) + d(gu, F (u, v)) + d(gy, F (y, x)) + d(gv, F (v, u))]

+
δ

2
[d(gx, F (u, v)) + d(gy, F (v, u)) + d(gu, F (x, y)) + d(gv, F (y, x))]

where

M((x, y), (u, v))

= min

{
d(gx, F (x, y))

2 + d(gu, F (u, v)) + d(gv, F (v, u))

2 + d(gx, gu) + d(gy, gv)
,

d(gu, F (u, v))
2 + d(gx, F (x, y)) + d(gy, F (y, x))

2 + d(gx, gu) + d(gy, gv)

}
holds true. Finally, we assume that X has the following properties:

(a) if a nondecreasing sequence {xn} in X converges to x ∈ X, then gxn �
gx for all n,

(b) if a non nondecreasing sequence {yn} in X converges to y ∈ X, then
gyn � gy for all n.

Then, F and g have coupled coincidence point (x̄, ȳ) ∈ X ×X.
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Proof. Following the proof of Theorem 3.1, we only have to show that (gx̄, gȳ)
is a coupled coincidence point of F and g. We have

d(F (x̄, ȳ), gx̄) ≤ d(F (x̄, ȳ), gxn+1) + d(gxn+1, gx̄) (3.13)

= d(F (x̄, ȳ), F (xn, yn)) + d(gxn+1, gx̄).

Since the nondecreasing sequence {xn} converges to x̄ and the nondecreasing
sequence {yn} converges to ȳ, by (a)–(b), we have:

gx̄ � gxn and gȳ � gyn, ∀n.

Now, from the contractive condition (3.1), we have:

d(F (x̄, ȳ), F (xn, yn))

≤ α

2
[d(gx̄, gxn) + d(gȳ, gyn)] + βM((x̄, ȳ), (xn, yn))

+
γ

2
[d(gx̄, F (x̄, ȳ)) + d(gxn, F (xn, yn)) + d(gȳ, F (ȳ, x̄)) + d(gyn, F (yn, xn))]

+
δ

2
[d(gx̄, F (xn, yn)) + d(gȳ, F (yn, xn)) + d(gxn, F (x̄, ȳ)) + d(gyn, F (ȳ, x̄))]

≤ α

2
[d(gx̄, gxn) + d(gȳ, gyn)]

+ βd(gx̄, F (x̄, ȳ))
2 + d(gxn, gxn+1) + d(gyn, gyn+1)

2 + d(gx̄, gxn) + d(gȳ, gyn)

+
γ

2
[d(gx̄, F (x̄, ȳ)) + d(gxn, gxn+1) + d(gȳ, F (ȳ, x̄)) + d(gyn, gyn+1)]

+
δ

2
[d(gx̄, gxn+1) + d(gȳ, gyn+1) + d(gxn, F (x̄, ȳ)) + d(gyn, F (ȳ, x̄))].

Then, from (3.13), we get:

d(F (x̄, ȳ), gx̄))

≤ d(gxn+1, gx̄) +
α

2
[d(gx̄, gxn) + d(gȳ, gyn)]

+ βd(gx̄, F (x̄, ȳ))
2 + d(gxn, gxn+1) + d(gyn, gyn+1)

2 + d(gx̄, gxn) + d(gȳ, gyn)

+
γ

2
[d(gx̄, F (x̄, ȳ)) + d(gxn, gxn+1) + d(gȳ, F (ȳ, x̄)) + d(gyn, gyn+1)]

+
δ

2
[d(gx̄, gxn+1) + d(gȳ, gyn+1) + d(gxn, F (x̄, ȳ)) + d(gyn, F (ȳ, x̄))].

Passing to the limit as n→∞, we have

d((F (x̄, ȳ), gx̄)) ≤ βd(gx̄, F (x̄, ȳ))

+
γ + δ

2
[d(gx̄, F (x̄, ȳ)) + d(gȳ, F (ȳ, x̄))].

(3.14)
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Similarly,

d(gȳ, F (ȳ, x̄)) ≤ βd(gȳ, F (ȳ, x̄))

+
γ + δ

2
[d(gx̄, F (x̄, ȳ)) + d(gȳ, F (ȳ, x̄))].

(3.15)

Adding (3.14) and (3.15), we have

d(gx̄, F (x̄, ȳ)) + d(gȳ, F (ȳ, x̄))

≤ (β + γ + δ)[d(gx̄, F (x̄, ȳ)) + d(gȳ, F (ȳ, x̄))]

≤ (α+ β + 2γ + 2δ)[d(gx̄, F (x̄, ȳ)) + d(gȳ, F (ȳ, x̄))].

Since 0 ≤ α+β+2γ+2δ < 1, we obtain d(F (x̄, ȳ), gx̄) = 0 and d(gȳ, F (ȳ, x̄)),
i.e., F (x̄, ȳ) = gx̄ and F (ȳ, x̄) = gȳ. This completes the proof of the theorem.

�

Now we shall prove a uniqueness theorem for the coupled coincidence point.
Note that, if (X,�) is a partially ordered set, then we endow the product space
X ×X with the following partial order:

for (x, y), (u, v) ∈ X ×X, (u, v) � (x, y)⇔ gx � gu, gy � gv.

Theorem 3.7. Assume that

∀(x, y), (x∗, y∗) ∈ X ×X, ∃ (u, v) ∈ X ×X such that (3.16)

(F (u, v), F (v, u)) is comparable to (F (x̄, ȳ), F (ȳ, x̄)) and (F (x∗, y∗), F (y∗, x∗)).
Then F and g have unique coupled coincidence point that is there exists a
unique (x, y) ∈ X × X such that gx̄ = F (x̄, ȳ) and gȳ = F (ȳ, x̄), gx∗ =
F (x∗, y∗) and gy∗ = F (y∗, x∗).

Adding (3.16) to the hypotheses of Theorem 3.1, we obtain the uniqueness
of the coupled coincidence point of F and g.

Proof. From Theorem 3.1 we know that there exists the set of coupled coin-
cidence point of F and g is non empty. Suppose that (gx̄, gȳ) and (gx∗, gy∗)
are coupled coincidence point of F and g, that is gx̄ = F (x̄, ȳ) and gȳ =
F (ȳ, x̄), gx∗ = F (x∗, y∗) and gy∗ = F (y∗, x∗) which is obtained as gx̄ =
limn→∞ F

n(x0, y0) and gȳ = limn→∞ F
n(y0, x0). Then we have to show that

d(gx̄, gx∗) + d(gȳ, gy∗) = 0. (3.17)

implies that gx̄ = gx∗ and gȳ = gy∗. We distinguish two cases.

Case I: (F (x̄, ȳ), F (ȳ, x̄)) is comparable with (F (x∗, y∗), F (y∗, x∗)) with re-
spect to the ordering in X ×X. Let, e.g., gx̄ � gx∗ and gȳ � gy∗. Then, we
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can apply the contractive condition (3.1) to obtain

d(gx̄, gx∗) = d(F (x̄, ȳ), F (x∗, y∗))

≤ α

2
[d(gx̄, gx∗) + d(gȳ, gy∗)] + δ[d(gx̄, gx∗) + d(gȳ, gy∗)],

and

d(gȳ, gy∗) = d(F (ȳ, x̄), F (y∗, x∗)) = d(F (y∗, x∗), F (ȳ, x̄))

≤ α

2
[d(gx̄, gx∗) + d(gȳ, gy∗)] + δ[d(gx̄, gx∗) + d(gȳ, gy∗)].

Adding up, we get that

d(gx̄, gx∗) + d(gȳ, gy∗) ≤ (α+ 2δ)[d(gx̄, gx∗) + d(gȳ, gy∗)].

Since 0 ≤ α+ 2δ < 1, (3.17) holds.

Case II: (F (x̄, ȳ), F (ȳ, x̄)) is not comparable with (F (x∗, y∗), F (y∗, x∗)). In
this case, by assumption there exists (u, v) ∈ X × X that is comparable
both to (F (x̄, ȳ), F (ȳ, x̄)) and (F (x∗, y∗), F (y∗, x∗)). Then, for all n ∈ N,
(Fn(u, v), Fn(v, u)) is comparable both to (Fn(x̄, ȳ), Fn(ȳ, x̄)) = (gx̄, gȳ) and
(Fn(x∗, y∗), Fn(y∗, x∗)) = (gx∗, gy∗). We have

d(gx̄, gx∗) + d(gȳ, gy∗)

= d(Fn(x̄, ȳ), Fn(x∗, y∗)) + d(Fn(ȳ, x̄), Fn(y∗, x∗))

≤ d(Fn(x̄, ȳ), Fn(u, v)) + d(Fn(u, v), Fn(x∗, y∗))

+ d(Fn(ȳ, x̄), Fn(v, u)) + d(Fn(v, u), Fn(y∗, x∗))

≤ (αn + 2δn)[d(gx̄, u) + d(gȳ, v) + d(gx∗, u) + d(gy∗, v)].

Since 0 < α, δ < 1, (3.17) holds. We deduce that in all cases (3.17) holds. Thus
we obtained (gx̄, gȳ) = (gx∗, gy∗). This implies that gx̄ = gx∗ and gȳ = gy∗

and the uniqueness of the coupled coincidence point of F and g is proved. �

If g = I, the identity mapping in Theorem 3.7, then we deduce the following
corollary.

Corollary 3.8. In addition to the hypotheses of Corollary 3.4, ∀(x, y), (x∗, y∗) ∈
X×X, ∃ (u, v) ∈ X×X such that (F (u, v), F (v, u)) is comparable to (F (x̄, ȳ),
F (ȳ, x̄)) and (F (x∗, y∗), F (y∗, x∗)). Then F has a unique coupled fixed point
that is there exists a unique (x, y) ∈ X × X such that x̄ = F (x̄, ȳ) and
ȳ = F (ȳ, x̄), x∗ = F (x∗, y∗) and y∗ = F (y∗, x∗).

Theorem 3.9. In addition to the hypotheses of Theorem 3.1 (resp. Theorem
3.6), suppose that x0, y0 in X are comparable. Then gx̄ = gȳ.
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Proof. Suppose that gx0 � gy0. We claim that

gxn � gyn, ∀n ∈ N. (3.18)

From the monotone property of F and g, we have

gx1 = F (x0, y0) � F (y0, y0) � F (y0, x0) = gy1.

Assume that gxn � gyn for some n. Now,

gxn+1 = Fn+1(x0, y0) = F (Fn(x0, y0), F
n(y0, x0))

= F (xn, yn) � F (yn, yn) � F (yn, xn) = gyn+1.

Hence, (3.18) holds.
Now, using (3.18) and the contractive condition, we get

d(gx̄, gȳ)

≤ d(gx̄, gxn+1) + d(gxn+1, gyn+1) + d(gyn+1, gȳ)

= d(gx̄, gxn+1) + d(F (yn, xn), F (xn, yn)) + d(gyn+1, gȳ)

≤ d(gx̄, gxn+1) + d(gyn+1, gȳ) + αd(gxn, gyn) + βM((yn, xn), (xn, yn))

+
γ

2
[d(gxn, F (xn, yn)) + d(gyn, F (yn, xn)) + d(gyn, F (yn, xn))

+ d(gxn, F (xn, yn)))]

+
δ

2
[d(gxn, F (yn, xn)) + d(gyn, F (xn, yn)) + d(gyn, F (xn, yn))

+ d(gxn, F (yn, xn))]

≤ d(gx̄, gxn+1) + d(gyn+1, gȳ) + αd(gxn, gyn)

+ βd(gyn, gyn+1)
2 + d(gxn, gxn+1) + d(gyn, gyn+1)

2 + 2d(gyn, gxn)

+ γ[d(gxn, gxn+1) + d(gyn, gyn+1)] + δ[d(gxn, gyn+1) + d(gyn, gxn+1)]

≤ d(gx̄, gxn+1) + d(gyn+1, gȳ) + αd(gxn, gyn)

+ βd(gyn, gyn+1)[2 + d(gxn, gxn+1) + d(gyn, gyn+1)]

+ γ[d(gxn, gxn+1) + d(gyn, gyn+1)] + δ[d(gxn, gyn+1) + d(gyn, gxn+1)].

Passing to the limit as n→∞, we get that

d(gx̄, gȳ) ≤ (α+ 2δ)d(gx̄, gȳ).

Since 0 ≤ α + 2δ < 1, this implies that d(gx̄, gȳ) = 0, i.e., gx̄ = gȳ. This
completes the proof of the theorem. �

We illustrate our results by the following example which also distinguishes
these result from the known ones.



628 A. Gupta and H. K. Nashine

Example 3.10. Let X = [0,+∞). Then (X,�) is a partially ordered set
with the standard metric of real numbers. Let d(x, y) = |x− y| for x, y ∈ X.

Define g : X → X by g(x) = x2

8min{α,β,γ,δ} with 0 < α + β + 2γ + 2δ < 1, and

the continuous mapping F : X ×X → X given by

F (x, y) =

{
x2−y2

8 , if x ≥ y
0, if x < y.

Denote min{α, β, γ, δ} = λ. By routine calculations, the reader can easily
verify that the following assumptions hold:

(i) F and g is continuous and g(X) is closed;
(ii) F (X ×X) ⊆ g(X);

Here, we show only that F has the g-monotone property and F and g are
compatible and condition (3.1) in Theorem 3.1 is satisfied for all real numbers.

• Condition (3.1) holds, for all (x, y), (u, v) ∈ X ×X with g(x) � g(u)
and g(y) � g(v) or g(x) � g(u) and g(y) � g(v).

Let α, β, γ, δ > 0 be nonnegative numbers satisfying 1
2 ≤ α < 1 with α+β+

2γ+2δ < 1, and denote by L and R, respectively, the left-hand and right-hand
side of contraction condition (3.1).

Let x, u, y, v ∈ [0, 1] and hence gx � gu, gy � gv and using that x+ y ≤ 1
and u+ v ≤ 1. We get that in each case

L ≤ x2 − y2

8
≤
∣∣∣∣x− y8

∣∣∣∣ ≤ α

2
[d(gx, gu) + d(gy, gv)] ≤ R.

Consider the following four cases.

Case I: If x ≤ y and u ≤ v, and we have For example, if 0 � u � x � y � v � 1
then

L = d(F (x, y), F (u, v)) = d

(
x2 − y2

8
,
u2 − v2

8

)
= d(0, 0) = 0 ≤ R

we get L = 0 and the contractive condition is trivially satisfied.

Case II: If x > y and u ≤ v, (and hence y ≤ u ≤ v ≤ x), then we have

L = d(F (x, y), F (u, v)) = d

(
x2 − y2

8
, 0

)
=
x2 − y2

8
≤
∣∣∣∣x− y8

∣∣∣∣ ≤ R
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Case III: If x > y and u > v, without loss of generality we suppose x = u > 1,
and then we have

L = d

(
x2 − y2

8
,
u2 − v2

8

)
=
x2 − y2

8
− x2 − v2

8

=

∣∣∣∣x2 − y2 − x2 + v2

8

∣∣∣∣ =

∣∣∣∣v2 − y28

∣∣∣∣ ≤ ∣∣∣∣v − y8

∣∣∣∣
≤ α

2
[d(gx, gu) + d(gy, gv)] ≤ R,

since 1
2 ≤ α < 1.

Case IV: If x ≤ y and u > v, (and hence x ≤ v < u ≤ y).
Then also we get L ≤ R and obviously condition is satisfied.

L = d(F (x, y), F (u, v)) = d

(
0,
u2 − v2

8
,

)
=
u2 − v2

8
≤
∣∣∣∣u− v8

∣∣∣∣
≤ α

2
[d(gx, gu) + d(gy, gv)] ≤ R

Thus condition (3.1) holds in all the cases. Hence by Theorem 3.1, F and g
have a coupled coincidence point (0, 0) ∈ X×X. (Moreover, (0, 0) is a coupled
common fixed point of F and g).

• Now we prove that F and g are compatible.

lim
n→∞

F (xn, yn) = lim
n→∞

g(xn) = x ∈ X. (3.19)

and
lim
n→∞

F (yn, xn) = lim
n→∞

g(yn) = y ∈ X. (3.20)

We have to prove that{
limn→∞ d(gF (xn, yn), F (gxn, gyn)) = 0,
limn→∞ d(gF (yn, xn), F (gyn, gxn)) = 0.

(3.21)

We claim that (x, y) = (0, 0). From (3.19) and (3.20) and the definition of
F , we get

lim
n→∞

F (yn, xn) = lim
n→∞

g(yn) = y.

From the definition of g, this implies that

lim
n→∞

g(yn) = lim
n→∞

y2n
8

=
y

8
.

that is,
lim
n→∞

yn = y (3.22)

Now, using (3.19) and the definition of F , we obtain

lim
n→∞

F (xn, yn) = lim
n→∞

(x2n − y2n)

8
= lim

n→∞

x2n
8

= x.
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From (3.19) and the definition of g, we have

lim
n→∞

x2n
8λ

= x.

Uniqueness of the limit, implies that

8x = 8λx,

that is,

(1− λ)x = 0.

Since 0 < λ < 1, Then, x = 0. Similarly, one can also show that y = 0. Then,
we have

lim
n→∞

F (xn, yn) = lim
n→∞

g(xn) = lim
n→∞

F (yn, xn) = lim
n→∞

g(yn) = 0. (3.23)

Now, (3.21) follows immediately from (3.23), the continuity of F , the conti-
nuity of g and the continuity of d. Thus we proved that F and g are compatible.

Also, for all x, y ∈ X F and g do not commute. Hence, Theorem 2.1 of
Lakshmikantham and Cirić in [11] cannot be applied to this example.

Example 3.11. Let X = R with the usual metric d(x, y) = |x− y| and order.
we define a partial order ” � ” on X as x � y if and only if x ≤ y for all

x, y ∈ X. Consider the mapping F (x, y) = x2−2y2
12 and g(x) = x2. All the

condition of Theorems 3.1 are satisfied and now we will prove that F and g
are compatible.

Let {xn} and {yn} be two sequences in X such that

lim
n→∞

F (xn, yn) = lim
n→∞

gxn = p and lim
n→∞

F (yn, xn) = lim
n→∞

gyn = q.

Then p−2q
4 = p and q−2p

4 = q, where from it follows that p = q = 0. Then

d(gF (xn, yn), F (gxn, gyn)) =

∣∣∣∣ (x2n − 2y2n
12

)2

− x4n − 2y4n
12

∣∣∣∣→ 0, as n→∞

and similarly

d(gF (yn, xn), F (gyn, gxn)) =

∣∣∣∣ (y2n − 2x2n
12

)2

− y4n − 2x4n
12

∣∣∣∣→ 0, as n→∞.

Then it is clear that F and g are compatible. Since

g(F (x, y)) = g(
x2 − 2y2

12
) =

(
x2 − 2y2

12

)2

6= x4 − 2y4

12
= F (g(x), g(y))

for all x, y ∈ X, we have F and g are not commute.
Denote L and R respectively left and right hand side of contractive condition
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Contractive condition (3.1) is satisfied with α = 1
3 , β = 0, γ = 1

6 , δ = 1
12 and

α+ β + 2γ + 2δ < 1 which follows from

L = d(F (x, y), F (u, v)) =

∣∣∣∣x2 − 2y2

12
− u2 − 2v2

12

∣∣∣∣
=

1

12

∣∣∣∣(x2 − u2)− 2(y2 − v2)
∣∣∣∣

≤ 1

12
(d(gx, gu) + 2d(gy, gv)) ≤ 4

12

(d(gx, gu) + d(gy, gv))

2

≤ 1

3

(d(gx, gu) + d(gy, gv))

2
≤ α

2
[d(gx, gu) + d(gy, gv)]

≤ α

2
[d(gx, gu) + d(gy, gv)] + βM((gx, gy), (gu, gv))

+
γ

2
[d(gx, F (x, y)) + d(gu, F (u, v)) + d(gy, F (y, x)) + d(gv, F (v, u))]

+
δ

2
[d(gx, F (u, v)) + d(gy, F (v, u)) + d(gu, F (x, y)) + d(gv, F (y, x))]

≤ R.

for all x, y, u, v ∈ X for which is gx � gu and gy � gv.
This shows that all the hypothesis of Theorem 3.1 and 3.6 are satisfied.

Therefore, we conclude that F and g have a coupled coincidence point in X.
This coupled fixed point is (x, y) = (0, 0), that is, g(0) = F (0, 0) = 0.

4. Result-II

In this section, we are gearing up new results for w∗-compatible mapping
with completeness of g in X in the underlying space.

Theorem 4.1. Let (X, d,�) be a partially ordered complete metric space. Let
F : X × X → X and g : X → X be two mappings such that F has the
g-monotone property on X and satisfying

d(F (x, y), F (u, v)) (4.1)

≤ α

2
[d(gx, gu) + d(gy, gv)] + βN((x, y), (u, v))

+
γ

2
[d(gx, F (x, y)) + d(gu, F (u, v)) + d(gy, F (y, x)) + d(gv, F (v, u))],

for all (x, y), (u, v) ∈ X × X with gx � gu and gy � gv, when D1 =
d(gx, F (u, v)) + d(gu, F (x, y)) 6= 0 and D2 = d(gy, F (v, u)) + d(gv, F (y, x)) 6=
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0, where

N((x, y), (u, v)) (4.2)

= min

{
d2(gx, F (u, v)) + d2(gu, F (x, y))

d(gx, F (u, v)) + d(gu, F (x, y))
,
d2(gy, F (v, u)) + d2(gv, F (y, x))

d(gy, F (v, u)) + d(gv, F (y, x))

}
and α, β, γ ≥ 0 with α+ 2β + 2γ < 1. Further,

d(F (x, y), F (u, v)) = 0 if D1 = 0 or D2 = 0. (4.3)

Further, suppose

(1) F (X ×X) ⊆ g(X);
(2) g(X) is a complete subspace of X.

Also, suppose that X has the following properties:

(i) if a non-decreasing sequence {xn} in X is such that xn → x, then
xn � x for all n ∈ N,

(ii) if a non-decreasing sequence {yn} in X is such that yn → y, then
yn � y for all n ∈ N.

Then there exist x0, y0 ∈ X such that

gx0 � F (x0, y0) and gy0 � F (y0, x0). (4.4)

Then, F and g have a coupled coincidence point (x̄, ȳ) ∈ X ×X.

Proof. Following the proof in the line of Theorem 3.1, we can construct two
sequences {xn} and {yn} in X such that

F (xn, yn) = g(xn+1) and F (yn, xn) = g(yn+1)

for all n ∈ {0, 1, 2, . . .} and

g(xn) � g(xn+1) and g(yn) � g(yn+1). (4.5)

By using g-monotone property of F and g, we have g(xn+1) � g(xn+2) and
g(yn+1) � g(yn+2). In general, we conclude that

g(xn) � g(xn+1) and g(yn) � g(yn+1) for all n ≥ 0.

Thus by the mathematical induction, we conclude that (3.3) holds for all n ≥ 0.
We check easily that

g(x0) � g(x1) � g(x2) � · · · ≤ g(xn) � · · · (4.6)

and

g(y0) � g(y1) � g(y2) � · · · � g(yn) � · · · . (4.7)

If g(xn+1) = g(xn) and g(yn+1) = g(yn) for some n, then F (xn, yn) = g(xn)
and F (yn, xn) = g(yn), hence (gxn, gyn) is a coupled coincidence point of F
and g. Suppose, further, that g(xn+1) 6= g(xn) and g(yn+1) 6= g(yn) for some
n ∈ N0.



Bhaskar-Lakshmikantham type coupled fixed point results 633

Now, we claim that, for n ∈ N for contractive condition,

d(gxn+1, gxn) + d(gyn+1, gyn) (4.8)

≤
(
α+ β + γ

1− β − γ

)n
[d(gx1, gx0) + d(gy1, gy0)].

Indeed, for n = 1, consider the following possibilities.

Case I: gx0 6= gx2 and gy0 6= gy2. Then d(gx1, F (x0, y0))+d(gx0, F (x1, y1)) 6=
0 and d(gy1, F (y0, x0)) + d(gy0, F (y1, x1)) 6= 0. Hence, using gx1 � gx0,
gy1 � gy0 and (4.1), we get:

d(gx2, gx1) = d(F (x1, y1), F (x0, y0)) (4.9)

≤ α

2
[d(gx1, gx0) + d(gy1, gy0)] + βN(x1, y1), (x0, y0))

+
γ

2
[d(gx1, F (x1, y1)) + d(gx0, F (x0, y0)) + d(gy1, F (y1, x1))

+ d(gy0, F (y0, x0))]

≤ α

2
[d(gx0, gx1) + d(gy0, gy1)] + β

d2(gx1, F (x0, y0)) + d2(gx0, F (x1, y1))

d(gx1, F (x0, y0)) + d(gx0, F (x1, y1))

+
γ

2
[d(gx1, gx2) + d(gx0, gx1) + d(gy1, gy2) + d(gy0, gy1)]

≤ α

2
[d(gx0, gx1) + d(gy0, gy1)] + β[d(gx0, gx1) + d(gx1, gx2)]

+
γ

2
[d(gx0, gx1) + d(gy0, gy1) + d(gx1, gx2) + d(gy1, gy2)].

Similarly, using that

d(gy2, gy1) = d(F (y1, x1), F (y0, x0)) = d(F (y0, x0), F (y1, x1))

and

N((y1, x1), (y0, x0)) ≤
d2(gy1, F (y0, x0) + d2(gy0, F (y1, x1))

d(gy1, F (y0, x0)) + d(gy0, F (y1, x1))

= d(gy0, gy2) ≤ d(gy0, gy1) + d(gy1, gy2),

we get

d(gy2, gy1) (4.10)

≤ α

2
[d(gx0, gx1) + d(gy0, gy1)] + β[d(gy0, gy1) + d(gy1, gy2)]

+
γ

2
[d(gx0, gx1) + d(gy0, gy1) + d(gx1, gx2) + d(gy1, gy2)].

Adding (4.9) and (4.10), we have

d(gx2, gx1) + d(gy2, gy1) ≤
(
α+ β + γ

1− β − γ

)
[d(gx0, gx1) + d(gy0, gy1)]. (4.11)



634 A. Gupta and H. K. Nashine

Case II: gx0 = gx2 and gy0 6= gy2. The first equality implies that d(gx1, F (x0,
y0)) +d(gx0, F (x1, y1)) = 0, and hence d(gx1, gx2) = d(F (x0, y0), F (x1, y1)) =
0, by (4.3). This means that gx0 = gx1 = gx2. From gy0 6= gy2, as in the first
case, we get that (4.10) holds true. As a consequence

d(gy1, gy2) ≤
α
2 + β + γ

2

1− β − γ
2

d(gy0, gy1) ≤
α+ β + γ

1− β − γ
d(gy0, gy1),

since
α
2
+β+ γ

2

1−β− γ
2
≤ α+β+γ

1−β−γ . But then d(gx0, gx1) = d(gx1, gx2) = 0 implies that

(4.11) holds.

The case gx0 6= gx2 and gy0 = gy2 is treated analogously.

Case III: If gx0 = gx2 and gy0 = gy2, then d(gx1, F (x0, y0))+d(gx0, F (x1, y1))
= 0 and d(gy1, F (y0, x0)) + d(gy0, F (y1, x1)) = 0. Hence, (4.3) implies that
gx1 = gx2 = gx3 and gy1 = gy2 = gy3, and so (4.11) holds trivially. Thus,
(4.8) holds for n = 1. In a similar way, proceeding by induction, if we assume
that (4.8) holds, we get that

d(gxn+2, gxn+1) + d(gyn+2, gyn+1)

≤
(
α+ β + γ

1− β − γ

)
[d(gxn+1, gxn) + d(gyn+1, gyn)]

≤
(
α+ β + γ

1− β − γ

)n+1

[d(gx0, gx1) + d(gy0, gy1)].

Hence, by induction, (4.8) is proved.
Using similar arguments as in the proof of Theorem 3.1, {gxn} and {gyn}

are Cauchy sequences in g(X). By completeness of g(X), there exists gx, gy ∈
g(X) such that gxn → gx and gyn → gy as n→∞.

Since {gxn} and {gyn} are nondecreasing, using the conditions (i) and (ii),
we have gxn � gx and gyn � gy for all n ≥ 0. If gxn = gx and gyn = gy for
some n ≥ 0, then gx = gxn � gxn+1 � gx = gxn and gy � gyn � gyn+1 = gy,
which implies that

gxn = gxn+1 = F (xn, yn) and gyn = gyn+1 = F (yn, xn),

that is, (xn, yn) is a coupled coincidence point of F and g. Then, we suppose
that (gxn, gyn) 6= (gx, gy) for all n ≥ 0.

Now we prove that F (x, y) = gx and F (y, x) = gy. For this, Now, suppose
that (i-ii) holds. Since {gxn} and {gyn} are non-decreasing and g(xn) → x,
and g(yn) → y, by assumption (i-ii), we have g(xn) � g(x) and g(yn) � g(y)



Bhaskar-Lakshmikantham type coupled fixed point results 635

for all n. Then, we get

d(gx, F (x, y)) ≤ d(gx, gxn+1) + d(gxn+1, F (x, y))

≤ d(gx, gxn+1) + d(gxn+1, F (xn, yn)) + d(F (xn, yn), F (x, y))

→ d(gx, gx) + d(gxn+1, gxn+1) + d(F (x, y), F (x, y))

= 0 as n→∞.

Passing to the limit as n→∞ in the above inequality, we get d(g(x), F (x, y)) =
0. Hence g(x) = F (x, y). Similarly, one can show that g(y) = F (y, x). Thus
F and g have a coupled coincidence point. This completes the proof of the
theorem. �

Example 4.2. Let X = R and defined partial ordered relation by x � y.
Define a mapping d : X × X → [0,∞) by d(x, y) = |x − y| for all x, y ∈ X.
Let mapping F : X ×X → X and g : X → X be defined by

F (x, y) = 0.5

and

g(x) = x− 0.5

for all x ∈ X. Then, g(X) = [−0.5,∞) is a complete subspace of X.
By simple checking, we see that F and g satisfy the contractive condition

(4.1) for given value
Denote L and R respectively left and right hand side of contractive condition

L = d(F (x, y), F (u, v))

≤ d(0.5, 0.5) = 0

≤ α

2
[d(x− 0.5, y − 0.5) + d(u− 0.5, v − 0.5)]

≤ α

2
[|x− u|+ |y − v|] ≤ α

2
[d(gx, gu) + d(gy, gv)] ≤ R

where 0 < α < 1 and also F satisfy the g-monotone property. Moreover, g
and F are continuous For example there exists two points 0, 0.5 ∈ X such that

g(0) = −0.5 ≤ 0.5 = F (0, 0.5)

and

g(0.5) = 0 ≤ 0.5 = F (0.5, 0).

This shows that F has the g-monotone property. Hence this example does
not satisfy the Theorem 2.3 of Sintunavarat and Kumam [27] and there is no
function ϕ : [0,∞) → [0,∞) with ϕ(t) < t and limr→t+ ϕ < t for each t > 0.
Since

g(F (x, y)) = g(0.5) = 0 6= 0.5 = F (g(x), g(y))
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for all x, y ∈ X, we have F and g are not commutative. Therefore, Theorem
2.1 of Lakshmikantham and Ćirić [11] not satisfied for this example.

This, shows that all the hypothesis of Theorem 4.1 is satisfies. Therefore,
we conclude that F and g have a coupled coincidence point in X. This coupled
fixed point is (x, y) = (1, 1), that is, g(1) = F (1, 1) = 0.5.

In the next theorem, we will substitute the continuity hypothesis on F and
g by an additional property satisfied by the space (X, d,�).

Theorem 4.3. Let (X, d,�) be a partially ordered metric space. Let F :
X × X → X and g : X → X be mappings having the g-monotone property.
Assume that there exist α, β, γ ≥ 0 with α+ 2β + 2γ < 1 such that

d(F (x, y), F (u, v))

≤ α

2
[d(gx, gu) + d(gy, gv)] + βN((x, y), (u, v))

+
γ

2
[d(gx, F (x, y)) + d(gu, F (u, v)) + d(gy, F (y, x)) + d(gv, F (v, u))],

for all (x, y), (u, v) ∈ X × X with gx � gu and gy � gv, when D1 =
d(gx, F (u, v)) + d(gu, F (x, y)) 6= 0 and D2 = d(gy, F (v, u)) + d(gv, F (y, x)) 6=
0, where

N((x, y), (u, v))

= min

{
d2(gx, F (u, v)) + d2(gu, F (x, y))

d(gx, F (u, v)) + d(gu, F (x, y))
,
d2(gy, F (v, u)) + d2(gv, F (y, x))

d(gy, F (v, u)) + d(gv, F (y, x))

}
.

Further, d(F (x, y), F (u, v)) = 0 if D1 = 0 or D2 = 0.
Suppose that there exist x0, y0 ∈ X such that

gx0 � F (x0, y0) and gy0 � F (y0, x0).

Finally, assume that X has the following properties:

(i) if a nondecreasing sequence {gxn} in X converges to x ∈ X, then
gxn � gx for all n,

(ii) if a nondecreasing sequence {gyn} in X converges to y ∈ X, then
gyn � gy for all n.

Then, F and g have a coupled coincidence point (x, y) ∈ X ×X.

Proof. Following the proof of Theorem 4.1, we only have to show that (gx̄, gȳ)
is a coupled coincidence point of F and g. Suppose this is not the case, i.e.,
F (x̄, ȳ) 6= gx̄ or F (ȳ, x̄) 6= gȳ (e.g., let the first one of these holds). We have

d(F (x̄, ȳ), gx̄) ≤ d(F (x̄, ȳ), gxn+1) + d(gxn+1, gx̄) (4.12)

= d(F (x̄, ȳ), F (xn, yn)) + d(gxn+1, gx̄).
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Since the nondecreasing sequence {gxn} converges and g(xn) → x̄ and the
nonincreasing sequence {gyn} converges and g(yn)→ ȳ, by (i)–(ii), we have:

gx̄ � gxn and gȳ � gyn, ∀n.
Now, from the contractive condition, we have:

d(F (x̄, ȳ), F (xn, yn))

≤ α

2
[d(gx̄, gxn) + d(gȳ, gyn)] + βN((x̄, ȳ), (xn, yn))

+
γ

2
[d(gx̄, F (x̄, ȳ)) + d(gxn, F (xn, yn)) + d(gȳ, F (ȳ, x̄)) + d(gyn, F (yn, xn))]

≤ α

2
[d(gx̄, gxn) + d(gȳ, gyn)] + β

d2(gx̄, gxn+1) + d2(gxn, F (x̄, ȳ))

d(gx̄, gxn+1) + d(gxn, F (x̄, ȳ))

+
γ

2
[d(gx̄, F (x̄, ȳ)) + d(gxn, gxn+1) + d(gȳ, F (ȳ, x̄)) + d(gyn, gyn+1)].

We note that the case d(gx̄, gxn+1) + d(gxn, F (x̄, ȳ)) = 0 is impossible, since
otherwise the condition (4.3) would imply gx̄ = F (x̄, ȳ), which is excluded.
Then, from (4.12), we get:

d(F (x̄, ȳ), gx̄)

≤ d(gxn+1, gx̄) +
α

2
[d(gx̄, gxn) + d(gȳ, gyn)]

+ β
d2(gx̄, gxn+1) + d2(gxn, F (x̄, ȳ))

d(gx̄, gxn+1) + d(gxn, F (x̄, ȳ))

+
γ

2
[d(gx̄, F (x̄, ȳ)) + d(gxn, gxn+1) + d(gȳ, F (ȳ, x̄)) + d(gyn, gyn+1)].

Passing to the limit as n→∞ (and again using that F (x̄, ȳ) 6= gx̄), we have

d(F (x̄, ȳ), gx̄) ≤ βd(gx̄, F (x̄, ȳ)) +
γ

2
[d(gx̄, F (x̄, ȳ)) + d(gȳ, F (ȳ, x̄))]. (4.13)

Now, if gȳ = F (ȳ, x̄), using that β + γ
2 < 1, it follows immediately that

gx̄ = F (x̄, ȳ), a contradiction. If this is not the case, we similarly get

d(gȳ, F (ȳ, x̄)) ≤ βd(gȳ, F (ȳ, x̄)) +
γ

2
[d(gx̄, F (x̄, ȳ)) + d(gȳ, F (ȳ, x̄))]. (4.14)

Adding (4.13) and (4.14), we have

d(gx̄, F (x̄, ȳ)) + d(gȳ, F (ȳ, x̄))

≤ (β + γ)[d(gx̄, F (x̄, ȳ)) + d(gȳ, F (ȳ, x̄))]

≤ (α+ 2β + 2γ)[d(gx̄, F (x̄, ȳ)) + d(gȳ, F (ȳ, x̄))].

Since 0 ≤ α+2β+2γ < 1, we obtain d(F (x̄, ȳ), gx̄) = 0 and d(gȳ, F (ȳ, x̄)) = 0,
i.e., F (x̄, ȳ) = gx̄ and F (ȳ, x̄) = gȳ, again a contradiction. This completes the
proof of the theorem. �



638 A. Gupta and H. K. Nashine

Theorem 4.4. Assume that

∀(x, y), (x∗, y∗) ∈ X ×X, ∃ (u, v) ∈ X ×X such that (4.15)

(F (u, v), F (v, u)) is comparable to (F (x, y), F (y, x)) and (F (x∗, y∗), F (y∗, x∗)).
If F and g have unique coupled coincidence point, that is there exists a unique
(x, y) ∈ X ×X such that gx = F (x, y) and gy = F (y, x), gx∗ = F (x∗, y∗) and
gy∗ = F (y∗, x∗).

Moreover, if F and g are w∗-compatible and unique coupled common fixed
point in X ×X then x = gx = F (x, y) and y = gy = F (y, x).

Adding (4.15) to the hypotheses of Theorem 4.1, we obtain the uniqueness
of the coupled coincidence and coupled common point of F and g.

Proof. From Theorem 4.1 we know that there exists the set of coupled coin-
cidence point of F and g is non empty. Suppose that (gx̄, gȳ) and (gx∗, gy∗)
are coupled coincidence point of F and g, that is gx̄ = F (x̄, ȳ) and gȳ =
F (ȳ, x̄), gx∗ = F (x∗, y∗) and gy∗ = F (y∗, x∗), which is obtained as gx̄ =
limn→∞ F

n(x0, y0) and gȳ = limn→∞ F
n(y0, x0). Let us prove that

d(gx̄, gx∗) + d(gȳ, gy∗) = 0. (4.16)

We distinguish two cases.

Case I: (F (x̄, ȳ), F (ȳ, x̄)) is comparable with (F (x∗, y∗), F (y∗, x∗)) with re-
spect to the ordering in X ×X. Let, e.g., gx̄ � gx∗ and gȳ � gy∗. Then, we
can apply the contractive condition (4.1) to obtain

d(gx̄, gx∗) = d(F (x̄, ȳ), F (x∗, y∗))

≤ α

2
[d(gx̄, gx∗) + d(gȳ, gy∗)] + βd(gx̄, gx∗),

and

d(gȳ, gy∗) = d(F (ȳ, x̄), F (y∗, x∗)) = d(F (y∗, x∗), F (ȳ, x̄))

≤ α

2
[d(gx̄, gx∗) + d(gȳ, gy∗)] + βd(gȳ, gy∗).

Adding up, we get that

d(gx̄, gx∗) + d(gȳ, gy∗) ≤ (α+ β)[d(gx̄, gx∗) + d(gȳ, gy∗)].

Since 0 ≤ α+ β < 1, (4.16) holds.

Case II: (F (x̄, ȳ), F (ȳ, x̄)) is not comparable with (F (x∗, y∗), F (y∗, x∗)). In
this case, By assumption there exists (u, v) ∈ X × X that is comparable
both to (F (x̄, ȳ), F (ȳ, x̄)) and (F (x∗, y∗), F (y∗, x∗)). Then, for all n ∈ N,
(Fn(u, v), Fn(v, u)) is comparable both to (Fn(x̄, ȳ), Fn(ȳ, x̄)) = (gx̄, gȳ) and
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(Fn(x∗, y∗), Fn(y∗, x∗)) = (gx∗, gy∗). We have

d(gx̄, gx∗) + d(gȳ, gy∗)

= d(Fn(x̄, ȳ), Fn(x∗, y∗)) + d(Fn(ȳ, x̄), Fn(y∗, x∗))

≤ d(Fn(x̄, ȳ), Fn(u, v)) + d(Fn(u, v), Fn(x∗, y∗))

+ d(Fn(ȳ, x̄), Fn(v, u)) + d(Fn(v, u), Fn(y∗, x∗))

≤ (αn + βn)[d(gx̄, u) + d(gȳ, v) + d(gx∗, u) + d(gy∗, v)].

Since 0 < α, β < 1, (4.16) holds.
We deduce that in all cases (4.16) holds. This implies that (gx̄, gȳ) =

(gx∗, gy∗) and the coupled coincidence point of F and g is proved. Note that
if (gx̄, gȳ) is a coupled point of coincidence of F and g, then (gȳ, gx̄) is also
a coupled points of coincidence of F and g. Then (gx̄ = gȳ) and therefore
(gx̄, gx̄) is the unique coupled point of coincidence of F and g.

Now we show that F and g have a unique common coupled fixed point. For
this, let gx̄ = x. Then we have x = gx̄ = F (x̄, x̄).

By w∗-compatibility of F and g, we have

gx = ggx̄ = gF (x̄, x̄) = F (gx̄, gx̄) = F (x, x).

Thus (gx, gx) is a coupled point of coincidence of F and g. Consequently,
gx = gx̄. Therefore x = gx = F (x, x). Hence (x, x) is a common coupled
fixed point of F and g.

To prove the uniqueness of common coupled fixed point, let x∗ ∈ X with
x∗ 6= x such that

x∗ = gx∗ = F (x∗, x∗).

Then (gx, gx) and (gx∗, gx∗) are two common coupled points of coincidence
of F and g and, as was previously proved, it must be gx = gx∗, and so
x = gx = gx∗ = x∗. �

Our next result is as follows:

Theorem 4.5. In addition to the hypotheses of Theorem 4.1 (resp. Theorem
4.3), suppose that g(x0), g(y0) in X are comparable. Then gx̄ = gȳ.

Proof. Suppose that x0 � y0. We claim that

gxn � gyn, ∀n ∈ N. (4.17)

By the monotone property of F , we have

gx1 = F (x0, y0) � F (y0, y0) � F (y0, x0) = gy1.

Assume that xn � yn for some n. Now,

gxn+1 = Fn+1(x0, y0) = F (Fn(x0, y0), F
n(y0, x0))

= F (xn, yn) � F (yn, yn) � F (yn, xn) = gyn+1.
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Hence, (4.17) holds.
Now, using (4.17) and the contractive condition, we get

d(gx̄, gȳ) ≤ d(gx̄, gxn+1) + d(gxn+1, gyn+1) + d(gyn+1, gȳ)

= d(gx̄, gxn+1) + d(F (yn, xn), F (xn, yn)) + d(gyn+1, gȳ)

≤ d(gx̄, gxn+1) + d(gyn+1, gȳ) + αd(gxn, gyn)

+ βN((yn, xn), (xn, yn))

+
γ

2
[d(gxn, F (xn, yn)) + d(gyn, F (yn, xn))

+ d(gyn, F (yn, xn)) + d(gxn, F (xn, yn)))]

≤ d(gx̄, gxn+1) + d(gyn+1, gȳ) + αd(gxn, gyn)

+ β
d2(gxn, F (yn, xn)) + d2(gyn, F (xn, yn))

d(gxn, F (yn, xn)) + d(gyn, F (xn, yn))

+ γ[d(gxn, gxn+1) + d(gyn, gyn+1)]

≤ d(gx̄, gxn+1) + d(gyn+1, gȳ) + αd(gxn, gyn)

+ β
d2(gxn, gyn+1) + d2(gyn, gxn+1)

d(gxn, gyn+1) + d(gyn, gxn+1)

+ γ[d(gxn, gxn+1) + d(gyn, gyn+1)]

( provided d(gxn, gyn+1) + d(gyn, gxn+1) 6= 0).

Passing to the limit as n→∞, we get that

d(gx̄, gȳ) ≤ (α+ β)d(gx̄, gȳ).

Since 0 ≤ α+ β < 1, this implies that d(gx̄, gȳ) = 0, i.e., gx̄ = gȳ.
In the case when d(gxn, gyn+1) + d(gyn, gxn+1) = 0, the conditions of the

theorem readily imply that d(gx̄, gȳ) = 0. This completes the proof of the
theorem. �

Remark 4.6. The results of this paper can be easily modified in a way to
obtain the existence of a coupled coincidence point of the mapping F : X ×
X → X and an additional mapping G : X ×X → X, in the case when F and
G have the g-monotone property.

Remark 4.7. Similar corollaries can be derived as Result-I.
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5. An application to nonlinear integral equations

In this section, Theorem 3.1 is used to guarantee the existence theorem for
solution of the following nonlinear integral equations:{

x(t) =
∫ T
0 f(t, x(s), y(s))ds, t ∈ [0, T ];

y(t) =
∫ T
0 f(t, y(s), x(s))ds, t ∈ [0, T ].

(5.1)

where T is a real number such that T > 0 and f : [0, T ]× R× R→ R.

This section is inspired by Sintunavarat and Kumam [27].

Definition 5.1. Let C([0, T ],R), denote the class of R-valued continuous func-
tions on the interval [0, T ], where T is a real number such that T > 0. An
element α, β ∈ C([0, T ],R) is called a coupled upper solution of the integral
equation (5.1) if α(t) ≤ β(t) and

α(t) ≤
∫ T

0
f(t, α(s), β(s))ds

and

β(t) ≤
∫ T

0
f(t, β(s), α(s))ds

for all t ∈ [0, T ].
Now, we consider the following assumptions:

(I) f : [0, T ]× R× R→ R is continuous;
(II) for all t ∈ [0, T ] and for all x, y, u, v ∈ R for which x ≤ u and y ≤ v,

we have

0 ≤ f(t, u, v)− f(t, x, y)

≤ α

2
[|g(x(t))− g(u(t))|+ |g(y(t))− g(v(t))|]

+
γ

2
[|g(x(t))− F (x, y)(t)|+ |g(u(t))− F (u, v)(t)|

+ |g(y(t))− F (y, x)(t)|+ |g(v(t))− F (v, u)(t)|]

+
δ

2
[|g(x(t))− F (u, v)(t)|+ |g(y(t))− F (v, u)(t)|

+ |g(u(t))− F (x, y)(t)|+ |g(v(t))− F (y, x)(t)|],

for α, γ, δ ≥ 0 with α+ 2γ + 2δ < 1.
Now, we are in position to furnish the existence theorem for solution of the

integral equation (5.1).
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Theorem 5.2. Suppose that (I) and (II) hold. Then, the existence of a coupled
upper solution for (5.1) provides the existence of solution (x̄, ȳ) ∈ C([0, T ],R)×
C([0, T ],R) for the integral equation (5.1).

Proof. Let X := C([0, T ],R) denote the class of R-valued continuous functions
on the interval [0, T ]. We endowed X with the metric d : X ×X → R defined
by

d(x, y) = sup
t∈[0,T ]

|x(t)− y(t)|, ∀ x, y ∈ X.

It is clear that (X, d) is a complete metric space. Moreover, we also have X
is a partially ordered set if we define the following order relation in X:

x, y ∈ X,x ≤ y ⇔ x(t) ≤ y(t), ∀ t ∈ [0, T ].

Suppose un is a monotone non-decreasing in X that converges to u ∈ X.
Then, for every t ∈ [0, T ], the sequence of real numbers

u1(t) ≤ u2(t) ≤ u3(t) ≤ · · · ≤ un(t) ≤ · · ·

converges to u(t). Therefore, for all t ∈ [0, T ], n ∈ N , un(−t) ≤ u(t). Thus,
un ≤ u, for all n ∈ N . Similarly, we can verify that limit v(t) of a monotone
non-decreasing sequence vn(t) in X is a upper bound for all the elements in
the sequence. That is, vn ≥ u, for all n ∈ N. Therefore, condition (b) given in
Theorem 3.6 is satisfied.

Define the mapping F : C([0, T ],R) × C([0, T ],R) → C([0, T ],R) and g :
C([0, T ],R)→ C([0, T ],R) by

F (x, y)(t) =

∫ T

0
f(t, x(s), y(s))ds, x, y ∈ C([0, T ],R), t ∈ [0, T ].

and g(x)(t) = x(t).
We first prove that F has the g-monotone property. By (I), for any x, y ∈ X

and for all t ∈ [0, T ], we have

x1, x2 ∈ X, g(x1)(t) ≤ g(x2)(t)⇒ 0 ≤ f(t, x2(t), y(t))− f(t, x1(t), y(t))

⇒ f(t, x1(t), y(t)) ≤ f(t, x2(t), y(t))∫ T

0
f(t, x1(s), y(s))ds ≤

∫ T

0
f(t, x2(s), y(s))ds

F (x1, y)(t) ≤ F (x2, y)(t). (5.2)

Similarly, we can prove that for any x, y ∈ X and for all t ∈ [0, T ], we have

y1, y2 ∈ X, g(y1)(t) ≤ g(y2)(t)⇒ F (x, y1)(t) ≤ F (x, y2)(t). (5.3)

From (5.2) and (5.3), we get F has the g-monotone property.
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Now, let x, y, u, v ∈ X for which x ≤ u and y ≤ v. Using (II), for all
t ∈ [0, T ], we have

|(F (x, y)(t)− F (u, v)(t)|

=

∫ T

0
[f(t, u(s), v(s))− f(t, x(s), y(s))]ds

≤ α

2
[|g(x(s))− g(u(s)|) + |g(y(s))− g(v(s))|]

+
γ

2
[|g(x(s))− F (x, y)(s)|+ |g(u(s))− F (u, v)(s)|

+ |g(y(s))− F (y, x)(s)|+ |g(v(s))− F (v, u)(s)|]

+
δ

2
[|g(x(s))− F (u, v)(s)) + |g(y(s))− F (v, u)(s)|

+ |g(u(s))− F (x, y)(s)|+ |g(v(s))− F (y, x)(s)|],

≤ α

2
[ sup
z∈[0,T ]

|g(x(z))− g(u(z))|+ sup
z∈[0,T ]

|g(y(z))− g(v(z))|]

+
γ

2
[ sup
z∈[0,T ]

|g(x(z))− F (x, y)(z)|+ sup
z∈[0,T ]

|g(u(z))− F (u, v)(z)|

+ sup
z∈[0,T ]

|g(y(z))− F (y, x)(z)|+ sup
z∈[0,T ]

|g(v(z))− F (v, u)(z)|]

+
δ

2
[ sup
z∈[0,T ]

|g(x(z))− F (u, v)(z)|+ sup
z∈[0,T ]

|g(y(z))− F (v, u)(z)|

+ sup
z∈[0,T ]

|g(u(z))− F (x, y)(z)|+ sup
z∈[0,T ]

|g(v(z))− F (y, x)(z)|],

which implies that

sup
t∈[0,T ]

|(F (x, y)(t)− F (u, v)(t)|

≤ α

2
[ sup
z∈[0,T ]

|g(x(z))− g(u(z))|+ sup
z∈[0,T ]

|g(y(z))− g(v(z))|]

+
γ

2
[ sup
z∈[0,T ]

|g(x(z))− F (x, y)(z)|+ sup
z∈[0,T ]

|g(u(z))− F (u, v)(z)|

+ sup
z∈[0,T ]

|g(y(z))− F (y, x)(z)|+ sup
z∈[0,T ]

|g(v(z))− F (v, u)(z)|]

+
δ

2
[|g(x(z))− F (u, v)(z)|+ sup

z∈[0,T ]
|g(y(z))− F (v, u)(z)|

+ sup
z∈[0,T ]

|g(u(z))− F (x, y)(z)|+ sup
z∈[0,T ]

|g(v(z))− F (y, x)(z)|].
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Therefore, we get

d(F (x, y), F (u, v))

≤ α

2
[d(gx, gu) + d(gy, gv)]

+
γ

2
[d(gx, F (x, y)) + d(gu, F (u, v)) + d(gy, F (y, x)) + d(gv, F (v, u))]

+
δ

2
[d(gx, F (u, v)) + d(gy, F (v, u)) + d(gu, F (x, y)) + d(gv, F (y, x))],

x, y, u, v ∈ X for which g(x) � g(u) and g(y) � g(v). This implies that the
condition (3.12) (for β = 0) of Theorem 3.6 is satisfied.

Now, let (α, β) be a coupled upper solution of the integral equation (5.1)
then we have α(t) ≤ F (α, β)(t) and β(t) ≤ F (β, α)(t) for all t ∈ [0, T ], that
is, α ≤ F (α, β) and β ≤ F (β, α).

Thus all clauses in Theorem 3.6 are satisfied. Therefore, we can apply
Theorem 3.6 and thus there exists a point (x̃, ỹ) ∈ C([0, T ],R) × C([0, T ],R
such that

g(x̃) = F (x̃, ỹ) and g(ỹ) = F (ỹ, x̃).

Since g(x) = x for all x ∈ X, we get (x̃, ỹ) ∈ C([0, T ],R)× C([0, T ],R) is the
solution for the integral equation (5.1). �
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[10] Z. Kadelburg, P. Kumam, S. Radenović and W. Sintunavarat, Bhaskar-Lakshmikantham
type results for monotone mappings in partially ordered metric spaces, Fixed Point The-
ory Appl., (2015) 14 pages.
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