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Abstract. In this paper, we present the problem of generalized fractional calculus of vari-

ations. Proposed generalization differs in terms of describing the objective function, which

involves a combination of classical and fractional (differential and integral) operators. We

obtain the necessary conditions in order to find an extremizer of the problem. Provided

examples illustrate fractional Euler-Lagrange equations with noticeable consequences. Ad-

ditionally, generalized fractional isoperimetric problem is discussed. This paper conjointly

presents a formulation of the solution scheme for fractional calculus of variations. Construc-

tion of this scheme is in terms of approximating the composition of fractional derivatives.

This method shows that the solution of Euler-Lagrange equations can also be obtained by

the approximation of the composition of left and right fractional derivatives occurring in

fractional Euler-Lagrange equations. Moreover, examples demonstrating the formulation

are given with sufficient numerical information.

1. Introduction

The perception of fractional calculus is to explore and examine the applica-
tions of integrals and derivatives of a non-integer order. It permits the order
of a derivative (or integral) to be any real or complex number. This topic
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was first introduced by Leibniz in 1695. After that, several eminent mathe-
maticians like Euler, Lagrange, Laplace, Fourier, Liouville, Riemann further
analyzed and contributed in the development of this area. The first excep-
tional application of fractional calculus was given by Abel in 1823 for solving
the tautochrone problem. This subject encompasses a large history of over
300 years. The historical development is given in [21] and generally it can be
found in any textbook on fractional calculus. Fractional derivative is a non-
local property, thus proved very useful in numerous topics like viscoelasticity,
control theory, signal and image processing etc.

In recent years considerable work has been dedicated to the problem of
calculus of variations involving fractional derivatives and fractional integrals.
Problem of fractional calculus of variations (FCOV) was born in 1996-1997
with the work of Riewe [20]. Riewe obtained a version of Euler-Lagrange
equations for problems of the Calculus of Variations with fractional derivatives.
Afterwards, Agrawal [1] proved a formulation for a variational problem with
right and left fractional derivatives in Riemann-Liouville sense.

It was the first simplest (FCOV) problem defined to find the extremizer
y(t), t ∈ [a, b] for the functional

J(y) =

∫ b

a
F (t, y, aD

α
x , xD

β
b ) dt,

subject to the boundary conditions

y(a) = ya and y(b) = yb,

where 0 < α, β ≤ 1. It is to be noted that above problem reduces to the
classical variational problem when α = β = 1. This problem is further modified
by employing Riesz and Caputo fractional operators in place of Riemann-
liouville fractional derivatives.

In year 2004, Euler-Lagrange equations of Agrawal [1] were employed by
Baleanu and Avkar [10] to investigate problems with Lagrangians which are
linear on the velocities. During the period (2006-2011), researchers like Agrawal,
Baleanu, Almeida and Torres have studied (FCOV) problems (see [2],[5],[6],
[7],[8] and references therein). These problems include (FCOV) with various
fractional operators, formulation of Noether’s theorem for (FCOV), gener-
alized natural boundary conditions for fractional variational problems with
Caputo derivatives, solution schemes for Euler-Lagrange equations.

The paper is divided into two different parts. The first part is intended to
explain the problem of generalized fractional calculus of variations (GFCOV)
followed by formulating Euler-Lagrange equations. Present investigation is
an extension of the work done by Odzijewicz and Torres [17]. Odzijewicz
and Torres studied the problem of fractional calculus of variations involving
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a combination of classical and fractional derivative. In the present study, we
formulate the problem not only with classical and fractional derivatives but
also with fractional integrals. While the second part deals with constructing
a solution scheme for fractional Euler-Lagrange equations. The construction
of solution scheme is due to the appearance of composition of left and right
fractional derivatives in necessary extremality conditions. The second part of
the paper is motivated by the work done by Blaszczyk and Ciesielski [11].

Organization of the paper: Section 2 presents some preliminaries that will
be required throughout the paper. We consider our main results in Section
3. Implementation of solution scheme is presented in Section 4, followed by
Section 5 giving the conclusions and scope of future work.

2. Preliminaries

We give the definitions of fractional derivatives/integrals and their main
properties. A variety of definitions for fractional derivative are present in
literature which includes Riemann-Liouville, Grunwald-Letnikov, Weyl, Ca-
puto, and Riesz fractional derivatives for example (see, [12],[16],[18],[19]). We
have considered Riemann-Liouville fractional derivatives/integrals and Caputo
fractional order derivatives throughout the paper.

Let f ∈ C[a, b], where C[a, b] is the space of all continuous functions defined
over the closed interval [a, b].

Definition 2.1. ([21]) For all t ∈ [a, b] and α > 0, Left Riemann-Liouville
Fractional Integral (LRLFI) of order α is defined as

aI
α
t f(t) =

1

Γ(α)

∫ t

a
(t− τ)α−1f(τ) dτ, t > a.

Definition 2.2. ([21]) For all t ∈ [a, b] and α > 0, Right Riemann-Liouville
Fractional Integral (RRLFI) of order α is defined as

tI
α
b f(t) =

1

Γ(α)

∫ b

t
(τ − t)α−1f(τ) dτ, t < b.

Let us consider f ∈ Cn[a, b], where Cn[a, b] is the space of n times continu-
ously differentiable functions defined over [a, b].

Definition 2.3. ([21]) For all t ∈ [a, b] and n − 1 ≤ α < n, Left Riemann-
Liouville Fractional Derivative (LRLFD) of order α is defined as

aD
α
t f(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

a
(t− τ)n−α−1f(τ) dτ.
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Definition 2.4. ([21]) For all t ∈ [a, b] and n − 1 ≤ α < n, Right Riemann-
Liouville Fractional Derivative (RRLFD) of order α is defined as

tD
α
b f(t) =

(−1)n

Γ(n− α)

(
d

dt

)n ∫ b

t
(τ − t)n−α−1f(τ) dτ.

Definition 2.5. ([21]) For all t ∈ [a, b] and n − 1 ≤ α < n, Left Caputo
Fractional Derivative (LCFD) of order α is defined as

c
aD

α
t f(t) =

1

Γ(n− α)

∫ t

a
(t− τ)n−α−1fn(τ) dτ.

Definition 2.6. ([21]) For all t ∈ [a, b] and n − 1 ≤ α < n, Right Caputo
Fractional Derivative (RCFD) of order α is defined as

c
tD

α
b f(t) =

(−1)n

Γ(n− α)

∫ b

t
(τ − t)n−α−1fn(τ) dτ.

Definition 2.7. ([21], Relationship between Riemann-Liouville and Caputo
derivative) For n− 1 ≤ α < n,

aD
α
t f(t) = c

aD
α
t f(t) +

n−1∑
k=0

fk(a)(t− a)k−α

Γ(k − α+ 1)

Thus,

aD
α
t f = c

aD
α
t f iff fk(a) = 0, 0 ≤ k ≤ n− 1.

Definition 2.8. ([21], Integration by parts) If f, g and the fractional deriva-
tives aD

α
t g and tD

α
b f are continuous at every point t ∈ [a, b], then∫ b

a
f(t) aD

α
t g dt =

∫ b

a
g(t) tD

α
b f dt,

for any 0 < α < 1.

Definition 2.9. ([15]) Let α, β > 0. The Mittag-Leffler function is defined by
the following series expansion

Eα,β(z) =

∞∑
n=0

zn

Γ(αn+ β)
.

Definition 2.10. ([14], Fundamental lemma of calculus of variations) Let
f ∈ Ck[a, b]. Further ∫ b

a
f(x)h(x) dx = 0,
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for every function h ∈ Ck[a, b] with h(a) = 0 = h(b). Then the fundamental
lemma of the calculus of variations states that f(x) is identically zero on [a, b].

3. Main results

Calculus of variations with a variety of fractional operators has been studied
by many researchers, for example see ([1],[2],[5],[9]). We propose a generaliza-
tion for the problem of (FCOV) by allowing the objective function consisting
of a combination of classical and fractional derivatives or integrals. Suggested
generalization not only comprises of a combination of classical and fractional
derivative but also deals with fractional integrals at the same time. We prove
the necessary extremality conditions followed by some examples to discuss
Euler-Lagrange equations. Furthermore, we construct a numerical scheme to
approximate composition of fractional derivatives. By this approximation we
formulate the solution scheme for fractional Euler-Lagrange equations.

3.1. Generalized Fractional Calculus of Variations (GFCOV).

Problem Statement: Let 0 < α, β < 1. Consider the problem to find a
function y ∈ C1[a, b] which extremize the functional

J(y) =

∫ b

a
F (t, y(t) + k aI

1−α
t y(t), y′(t) + l aD

β
t y(t)) dt, (3.1)

subject to the boundary conditions

y(a) = ya , y(b) = yb . (3.2)

Here k, l are fixed real numbers, F ∈ C2([a, b]×R2;R). ∂2F , ∂3F (the partial
derivative of F (· , · , ·) with respect to its second and third argument respec-
tively) have continuous (RRLFI) of order (1−α) and continuous (RRLFD) of
order β.

Note: This is to be noted that the integrand f contains a combination of
classical and fractional derivative of y in its third argument. f also contains
a combination of y and its fractional integral in the second argument.

Definition 3.1. A function y ∈ C1[a, b] that satisfies the given boundary
conditions (3.2) is said to be admissible for problem (3.1)-(3.2).

For simplicity of notation, we introduce the operator [·]α,βk,l defined by

[y]α,βk,l (t) = (t, y(t) + k aI
1−α
t y(t), y′(t) + l aD

β
t y(t))
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with this notion, (3.1) can be simply written as

J(y) =

∫ b

a
F [y]α,βk,l (t) dt.

Suppose that y is a solution of (3.1)-(3.2). We know that admissible functions
ỹ can be written in the form ỹ(t) = y(t) + ε η(t), where η ∈ C1[a, b],
η(a) = 0 = η(b) and ε ∈ R. Thus J can be considered as a function of ε

J(ε) =

∫ b

a
F [t, y(t) + ε η(t) + k aI

1−α
t (y(t) + ε η(t)),

d

dt
(y(t) + ε η(t)) + l aD

β
t (y(t) + ε η(t))] dt.

Since fractional derivative and integral operators are linear

aI
1−α
t (y(t) + ε η(t)) = aI

1−α
t y(t) + ε aI

1−α
t η(t),

aD
β
t (y(t) + ε η(t)) = aD

β
t y(t) + ε aD

β
t η(t).

On the other hand,

dJ

dε
ε=0 =

∫ b

a

d

dε
F [ỹ]α,βk,l (t) dt ε=0

=

∫ b

a

(
∂2F [ỹ]α,βk,l (t) η(t) + k ∂2F [ỹ]α,βk,l (t) aI

1−α
t η(t)

+ ∂3F [ỹ]α,βk,l (t)
dη(t)

dt
+ l ∂3F [ỹ]α,βk,l (t) aD

β
t η(t)

)
dt. (3.3)

Using integration by parts, we get∫ b

a
∂3F.

dη

dt
dt = ∂3F.η

∣∣∣ba − ∫ b

a

(
η
d

dt
∂F

)
dt

and ∫ b

a
∂2F aI

1−α
t η dt =

∫ b

a
ηtI

1−α
b F dt, (3.4)∫ b

a
∂3F aD

β
t η dt =

∫ b

a
ηtD

β
b F dt. (3.5)

Substituting (3.4) and (3.5) into (3.3) with η(a) = 0 = η(b), it follows that

dJ

dε
ε=0 =

∫ b

a
η(t)

[
∂2F [y]α,βk,l (t) + k tI

1−α
b ∂2F [y]α,βk,l (t)

− d

dt
∂3F [y]α,βk,l (t) + l tD

β
b ∂3F [y]α,βk,l (t)

]
dt.
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We know that the necessary optimality condition is given by dJ
dε ε=0. Hence,∫ b

a
η(t)

[
∂2F [y]α,βk,l (t) + k tI

1−α
b ∂2F [y]α,βk,l (t)

− d

dt
∂3F [y]α,βk,l (t) + l tD

β
b ∂3F [y]α,βk,l (t)

]
dt = 0. (3.6)

Applying the fundamental lemma of the calculus of variations to (3.6), we get

∂2F [y]α,βk,l (t) + k tI
1−α
b ∂2F [y]α,βk,l (t)− d

dt
∂3F [y]α,βk,l (t) + l tD

β
b ∂3F [y]α,βk,l (t) = 0

or, simply

∂2F + k tI
1−α
b ∂2F −

d

dt
∂3F + l tD

β
b ∂3F = 0.

Thus, we arrive at the following theorem.

Theorem 3.2. (The fractional Euler-Lagrange equation) If y is an extremizer
of problem (3.1)-(3.2), then y satisfies the Euler-Lagrange equation

∂2F [y]α,βk,l (t) + k tI
1−α
b ∂2F [y]α,βk,l (t)− d

dt
∂3F [y]α,βk,l (t)

+l tD
β
b ∂3F [y]α,βk,l (t) = 0, (3.7)

for all t ∈ [a, b].

Remark 3.3. For k = l = 0, necessary extremality condition (3.7) reduces to
classical Euler-Lagrange equations [14].

Remark 3.4. For k = 0, the problem (3.1)-(3.2) reduces to find a function
y ∈ C1[a, b] which extremizes the following functional

J(y) =

∫ b

a
F (t, y(t), y′(t) + l aD

β
t y(t)) dt,

subject to the boundary conditions

y(a) = ya , y(b) = yb .

This problem was given by Odzijewicz and Torres [17].

Remark 3.5. For α = β, the problem (3.1)-(3.2) reduces to find a function
y ∈ C1[a, b] which extremizes the following functional

J(y) =

∫ b

a
F (t, y(t) + k aI

1−α
t y(t) , y′(t) + l aD

α
t y(t)) dt (3.8)

subject to the boundary conditions (3.2).
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Euler-Lagrange equation (following the same procedure) for (3.8) is given
in the next theorem.

Theorem 3.6. If y is an extremizer of problem (3.8) subject to (3.2), then y
satisfies the fractional Euler-Lagrange equation given as follows

∂2F [·](t) + k tI
1−α
b ∂2F [·](t)− d

dt
∂3F [·](t) + l tD

α
b ∂3F [·](t) = 0,

for all t ∈ [a, b].

Remark 3.7. Note that the function F considered here contains both left
fractional derivatives and integrals. One may take F with both right fractional
derivatives and integrals.

Remark 3.8. Let F ≡ F (t, y(t)+k tI
1−α
b y(t) , y′(t)+ l tD

β
b y(t)), then problem

(3.8) reduces to find an extremum y ∈ C1[a, b] for the functional

J(y) =

∫ b

a
F (t, y(t) + k tI

1−α
b y(t) , y′(t) + l tD

β
b y(t)) dt, (3.9)

subject to the boundary conditions (3.2).

Remark 3.9. Let F ≡ F (t, y(t)+k aI
1−α
t y(t) , y′(t)+l tD

β
b y(t)), then problem

(3.8) reduces to find an extremum y ∈ C1[a, b] for the functional

J(y) =

∫ b

a
F (t, y(t) + k aI

1−α
t y(t) , y′(t) + l tD

β
b y(t)) dt, (3.10)

subject to the boundary conditions (3.2).

Euler-lagrange equations for (3.9) and (3.10) subject to boundary conditions
(3.2) are stated in the following theorems.

Theorem 3.10. If y is an extremizer of problem (3.9) subject to (3.2), then
y satisfies the fractional Euler-Lagrange equation given as follows

∂2F [·](t) + k aI
1−α
t ∂2F [·](t)− d

dt
∂3F [·](t) + l aD

β
t ∂3F [·](t) = 0,

for all t ∈ [a, b].

Theorem 3.11. If y is an extremizer of problem (3.10) subject to (3.2), then
y satisfies the fractional Euler-Lagrange equation given as follows

∂2F [·](t) + k tI
1−α
b ∂2F [·](t)− d

dt
∂3F [·](t) + l aD

β
t ∂3F [·](t) = 0,

for all t ∈ [a, b].
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3.2. Generalized Fractional Isoperimetric Problem.

Problem Statement: Let 0 < α, β < 1. The generalized fractional isoperi-
metric problem is to extremize the functional

J(y) =

∫ b

a
F (t, y(t) + k aI

1−α
t y(t), y′(t) + l aD

β
t y(t)) dt, (3.11)

in the class C1[a, b], subject to the boundary conditions

y(a) = ya , y(b) = yb, (3.12)

and an isoperimetric constraint

I(y) =

∫ b

a
G(t, y(t) + k aI

1−α
t y(t), y′(t) + l aD

β
t y(t)) dt = ξ . (3.13)

Here we assume that k, l, ξ are fixed real numbers and F ,G ∈ C2([a, b] ×
R2;R). ∂2F , ∂2G have continuous (RRLFI) of order (1 − α) and ∂3F , ∂3G
have continuous (LRLFD) of order β.

Definition 3.12. A function y ∈ C1[a, b] that satisfies the given boundary
conditions (3.12) and isoperimetric constraint (3.13) is said to be admissible
for the problem (3.11)-(3.13).

Definition 3.13. An admissible function y is an extremal for I if it satisfies
the fractional Euler-Lagrange equation

∂2G[y]α,βk,l (t) + k tI
1−α
b ∂2G[y]α,βk,l (t)− d

dt
∂3G[y]α,βk,l (t)

+l tD
β
b ∂3G[y]α,βk,l (t) = 0,

for all t ∈ [a, b].

The next theorem gives a necessary optimality condition for the fractional
isoperimetric problem (3.11)-(3.13).

Theorem 3.14. Let y be an extremizer for the functional (3.11) subject to the
boundary conditions (3.12) and the isoperimetric constraint (3.13). If y is not
an extremal for I, then there exists a constant λ such that

∂2H[y]α,βk,l (t) + k tI
1−α
b ∂2H[y]α,βk,l (t)− d

dt
∂3H[y]α,βk,l (t)

+l tD
β
b ∂3H[y]α,βk,l (t) = 0, (3.14)

for all t ∈ [a, b], where H(· , · , ·) = F (· , · , ·)− λG(· , · , ·) .
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Proof. We introduce the two parameter family

ỹ = y + ε1 η1 + ε2 η2, (3.15)

in which η1 and η2 ∈ C1[a, b] are such that η1(a) = η1(b) = 0 = η2(a) = η2(b)
and they have continuous left and right fractional order derivatives/integrals.

First we show that in the family (3.15), there are curves such that ỹ sat-
isfies (3.13). Substituting y by ỹ in (3.13), I(ỹ) becomes a function of two
parameters ε1 , ε2.

I(ε1, ε2) =

∫ b

a
G
(
t, ỹ(t) + k aI

1−α
t ỹ(t), ỹ′(t) + l aD

β
t ỹ(t)

)
dt = ξ .

Then I(0, 0) = 0 and

∂I

∂ε2 (0,0)
=

∫ b

a
η2

(
∂2G+ k tI

1−α
b ∂2G−

d

dt
∂3G+ l tD

β
b ∂3G

)
dt .

Since y is not an extremal for I,

∂I

∂ε2 (0,0)
6= 0.

By the implicit function theorem, there exists a function ε2(·) defined in a
neighborhood of zero, such that I(ε1, ε2(ε1)) = 0. Let J(ε1, ε2) = J(ỹ). Then,
by the Lagrange multiplier rule, there exists a real λ such that

5(J(0, 0)− λI(0, 0)) = 0.

Because

∂J

∂ε1 (0,0)
=

∫ b

a
η1

(
∂2F + k tI

1−α
b ∂2F −

d

dt
∂3F + l tD

β
b ∂3F

)
dt

and

∂I

∂ε1 (0,0)
=

∫ b

a
η1

(
∂2G+ k tI

1−α
b ∂2G−

d

dt
∂3G+ l tD

β
b ∂3G

)
dt ,

we have ∫ b

a
η1

[
(∂2F + k tI

1−α
b ∂2F −

d

dt
∂3F + l tD

β
b ∂3F )

−λ(∂2G+ k tI
1−α
b ∂2G−

d

dt
∂3G+ l tD

β
b ∂3G)

]
= 0.

Since η1 is an arbitrary function, (3.14) follows by Lemma 1 (fundamental
lemma of the calculus of variations). �
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Example 3.15. Let α, β ∈ (0, 1) and k , l, ξ ∈ R. Consider the following
fractional isoperimetric problem:

Minimize J(y) =

∫ 1

0

(
k (y + k 0I

1−α
t y) + (y′ + l 0D

β
t y)2

)
dt, (3.16)

subject to

y(0) = 0 , y(1) =

∫ 1

0
E1−β, 1 (−l (1− τ)1−β)ξ dτ

and an isoperimetric constraint

I(y) =

∫ 1

0

(
k

2ξ
(y + k 0I

1−α
t y) + (y′ + l 0D

β
t y)

)
dt = ξ . (3.17)

Here F = k (y + k 0I
1−α
t y) + (y′ + l 0D

β
t y)2 and G = k

2ξ (y + k 0I
1−α
t y) + (y′ +

l 0D
β
t y)2. Thus, the augmented Lagrangian is H = F − λG. It can be easily

checked that

y(t) =

∫ t

0
E1−β, 1(−l (t− τ)1−β) ξ dτ, (3.18)

• y(t) is not an extremal of I,

• y(t) satisfies y′ + l 0D
β
t y = ξ.

Moreover y(t) satisfies (3.14) for λ = 2ξ, i.e.,

(∂2F−λ∂2G)+k tI
1−α
1 (∂2F−λ∂2G)− d

dt
(∂3F−λ∂3G)+l tD

β
1 (∂3F−λ∂3G)

= (k − λ k

2ξ
) + k tI

1−α
1 (k − λ k

2ξ
) − d

dt
(2(y′ + l0D

β
t y)− λ)

+ l tD
β
1 (2(y′ + l0D

β
t y)− λ)= 0.

Thus, we conclude that (3.18) is an extremal for functional J(y) subject to
the prescribed boundary conditions and given isoperimetric constant.

Example 3.16. Choose k = l = 0. In this case the isoperimetric constraint is
trivially satisfied and the problem (3.16)-(3.17) reduces to the classical problem
of the calculus of variations:

Minimize J(y) =

∫ 1

0
(y′(t))2 dt,

subject to

y(0) = 0 and y(1) = ξ

and extremal (3.18) simplifies to the minimizer y(t) = ξ t of J(y).
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Example 3.17. Choose k = 0 , β → 1. The problem (3.16)-(3.17) reduces to
the classical variational problem

Minimize J(y) = (l + 1)2

∫ 1

0
(y′(t))2 dt,

subject to

y(0) = 0 and y(1) =
ξ

l + 1

and extremal (3.18) simplifies to y(t) = ξ
(l+1) t

Example 3.18. Choose k = 0, l = ξ = 1. If β → 0, the problem (3.16)-(3.17)
reduces to the classical isoperimetric problem

Minimize J(y) =

∫ 1

0
(y′(t) + y(t))2 dt,

subject to

y(0) = 0 and y(1) = 1− 1

e
,

and an isoperimetric constant

I(y) =

∫ 1

0
(y′(t) + y(t)) dt = 1.

Extremal (3.18) reduces to the classical extremal y(t) = 1− e−t.

3.3. Solution Scheme. In this section, we define a numerical formulation for
approximation of the composition of fractional derivatives. One can clearly ob-
serve that the composition of left and right fractional derivatives often occurs
while dealing with fractional Euler-Lagrange equations.

We present here an approximation of the following composition of fractional
derivatives for t ∈ [0, b], and α > 0.

(a) c
tD

α
b
c
0D

α
t f(t) (b) tD

α
b 0D

α
t f(t) (c) tD

α
b
c
0D

α
t f(t)

(It may be noted that these are not the only composition of fractional deriva-
tives, other possible combinations also exist and can be approximated in the
similar manner.)

(a) We first consider the following composition of fractional differential oper-
ator of order α, for t ∈ [0, b] and 0 < α < 1,

c
tD

α
b
c
0D

α
t f(t), (3.19)
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where c
tD

α
b , c0D

α
t are the right and left Caputo fractional derivative. Equation

(3.19) is supplemented with the boundary conditions

f(0) = f0 and f(b) = fb.

Consider a partition {0 = t0 < t1 < · · · < ti−1 < ti < ti+1 < · · · < tN = b} of
[0, b] by introducing N homogeneous grid of nodes: ti = i∆t,∆t = b/N . The
value of the function f at the point ti is denoted as fi = f(ti).

The value of left Caputo derivative occurring in (3.19) at t = ti can be
approximated as

c
0D

α
t f(t) |t=ti =

1

Γ(1− α)

∫ ti

t0

f ′(τ)

(ti − τ)α
dτ

u
1

Γ(1− α)

i−1∑
j=0

fj+1 − fj
∆t

∫ tj+1

tj

1

(ti − τ)α
dτ

=
1

Γ(1− α)

i−1∑
j=0

fj+1 − fj
∆t

.
(ti − tj)1−α − (ti − tj+1)1−α

1− α

=
(∆t)−α

Γ(2− α)

i−1∑
j=0

(fj+1 − fj)[(i− j)1−α − (i− j − 1)1−α]

= (∆t)−α
i∑

j=0

fj v1(i, j) ,

where

v1(i, j) =
1

Γ(2− α)

 (i− 1)1−α − i1−α ; j = 0,
(i−j+1)1−α − 2(i−j)1−α + (i−j−1)1−α ; j = 1, · · · , i− 1,

1 ; j = i.

We denote g(t) = c
0D

α
t f(t), the discrete form of composition of operators ctD

α
b

and c
0D

α
t can be given as

c
tD

α
b
c
0D

α
t f(t) |t=ti = c

tD
α
b g(t) |t=ti

= gN
(b− ti)−α

Γ(1− α)
+

1

Γ(1− α)

∫ tN

ti

g′(τ)

(τ − ti)α
dτ

u gN
(b−ti)−α

Γ(1−α)
+

1

Γ(1−α)

N−1∑
j=i

gj+1−gj
∆t

∫ tj+1

tj

1

(τ−ti)α
dτ
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= gN
(b− ti)−α

Γ(1− α)
+

1

Γ(1− α)

N−1∑
j=i

gj+1 − gj
∆t

.
(tj+1 − ti)1−α − (tj − ti)1−α

1− α

= gN
(1− α)((N − i)∆t)−α

Γ(2− α)

+
(∆t)−α

Γ(2− α)

N−1∑
j=i

(gj+1 − gj)[(j + 1− i)1−α − (j − i)1−α]

= (∆t)−α
N∑
j=i

gj w1(i, j) ,

where

w1(i, j) =
1

Γ(2−α)

 1 ; j = i,
(j−i+1)1−α− 2(j−i)1−α+ (j−i−1)1−α ; j = i+ 1, · · · , N − 1,

(N − i− 1)1−α − (N − i)1−α ; j = N.

Using v1(i, j) and w1(i, j), we describe the discrete form of the fractional
operator in (3.19),

cDα
b−
cDα

0+f(t) |t=ti u (∆t)−2α
N∑
j=i

[
w(i, j)

j∑
k=0

v(j, k) fk

]

with given boundary conditions f(0) = f0 and f(b) = fb.

Example 3.19. Let us consider the equation c
tD

α
1
c
0D

α
t f(t) = 0, for 0 < α < 1

and t ∈ [0, 1]. Clearly f(t) = tα is the analytical solution of given fractional
differential equation with boundary condition f(0) = 0 and f(b) = f(1) = 1.
Calculating the numerical values for N = 3, 4, we determine the values of fi
for i = 1, 2, · · · , N−1. Table 1, 2 presents the numerical values of fi and their
respective numerical errors for N = 3, 4. ERRfi = |(fi − f ′i)|/f ′i . f ′i is the
actual value of f at the point t = ti.

(b) Consider the following composition of fractional derivatives, for t ∈ [0, b]
and 0 < α < 1

tD
α
b 0D

α
t f(t), (3.20)

where tD
α
b , 0D

α
t are the right and left Riemann-Liouville fractional order de-

rivative. (3.20) is supplemented with the boundary conditions

f(0) = f0 and f(b) = fb.
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Table 1. Numerical values and relative errors of fi, (i = 1, 2)
for different values of α in example (3.19)

N =
3

α = .001 α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9 α = .999

f1 0.998097 0.836628 0.621955 0.493751 0.411201 0.354956 0.333533
f2 0.999472 0.948006 0.855493 0.782983 0.727355 0.684433 0.666833
errf1 8.058758 ∗

10−4
0.066220 0.135239 0.144798 0.112764 0.045922 4.996667 ∗

10−4

errf2 1.226668 ∗
10−4

0.012766 0.033851 0.041046 0.033926 0.014145 1.559841 ∗
10−4

Table 2. Numerical values and relative errors of fi, (i =
1, 2, 3) for different values of α in example (3.19)

N =
4

α = 0.001 α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9 α = 0.999

f1 0.99775 0.80784 0.56142 0.41856 0.32993 0.27176 0.25136
f2 0.99914 0.91603 0.77223 0.66375 0.58361 0.52401 0.50256
f3 1.00129 0.96628 0.90267 0.84771 0.80237 0.76561 0.75365
errf1 8.61860 ∗

10−4
0.07203 0.14904 0.16287 0.12929 0.05367 4.07908 ∗

10−3

errf2 1.67208 ∗
10−4

0.01821 0.04926 0.06131 0.05192 0.02214 4.42754 ∗
10−3

errf3 1.58709 ∗
10−3

5.51402∗
10−3

0.01596 0.02454 0.01863 8.12358∗
10−3

4.58562 ∗
10−3

(All the calculations are performed with the help of Mathematica.)

By considering a partition {0 = t0 < t1 < · · ·< ti−1 < ti < ti+1 < · · ·< tN = b}
of [0, b] (following the same procedure as in (a)), the value of the left Riemann-
Liouville derivative occurring in (3.20) at t = ti can be approximated as:

0D
α
t f(t) |t=ti = f0

t−αi
Γ(1− α)

+
1

Γ(1− α)

∫ ti

t0

f ′(τ)

(ti − τ)α
dτ

u f0
t−αi

Γ(1− α)
+

1

Γ(1− α)

i−1∑
j=0

fj+1 − fj
∆t

∫ tj+1

tj

1

(ti − τ)α
dτ

= f0
t−αi

Γ(1− α)
+

1

Γ(1− α)

i−1∑
j=0

fj+1 − fj
∆t

.
(ti − tj)1−α − (ti − tj+1)1−α

1− α

= f0
(i∆t)−α

Γ(1− α)
+

(∆t)−α

Γ(2− α)

i−1∑
j=0

(fj+1 − fj)[(i− j)1−α − (i− j − 1)1−α]

= f0
(1− α)(i∆t)−α

Γ(2− α)

+
(∆t)−α

Γ(2− α)

i−1∑
j=0

(fj+1 − fj)[(i− j)1−α − (i− j − 1)1−α]

= (∆t)−α
i∑

j=0

fj v2(i, j) ,
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where

v2(i, j) =
1

Γ(2−α)

 (1− α)i−α + (i− 1)1−α − i1−α ; j = 0,
(i−j+1)1−α − 2(i−j)1−α + (i−j−1)1−α ; j = 1, · · · , i− 1,

1 ; j = i.

Denote g(t) = 0D
α
t f(t), the discrete form of composition of operators tD

α
b

and 0D
α
t is

tD
α
b 0D

α
t f(t) |t=ti = Dα

b−g(t) |t=ti

= gN
(b− ti)−α

Γ(1− α)
+

1

Γ(1− α)

∫ tN

ti

g′(τ)

(τ − ti)α
dτ

u gN
(b− ti)−α

Γ(1− α)
+

1

Γ(1− α)

N−1∑
j=i

gj+1 − gj
∆t

∫ tj+1

tj

1

(τ − ti)α
dτ

= gN
(b− ti)−α

Γ(1− α)

+
1

Γ(1− α)

N−1∑
j=i

gj+1 − gj
∆t

.
(tj+1 − ti)1−α − (tj − ti)1−α

1− α

= gN
((N − i)∆t)−α

Γ(1− α)

+
(∆t)−α

Γ(2− α)

N−1∑
j=i

(gj+1 − gj)[(j + 1− i)1−α − (j − i)1−α]

= gN
(1− α)((N − i)∆t)−α

Γ(2− α)

+
(∆t)−α

Γ(2− α)

N−1∑
j=i

(gj+1 − gj)[(j + 1− i)1−α − (j − i)1−α]

= (∆t)−α
N∑
j=i

gj w2(i, j) ,

where

w2(i, j) =
1

Γ(2−α)

 1 ; j = i,
(j−i+1)1−α − 2(j−i)1−α + (j−i−1)1−α ; j = i+ 1,· · ·, N−1,
(N−i−1)1−α−(N−i)1−α + (1−α)(N−i)−α ; j = N.
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Using v2(i, j) and w2(i, j), we describe the discrete form of the fractional
operator in equation (3.20),

tD
α
b 0D

α
t f(t) |t=ti u (∆t)−2α

N∑
j=i

[
w(i, j)

j∑
k=0

v(j, k)fk

]

with given boundary conditions f(0) = f0 and f(b) = fb.

(c) We now consider the following composition of fractional derivatives of
order α, for t ∈ [0, b] and 0 < α < 1

tD
α
b
c
0D

α
t f(t), (3.21)

where tD
α
b is the right Riemann-Liouville fractional order derivative and c

0D
α
t

is left Caputo’s fractional order derivative. (3.21) is supplemented with the
boundary conditions

f(0) = f0 and f(b) = fb

Following the same procedure as in (a) and (b), consider a partition {0 =
t0 < t1 < · · · < ti−1 < ti < ti+1 < · · · < tN = b} of [0, b] by introducing N
homogeneous grid of nodes: ti = i∆t,∆t = b/N . The value of the function f
at the point ti is denoted as fi = f(ti).
The value of the left Caputo derivative occurring in (3.21) at t = ti can be
approximated as

c
0D

α
t f(t) |t=ti =

1

Γ(1− α)

∫ ti

t0

f ′(τ)

(ti − τ)α
dτ

u
1

Γ(1− α)

i−1∑
j=0

fj+1 − fj
∆t

∫ tj+1

tj

1

(ti − τ)α
dτ

=
1

Γ(1− α)

i−1∑
j=0

fj+1 − fj
∆t

.
(ti − tj)1−α − (ti − tj+1)1−α

1− α

=
(∆t)−α

Γ(2− α)

i−1∑
j=0

(fj+1 − fj)[(i− j)1−α − (i− j − 1)1−α]

=
(∆t)−α

Γ(2− α)

i−1∑
j=0

(fj+1 − fj)[(i− j)1−α − (i− j − 1)1−α]

= (∆t)−α
i∑

j=0

fj v3(i, j) ,
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where

v3(i, j) =
1

Γ(2− α)

 (i− 1)1−α − i1−α ; j = 0,
(i− j + 1)1−α − 2(i− j)1−α + (i− j − 1)1−α ; j = 1, · · · , i− 1,

1 ; j = i.

Denote g(t) = c
0D

α
t f(t), the discrete form of the composition of operators tD

α
b

and c
0D

α
t is given by

tD
α
b
c
0D

α
t f(t) |t=ti = tD

α
b g(t) |t=ti

= gN
(b− ti)−α

Γ(1− α)
+

1

Γ(1− α)

∫ tN

ti

g′(τ)

(τ − ti)α
dτ

u gN
(b− ti)−α

Γ(1− α)
+

1

Γ(1− α)

N−1∑
j=i

gj+1 − gj
∆t

∫ tj+1

tj

1

(τ − ti)α
dτ

= gN
(b− ti)−α

Γ(1− α)

+
1

Γ(1− α)

N−1∑
j=i

gj+1 − gj
∆t

.
(tj+1 − ti)1−α − (tj − ti)1−α

1− α

= gN
(1− α)((N − i)∆t)−α

Γ(2− α)

+
(∆t)−α

Γ(2− α)

N−1∑
j=i

(gj+1 − gj)[(j + 1− i)1−α − (j − i)1−α]

= (∆t)−α
N∑
j=i

gj w3(i, j) ,

where

w3(i, j) =
1

Γ(2− α)

 1 ; j = i,
(j − i+ 1)1−α− 2(j − i)1−α+(j − i− 1)1−α ; j = i+ 1,· · ·, N − 1,

(N − i− 1)1−α − (N − i)1−α + (1− α)(N − i)−α ; j = N.

Using formula v3(i, j) and w3(i, j), we describe a discrete form of the fractional
operator in (3.21),

Dα
b−
cDα

0+f(t) |t=ti u (∆t)−2α
N∑
j=i

[
w(i, j)

j∑
k=0

v(j, k) fk

]

with given boundary conditions f(0) = f0 and f(b) = fb.
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We can rewrite the above discussion in a well-organized form as
follows:

(a) c
tD

α
b
c
0D

α
t f(t) |t=ti u (∆t)−2α

N∑
j=i

[
w1(i, j)

j∑
k=0

v1(j, k) fk

]
,

(b) tD
α
b 0D

α
t f(t) |t=ti u (∆t)−2α

N∑
j=i

[
w2(i, j)

j∑
k=0

v2(j, k) fk

]
,

(c) tD
α
b
c
0D

α
t f(t) |t=ti u (∆t)−2α

N∑
j=i

[
w3(i, j)

j∑
k=0

v3(j, k) fk

]
,

with given boundary conditions f(0) = f0 and f(b) = fb. Here,

v1(i, j) =
1

Γ(2− α)

 (i− 1)1−α − i1−α ; j = 0
(i− j + 1)1−α − 2(i− j)1−α + (i− j − 1)1−α; j = 1, ..., i− 1

1 ; j = i.

w1(i, j) =
1

Γ(2− α)

 1 ; j = i
(j − i+ 1)1−α−2(j − i)1−α+(j − i− 1)1−α; j = i+ 1, ..., N − 1

(N − i− 1)1−α − (N − i)1−α ; j = N.

v2(i, j) =
1

Γ(2− α)

 (1− α)i−α + (i− 1)1−α − i1−α ; j = 0
(i− j + 1)1−α − 2(i− j)1−α + (i− j − 1)1−α ; j = 1, ..., i− 1

1 ; j = i.

w2(i, j) =
1

Γ(2− α)

 1 ; j = i
(j − i+ 1)1−α−2(j − i)1−α+(j − i− 1)1−α; j = i+ 1, ..., N − 1

(N − i− 1)1−α − (N − i)1−α + (1− α)(N − i)−α ; j = N.

v3(i, j) =
1

Γ(2− α)

 (i− 1)1−α − i1−α ; j = 0
(i− j + 1)1−α − 2(i− j)1−α + (i− j − 1)1−α ; j = 1, ..., i− 1

1 ; j = i.

w3(i, j) =
1

Γ(2− α)

 1 ; j = i
(j−i+1)1−α−2(j−i)1−α+ (j − i− 1)1−α ; j = i+ 1, ..., N − 1

(N − i− 1)1−α − (N − i)1−α + (1− α)(N − i)−α ; j = N.

The next section presents the implementation of the solution scheme to
solve the problem of fractional calculus of variations.
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4. Implementation of solution scheme

Consider the problem of fractional calculus of variations, for t ∈ [a, b] and
0 < α < 1:

minimize J(y) =

∫ 1

0
F (t, y(t), 0D

α
t y(t))dt (4.1)

subject to
y(0) = 0 and y(1) = 1.

Take

F =
1

2
(0D

α
t y)2 − Γ(1 + α)(1− t)−α

Γ(1− α)
y.

Euler-Lagrange equation (necessary condition) for (4.1) is given by

∂2F + tD
α
1 ∂3F = 0, (4.2)

i .e. − Γ(1 + α)(1− t)−α

Γ(1− α)
+ tD

α
1 0D

α
t y(t) = 0. (4.3)

One can clearly observe that y(t) = tα is an analytical solution of (4.3) subject
to the prescribed boundary conditions y(0) = 0 and y(1) = 1.

Applying the formulation (b) (Section 3) for composition of fractional
derivatives, (4.1) together with given boundary conditions can be written as

y(0) = 0, i = 0, (4.4)

Ai + (∆t)−2α
N∑
j=i

[
w(i, j)

j∑
k=0

v(j, k) yk

]
= 0, i = 1, · · · , N − 1, (4.5)

y(1) = 1, i = N. (4.6)

where Ai = −Γ(1+α)(1−ti)−α
Γ(1−α) . In order to solve (4.1) with given boundary

conditions, we need to solve the system of algebraic equation (4.4)-(4.6). We
have used Mathematica to perform the numerical segments.

Take N = 3 (number of homogeneous grid of nodes), ti = i∆t, ∆t = 1/3
for i = 0, 1, 2, 3. We have y0 = 0 and y(1) = y(t3) = 1. Thus, now we find the
values of yi for i = 1, 2. Table 3 presents the numerical values of yi and their
respective numerical errors for N = 3. ERRyi = |(yi − y∗i )|/y∗i , where y∗i is
the actual value of y at the point t = ti.

5. Conclusions

Calculus of variations involving fractional operators is currently a rich re-
search topic, where the results are firm but very rare. Results of Euler-
Lagrange equations for a variety of classes of fractional variational problem
has already been given. These include fractional variational problem with the
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Table 3. Numerical values and relative errors of yi, (i = 1, 2)
for different values of α

N =
3

α = .001 α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9 α = .999

y1 0.998479 0.820545 0.594847 0.473378 0.402498 0.353894 0.333533
y2 0.999288 0.931596 0.824715 0.758929 0.716804 0.683121 0.666833
errf1 4.234559∗

10−4
0.084171 0.172931 0.180085 0.131542 0.048777 4.996667∗

10−4

errf2 3.067414∗
10−4

0.029854 0.068611 0.070505 0.047940 0.016034 1.559841∗
10−4

Riemann-Liouville operators, Caputo derivatives, Riesz derivatives, a combi-
nation of classical and fractional derivatives, etc. In this paper, we go a step
further with some additional term, i.e., we consider the variational problem
with a combination of classical and fractional derivatives/integrals and prove
the optimality conditions. Furthermore, necessary extremality conditions for
generalized fractional isoperimetric problem for the same class is proved.
A generalized numerical scheme has been presented for solving fractional
Euler-Lagrange equations. The approach is to approximate composition of
fractional derivatives occurring all the while in necessary conditions. This
numerical scheme can further be extended for the composition of variety of
fractional operators.
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