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Abstract. In this paper, we introduce a new explicit iterative algorithm for finding a solution

of split variational inclusion problem over the common fixed points set of a infinite family of

nonexpansive mappings in Hilbert spaces. To reach this goal, the iterative algorithms which

combine Tian’s method with some fixed point technically proving methods are utilized for

solving the problem. Under suitable assumptions, we prove that the sequence generated by

the iterative algorithm converges strongly to the unique solution of the considered problem.

Our result improves and extends the corresponding results announced by many others.

1. Introduction

Let H1 and H2 be real Hilbert spaces with inner product 〈·, ·〉 and norm ‖·‖,
respectively. Moudafi [8] introduced the following Split Monotone Variational
Inclusion Problem (SMVIP): find x∗ ∈ H1 such that

0 ∈ f(x∗) +B1(x∗), (1.1)
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and such that

y∗ = Ax∗ ∈ H2 solves 0 ∈ g(y∗) +B2(y∗), (1.2)

where B1 : H1 → 2H1 and B2 : H2 → 2H2 are set-valued maximal monotone
mappings, A : H1 → H2 is a bounded linear operator, f : H1 → H1 and
g : H2 → H2 are two given single-valued operators. Moudafi proposed the
following iterative method for solving (1.1)-(1.2): let γ > 0 and x0 ∈ H1 be
arbitrary,

xk+1 = U(xk + γA∗(T − I)Axk), k ∈ N, (1.3)

where γ ∈ (0, 1/L) with L being the spectral radius of the operator A∗A,

the operator U := JB1
λ (I − λf) and T := JB2

λ (I − λg). He showed that the
sequence generated by (1.3) weakly converges to a solution of SMVIP.

If f ≡ 0 and g ≡ 0 then SMVIP (1.1)-(1.2) reduces to Split Variational
Inclusion Problem (SVIP): find x∗ ∈ H1 such that

0 ∈ B1(x∗), (1.4)

and such that
y∗ = Ax∗ ∈ H2 solves 0 ∈ B2(y∗). (1.5)

We denote the solution set of SVIP(1.4) and SVIP(1.5) by SOLVIP(B1) and
SOLVIP(B2), respectively. The solution of set of SVIP(1.4)-(1.5) is denoted
by Γ = {x∗ ∈ H1 : x∗ ∈ SOLVIP(B1) and Ax∗ ∈ SOLVIP(B2)}.

On the other hand, let us recall some iterative methods for solving the fixed
point problems of nonexpansive mappings. In 2000, the viscosity approxima-
tion method is proposed by Moudafi [9], which is done by considering the
approximatae well-posed problem and combing the nonexpansive mapping of
T with a contraction of a given mapping f over the nonempty closed convex
subset. Starting with an arbitrary initial x0 ∈ H, define a sequence {xn}
recursively by

xn+1 = αnf(xn) + (1− αn)Txn, n ≥ 0,

where {αn} ⊂ (0, 1). Under this iterative procedure, the strong convergent
result was successfully obtained.

Motivated by Moudafi’s viscosity approximation and the method of finding
solutions of SVIP, Nimana and Petrot [10] presented the following iterative
algorithm:

un = JB1
λ (xn + γnA

∗(JB2
λ − I)Axn);

xn+1 = αnf(xn) + (1− αn)Tnun, n ≥ 0,

where {Tn, T} satisfy AKTT-condition [1] if for each subset B of C,
∞∑
n=1

sup{‖Tn+1z − Tnz‖ : z ∈ B} <∞.
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Under other given conditions, they proved that the above iterative algorithm
converges strongly to z ∈ ∩∞i=1Fix(Ti) ∩ Γ, where z = P∩∞i=1Fix(Ti)∩Γf(z). We
also know that AKTT-condition is so rigorous, and most of the operators
cann’t satisfy this condition. This motivates the development of new algorith-
mic schemes.

Combing Marino and Xu [7] and Yamada [14], Tian [11] considered the
following general viscosity type iterative method

xn+1 = αnγf(xn) + (I − µαnF )Txn, (1.8)

where F is a k-Lipschitzian continuous operator and η-strongly monotone
operator with k > 0, η > 0. He proved that such sequences converges strongly
to a common solution of split variational inclusion problem and fixed point
problem.

In the present paper, inspired by the above cited works, we consider the
problem (1.4)-(1.5) and combine the iterative method (1.8) with Moudafi’s
SMVIP and constitute a new iterative algorithm. Without the AKTT-condition,
we prove that such sequence converges strongly to x̃ ∈

⋂∞
i=1 Fix(Ti)∩Γ, where

x̃ = P⋂∞
i=1 Fix(Ti)∩Γf(x̃).

2. Preliminaries

Throughout this paper, we write xn ⇀ x and xn → x to indicate that {xn}
converges weakly to x and converges strongly to x, respectively.

In order to prove our results, we collect some necessary conception and
lemmas in this section.

Definition 2.1. A mapping T : H → H is said to be

(i) nonexpansive, if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ H.
(ii) firmly nonexpansive, if 2T − I is nonexpansive, or equivalently for all

x, y ∈ H, 〈Tx− Ty, x− y〉 ≥ ‖Tx− Ty‖2.
(iii) strongly positive, if there exists a constant γ > 0 such that 〈Tx, x〉 ≥

γ‖x‖2 for all x ∈ H.
(iv) monotone, if 〈Tx− Ty, x− y〉 ≥ 0 for all x, y ∈ H.
(v) η-strongly monotone, if there exists a constant η > 0 such that 〈x −

y, Tx− Ty〉 ≥ η‖x− y‖2, for all x, y ∈ H.

Definition 2.2. A multi-valued mapping B : H → 2H is called

(i) monotone, if 〈u− v, x− y〉 ≥ 0 whenever u ∈ B(x), v ∈ B(y).
(ii) maximal, if, in addition, its graph gphB := {(x, y) ∈ H×H : y ∈ B(x)}

is not properly contained in the graph of any other monotone operator.



672 C. Zhang and Z. Xu

It is well known that every nonexpansive operator T : H → H satisfies, for
all (x, y) ∈ H ×H, the inequality

〈(x− Tx)− (y − Ty), T y − Tx〉 ≤ 1

2
‖(Tx− x)− (Ty − y)‖2 (2.1)

and therefore, we get, for all (x, y) ∈ H1 × Fix(T ),

〈x− Tx, y − Tx〉 ≤ 1

2
‖Tx− x‖2, (2.2)

see e.g., [[2], Theorem 3.1] and [[3], Theorem 2.1].

Lemma 2.3. ([12]) Assume {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− γn)an + δn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that

(i)
∑∞

n=1 γn =∞,

(ii) lim supn→∞
δn
γn
≤ 0 or

∑∞
n=1 | δn |<∞.

Then limn→∞ an = 0.

Lemma 2.4. ([4]) Let H be a Hilbert space, C a closed convex subset of H,
and T : C → C a nonexpansive mapping with Fix(T ) 6= ∅. If {xn} is a
sequence in C weakly converging to x ∈ C and {(I −T )xn} converges strongly
to y ∈ C, then (I − T )x = y. In particular, if y = 0, then x ∈ Fix(T ).

Lemma 2.5. In a Hilbert space H, there holds the inequality

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, x, y ∈ H.

Lemma 2.6. ([5]) Let B : H → 2H be a multi-valued maximal monotone
mapping. Then the resolvent mapping JBλ : H → H is defined by

JBλ (x) := (I + λB)−1(x), ∀x ∈ H,

for some λ > 0. The resolvent operator JBλ is single-valued and firmly nonex-

pansive. It is easy deduced that JBλ is nonexpansive and 1
2 -averaged.

Lemma 2.7. ([6]) The composite of finitely many averaged mappings is av-
eraged. That is, if each of the mappings {Ti}Ni=1 is averaged, then so is
the composite T1 · · ·TN . In particular, if T1 is α1-averaged and T2 is α2-
averaged, where α1, α2 ∈ (0, 1), then both T1T2 and T2T1 are α-averaged, where
α = α1 + α2 − α1α2.
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3. Main results

Now we state and prove our main result in this paper.

Theorem 3.1. Let H1 and H2 be two real Hilbert spaces and A : H1 → H2

be a bounded linear operator. Let {Tn} be a countable family of nonexpansive
mappings of a real Hilbert space H, F be a k-Lipschitzian continuous and η-
strongly monotone operator on H with k > 0 and η > 0, V be a α-Lipschitzian
on H with α > 0. Assume that Ω =

⋂∞
i=1 Fix(Ti)

⋂
Γ 6= ∅. Suppose x1 ∈ H

and 0 < µ < 2η
k2

. Define a sequence {xn} as follows:
un = JB1

λ (xn + βA∗(JB2
λ − I)Axn);

yn = βnun +
∑n

i=1(βi−1 − βi)Tiun;

xn+1 = αnγV xn + (I − µαnF )yn,

where β ∈ (0, 1
L), 0 < γ < τ

α with τ = µ(η − 1
2µk

2). Suppose αn ∈ (0, 1] and
{βn} be a strictly decreasing sequence in (0, 1]. If the following conditions are
satisfied:

(i) limn→∞ αn = 0;
(ii)

∑∞
n=1 αn =∞;

(iii)
∑∞

n=1 |αn+1 − αn| <∞;
(iv)

∑∞
n=1 |βn+1 − βn| <∞.

Then the sequence {xn} converges strongly to the unique solution x∗ of the
variational inequality:

〈(µF − γV )x∗, x− x∗〉 ≥ 0, ∀x ∈ Ω. (3.1)

Equivalently, we have PΩ(I − µF + γV )x∗ = x∗.

Proof. We proceed with the following steps:
Step 1. We show that {xn} is bounded. In fact, for some point p ∈ Ω, then

we have p = JB1
λ p, Ap = JB2

λ (Ap) and Tip = p, for all i ∈ N . Since JB1
λ is

firmly-nonexpansive, so we have

‖un − p‖2 = ‖JB1
λ

(
xn + βA∗(JB2

λ − I)Axn
)
− p‖2

= ‖JB1
λ

(
xn + βA∗(JB2

λ − I)Axn
)
− JB1

λ p‖2

≤ ‖xn + βA∗(JB2
λ − I)Axn − p‖2

≤ ‖xn − p‖2 + β2‖A∗(JB2
λ − I)Axn‖2

+ 2β〈xn − p,A∗(JB2
λ − I)Axn〉.

It follows that

‖un − p‖2 ≤ ‖xn − p‖2 + β2〈(JB2
λ − I)Axn, AA

∗(JB2
λ − I)Axn〉

+ 2β〈xn − p,A∗(JB2
λ − I)Axn〉.

(3.2)
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Now, we have

β2〈(JB2
λ − I)Axn, AA

∗(JB2
λ − I)Axn〉 ≤ Lβ2‖(JB2

λ − I)Axn‖2. (3.3)

Using (2.2) and JB2
λ Ap = Ap, we have

2β〈xn − p,A∗(JB2
λ − I)Axn〉

= 2β〈A(xn − p), (JB2
λ − I)Axn〉

= 2β〈A(xn − p) + (JB2
λ − I)Axn − (JB2

λ − I)Axn, (J
B2
λ − I)Axn〉

= 2β{〈JB2
λ Axn −Ap, (JB2

λ − I)Axn〉 − ‖(JB2
λ − I)Axn‖2}

≤ 2β

{
1

2
‖(JB2

λ − I)Axn‖2 − ‖(JB2
λ − I)Axn‖2

}
≤ −β‖(JB2

λ − I)Axn‖2.

(3.4)

Substituting (3.3) and (3.4) into (3.2), it follows that

‖un − p‖2 ≤ ‖xn + βA∗(JB2
λ − I)Axn − p‖2

≤ ‖xn − p‖2 + β(Lβ − 1)‖(JB2
λ − I)Axn‖2.

(3.5)

Since β ∈ (0, 1
L), we have ‖un − p‖2 ≤ ‖xn − p‖2.

On the other hand, noting that

‖yn − p‖ = ‖βnun +
n∑
i=1

(βi−1 − βi)Tiun − p‖

≤ βn‖un − p‖+
n∑
i=1

(βi−1 − βi)‖Tiun − p‖

≤ βn‖un − p‖+
n∑
i=1

(βi−1 − βi)‖un − p‖

= ‖un − p‖.

(3.6)

So, we can deduce

‖yn − p‖ ≤ ‖xn − p‖. (3.7)

Next, we estimate

‖xn+1 − p‖ = ‖αnγV xn + (I − µαnF )yn − p‖
= ‖αnγV xn − αnγV p+ αnγV p+ (I − µαnF )yn

− (I − µαnF )p− µαnFp‖
≤ αnγα‖xn − p‖+ (1− αnτ)‖yn − p‖+ αn‖γV p− µFp‖
≤
(
1− αn(τ − γα)

)
‖xn − p‖+ αn‖γV p− µFp‖
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≤ max

{
‖xn − p‖,

‖γV p− µFp‖
τ − γα

}
...

≤ max

{
‖x1 − p‖,

‖γV p− µFp‖
τ − γα

}
.

Hence, {xn} is bounded. Therefore we can obtain that {yn}, {un}, {Tiun},
{Fyn} and {V xn} are bounded.

Step 2. We show that limn→∞ ‖xn+1 − xn‖ = 0.
Noting that

‖xn+1 − xn‖
= ‖αnγV xn + (I − µαnF )yn − (αn−1γV xn−1

+ (I − µαn−1F )yn−1)‖
= ‖αnγV xn − αnγV xn−1 + αnγV xn−1 − αn−1γV xn−1

+ (I − µαnF )yn − (I − µαnF )yn−1 + (I − µαnF )yn−1

− (I − µαn−1F )yn−1‖
≤ αnγα‖xn − xn−1‖+ (1− αnτ)‖yn − yn−1‖

+ γ|αn − αn−1|‖V xn−1‖+ µ|αn − αn−1|‖Fyn−1‖
≤ αnγα‖xn − xn−1‖+ (1− αnτ)‖yn − yn−1‖+ |αn − αn−1|K,

(3.8)

where K := sup{γ‖V (xn−1)‖ + µ‖Fyn−1‖ : n ∈ N}. At the same time, we
observe that

‖yn − yn−1‖

= ‖βnun +
n∑
i=1

(βi−1 − βi)Tiun − βn−1un−1 −
n−1∑
i=1

(βi−1 − βi)Tiun−1‖

≤ βn‖un − un−1‖+ |βn − βn−1|‖un−1‖

+

n∑
i=1

(βi−1 − βi)‖Tiun − Tiun−1‖+ |βn − βn−1|‖Tnun−1‖

≤ ‖un − un−1‖+ |βn − βn−1|(‖un−1‖+ ‖Tnun−1‖).

(3.9)

By Lemma 2.6, we know that JB1
λ and JB2

λ both are firmly nonexpansive, so

are averaged. For β ∈ (0, 1
L), the mapping (I+βA∗(JB2

λ −I)A) is averaged (see

[8]). Using Lemma 2.7, we know that the mapping JB1
λ (I + βA∗(JB2

λ − I)A)
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is averaged and hence nonexpansive, then we have

‖un − un−1‖

= ‖JB1
λ (xn + βA∗(JB2

λ − I)Axn)− JB1
λ (xn−1 + βA∗(JB2

λ − I)Axn−1)‖

≤ ‖JB1
λ (I + βA∗(JB2

λ − I)A)xn − JB1
λ (I + βA∗(JB2

λ − I)A)xn−1‖
≤ ‖xn − xn−1‖.

(3.10)
Combing (3.8), (3.9) and (3.10), we obtain

‖xn+1 − xn‖ ≤
(
1− αn(τ − γα)

)
‖xn − xn−1‖+ |αn − αn−1|K

+ |βn − βn−1|(1− αnτ)(‖un−1‖+ ‖Tnun−1‖).

Noticing the conditions (ii), (iii) and (iv), by Lemma 2.3, we have

lim
n→∞

‖xn+1 − xn‖ = 0.

Step 3. We show limn→∞ ‖Tiun − un‖ = 0 for all i ∈ N .
Since p ∈ Ω, we note that

‖un − p‖2 ≥ ‖Tiun − Tip‖2

= ‖Tiun − un + un − p‖2

= ‖Tiun − un‖2 + ‖un − p‖2 + 2〈Tiun − un, un − p〉,

which imply that

1

2
‖Tiun − un‖2 ≤ 〈un − Tiun, un − p〉. (3.11)

So, we can deduce

1

2

n∑
i=1

(βi−1 − βi)‖Tiun − un‖2

≤
n∑
i=1

(βi−1 − βi)〈un − Tiun, un − p〉

= 〈(1− βn)un −
n∑
i=1

(βi−1 − βi)Tiun, un − p〉

= 〈(1− βn)un − yn + βnun, un − p〉
= 〈un − yn, un − p〉
= 〈un − xn, un − p〉+ 〈xn − xn+1, un − p〉

+ 〈xn+1 − yn, un − p〉.

(3.12)
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Since αn → 0 as n→∞, it follows that

lim
n→∞

‖xn+1 − yn‖ = lim
n→∞

‖αnγV xn + (I − µαnF )yn − yn‖

= lim
n→∞

αn‖γV xn − µFyn‖

= 0.

Next, we claim that limn→∞ ‖xn−un‖ = 0. By (3.5), (3.6) and (3.14), we note
that

‖xn+1 − p‖2 ≤ (1− αnτ)2(‖xn − p‖2 + β(Lβ − 1)‖(JB2
λ − I)Axn‖2)

+ 2αn〈γV xn − µFp, xn+1 − p〉

≤ ‖xn − p‖2 + β(Lβ − 1)‖(JB2
λ − I)Axn‖2

+ 2αn〈γV xn − µFp, xn+1 − p〉.
It follows that

β(1− Lβ)‖(JB2
λ − I)Axn‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2αn‖γV xn − µFp‖‖xn+1 − p‖
≤ ‖xn+1 − xn‖(‖xn − p‖+ ‖xn+1 − p‖) + 2αn‖γV xn − µFp‖‖xn+1 − p‖.

Since 1− Lβ > 0, αn → 0 and ‖xn+1 − xn‖ → 0 as n→∞, so

lim
n→∞

‖(JB2
λ − I)Axn‖ = 0. (3.13)

Now, the firmly nonexpansiveness of JB1
λ implies that

‖un − p‖2 = ‖JB1
λ

(
xn + βA∗(JB2

λ − I)Axn
)
− p‖2

= ‖JB1
λ

(
xn + βA∗(JB2

λ − I)Axn
)
− JB1

λ p‖2

≤ 〈un − p, xn + βA∗(JB2
λ − I)Axn − p〉

=
1

2
{‖un − p‖2 + ‖xn + βA∗(JB2

λ − I)Axn − p‖2

− ‖(un − p)−
(
xn + βA∗(JB2

λ − I)Axn − p
)
‖2}

=
1

2
{‖un − p‖2 + ‖xn − p‖2 + β(Lβ − 1)‖(JB2

λ − I)Axn‖2

− ‖un − xn − βA∗(JB2
λ − I)Axn‖2}

≤ 1

2
{‖un − p‖2 + ‖xn − p‖2 −

(
‖un − xn‖2

+ β2‖A∗(JB2
λ − I)Axn‖2 − 2β〈un − xn, A∗(JB2

λ − I)Axn〉
)
}

≤ 1

2
{‖un − p‖2 + ‖xn − p‖2 − ‖un − xn‖2

+ 2β‖A(un − xn)‖‖(JB2
λ − I)Axn‖}.
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Hence, we obtain

‖un − p‖2

≤ ‖xn − p‖2 − ‖un − xn‖2 + 2β‖A(un − xn)‖‖(JB2
λ − I)Axn‖.

(3.14)

Subsequently, by Lemma 2.5, we have

‖xn+1 − p‖2 = ‖αnγV xn + (I − µαnF )yn − p‖2

= ‖αn(γV xn − µFp) + (I − µαnF )yn − (I − µαnF )p‖2

≤ (1− αnτ)2‖yn − p‖2 + 2αn〈γV xn − µFp, xn+1 − p〉.
(3.15)

It follows from (3.6), (3.14) and (3.15) that

‖xn+1 − p‖2 ≤ (1− αnτ)2‖un − p‖2 + 2αn〈γV xn − µFp, xn+1 − p〉
≤ (1− αnτ)2{‖xn − p‖2 − ‖un − xn‖2

+ 2β‖A(un − xn)‖‖(JB2
λ − I)Axn‖}

+ 2αn〈γV xn − µFp, xn+1 − p〉

≤ ‖xn − p‖2 − ‖un − xn‖2 + 2β‖A(un − xn)‖‖(JB2
λ − I)Axn‖

+ 2αn‖γV xn − µFp‖‖xn+1 − p‖,

which is equivalent to

‖un − xn‖2 ≤ ‖xn+1 − xn‖(‖xn − p‖+ ‖xn+1 − p‖)

+ 2β‖A(un − xn)‖‖(JB2
λ − I)Axn‖

+ 2αn‖γV xn − µFp‖‖xn+1 − p‖.
(3.16)

Hence, by (3.16), we have

lim
n→∞

‖un − xn‖ = 0. (3.17)

Furthermore, by (3.12), we can deduce limn→∞
∑n

i=1(βi−1−βi)‖Tiun−un‖2 =
0. Since {βn} is strictly decreasing, it follows that for every i ∈ N,

lim
n→∞

‖Tiun − un‖ = 0.

Step 4. We claim that lim supn→∞〈(γV − µF )x̃, xn+1 − x̃〉 ≤ 0 where x̃ =
PΩ(I − µF + γV )x̃.
Since {un} is bounded, so, there exist a point u∗ ∈ H1 and a subsequence
{unj} of {un} such that lim supn→∞〈(γV − µF )x̃, un − x̃〉 = limj→∞〈(γV −
µF )x̃, unj− x̃〉 and unj ⇀ u∗. Now, Ti being nonexpansive, by Lemma 2.4 and
limn→∞ ‖Tiun − un‖ = 0, we obtain that u∗ ∈ Fix(Ti). On the other hand,
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unj = JB1
λ

(
xnj + βA∗(JB2

λ − I)Axnj

)
can be written as

xnj − unj + βA∗(JB2
λ − I)Axnj

λ
∈ B1unj .

(3.18)

By passing to limit j →∞ in (3.18) and by taking into account (3.13), (3.17)
and the fact that the graph of maximal monotone operator is weakly-strongly
closed, we obtain 0 ∈ B1(u∗), i.e., u∗ ∈ SOLVIP(B1). Furthermore, since {xn}
and {un} have the same asymptotical behaviour, {Axnj} weakly converges to

Au∗. Again, by (3.13) and the fact that the resolvent JB2
λ is nonexpansive and

Lemma 2.4, we obtain that Au∗ ∈ JB2
λ (Au∗), i.e., Au∗ ∈ SOLVIP(B2). Thus

u∗ ∈ Ω.
By obtuse angle principle,

lim sup
n→∞

〈(γV − µF )x̃, xn+1 − x̃〉 = lim sup
n→∞

〈(γV − µF )x̃, un − x̃〉

= lim
j→∞
〈(γV − µF )x̃, unj − x̃〉

= 〈(γV − µF )x̃, u∗ − x̃〉
≤ 0.

(3.19)

Step 5. We show that xn → x̃.
Noting that

‖xn+1 − x̃‖2

= ‖αnγV xn + (I − µαnF )yn − x̃‖2

= ‖(I − µαnF )yn − (I − µαnF )x̃+ αn(γV xn − µF x̃‖2

≤ ‖(I − µαnF )yn − (I − µαnF )x̃‖2 + 2αn〈γV xn − µF x̃, xn+1 − x̃〉
≤ (1− αnτ)2‖yn − x̃‖2 + 2αn〈γV xn − γV x̃+ γV x̃− µF x̃, xn+1 − x̃〉
≤ (1− αnτ)2‖xn − x̃‖2 + αnγα

(
‖xn − x̃‖2 + ‖xn+1 − x̃‖2

)
+ 2αn〈(γV − µF )x̃, xn+1 − x̃〉

=
(
(1− αnτ)2 + αnγα

)
‖xn − x̃‖2 + αnγα‖xn+1 − x̃‖2

+ 2αn〈(γV − µF )x̃, xn+1 − x̃〉.

It follows that

‖xn+1 − x̃‖2

≤ (1− αnτ)2 − αnγα
1− αnγα

‖xn − x̃‖2 +
2αn

1− αnγα
〈(γV − µF )x̃, xn+1 − x̃〉

≤
(

1− 2αn(τ − γα)

1− αnγα

)
‖xn − x̃‖2
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+
2αn(τ − γα)

1− αnγα

(
〈(γV − µF )x̃, xn+1 − x̃〉+

αnτ
2

2(τ − γα)
‖xn − x̃‖2

)
.

Consequently, according to (3.19) and Lemma 2.3, we deduce that {xn} con-
verges strongly to x̃. This completes the proof. �

4. Numerical examples

In this part, we present a numerical example to demonstrate the perfor-
mance and convergence of our result as follows.

Example 4.1. Let H1 = R2, H2 = R2 and we define B1 : R2 → R2 and

B2 : R2 → R2 by B1 =

(
9 0
0 4

)
, B2 =

(
5 0
0 6

)
.

Let A ∈ R2×2 : H1 → H2 be non-singular matrix operator in which elements
are random and A∗ be an adjoint of A. Let L = ‖A∗A‖2 and β ∈ (0, 1

L) is
random. It is easy known that B1 and B2 are linear maximal monotone
operators. So, the resolvent operators of B1 and B2 are defined by JB1

λ and

JB2
λ where λ > 0, respectively. Let αn = 1

n+1 , βn = 1
n+2 and {Tn} be a class

of non-singular matrix operators which ‖Tn‖ = 1 and the element of {Tn} is

random. We assume that V =

(
2 0
0 2

)
, F =

(
3 0
0 3

)
. So, It is clear that

α = 2 and k = η = 3. Let γ and µ are random in the interval (0, τα) and

(0, 2η
k2

) respectively, where τ = µ(η − 1
2µk

2) and 2η
k2

= 2
3 .

Next, we state our new algorithm via a numerical example.

Step 1. Choose the initial value for the iterative algorithm x1 is random in
interval (0, 1× 106)× (0, 1× 106), and the others is defined as above.

Step 2. Given the iterative algorithm as follows:


un = JB1

λ (xn + βA∗(JB2
λ − I)Axn);

yn = 1
n+2un +

∑n
i=1( 1

i+1 −
1
i+2)Tiun;

xn+1 = 1
n+1γV xn + (I − µ 1

n+1F )yn.

Step 3. Put n = n+ 1 and go to step 2.
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By Algorithm 4.1, we present the convergence analysis of our iterative al-
gorithm as follows:

Figure.1 shows that the norms of xn, yn and un converge to the same number
0 with a high speed. Figure.2, Figure.3 and Figure.4 show the error behaviors
of ‖xn − xn−1‖, ‖yn − yn−1‖ and ‖un − un−1‖ respectively.
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According to the numerical example for the new explicit iterative algorithm
for finding a solution of split variational inclusion problem over the common
fixed points set of a infinite family of nonexpansive mappings in Hilbert spaces
in this paper, it is clear that the convergent speed is so quickly even though
the AKTT-condition dose not exist; see Figure.1.
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