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Abstract. In this paper, we introduce a new explicit iterative algorithm for finding a solution
of split variational inclusion problem over the common fixed points set of a infinite family of
nonexpansive mappings in Hilbert spaces. To reach this goal, the iterative algorithms which
combine Tian’s method with some fixed point technically proving methods are utilized for
solving the problem. Under suitable assumptions, we prove that the sequence generated by
the iterative algorithm converges strongly to the unique solution of the considered problem.

Our result improves and extends the corresponding results announced by many others.

1. INTRODUCTION

Let Hy and Hj be real Hilbert spaces with inner product (-, -) and norm ||- ||,
respectively. Moudafi [8] introduced the following Split Monotone Variational
Inclusion Problem (SMVIP): find 2* € H; such that

0€ f(z") + Bi(z"), (1.1)
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and such that
y* = Az* € Hy solves 0 € g(y*) + Ba(y*), (1.2)

where By : H; — 21 and By : Hy — 272 are set-valued maximal monotone
mappings, A : Hy — Hy is a bounded linear operator, f : H;y — Hj and
g : Hy — Hs are two given single-valued operators. Moudafi proposed the
following iterative method for solving (1.1)-(1.2): let v > 0 and zo € Hy be
arbitrary,

g1 = Uz + vA*(T — I)Axg), k€N, (1.3)
where v € (0,1/L) with L being the spectral radius of the operator A*A,
the operator U := Jfl (I —MXf)and T := J/\BQ(I — Ag). He showed that the
sequence generated by (1.3) weakly converges to a solution of SMVIP.

If f=0and g =0 then SMVIP (1.1)-(1.2) reduces to Split Variational
Inclusion Problem (SVIP): find z* € H; such that

0 € By(z*), (1.4)

and such that

y* = Azx* € Hy solves 0 € Ba(y™). (1.5)
We denote the solution set of SVIP(1.4) and SVIP(1.5) by SOLVIP(B;) and
SOLVIP(B;y), respectively. The solution of set of SVIP(1.4)-(1.5) is denoted
by I' = {z* € Hy : z* € SOLVIP(B;) and Az* € SOLVIP(B>)}.

On the other hand, let us recall some iterative methods for solving the fixed
point problems of nonexpansive mappings. In 2000, the viscosity approxima-
tion method is proposed by Moudafi [9], which is done by considering the
approximatae well-posed problem and combing the nonexpansive mapping of
T with a contraction of a given mapping f over the nonempty closed convex
subset. Starting with an arbitrary initial 29 € H, define a sequence {z,}
recursively by

Tyl = anf(xn) + (1 — apn)Txy,n >0,
where {a,} C (0,1). Under this iterative procedure, the strong convergent
result was successfully obtained.

Motivated by Moudafi’s viscosity approximation and the method of finding
solutions of SVIP, Nimana and Petrot [10] presented the following iterative
algorithm:

Up = TP (@ + Y AT (I — 1) Azy);
Tng1 = Qnf(an) + (1 — an)Thuy, n >0,
where {T},, T'} satisfy AKTT-condition [1] if for each subset B of C,

o
Zsup{”Tn+1z —Tyz||: z € B} < 0.

n=1
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Under other given conditions, they proved that the above iterative algorithm
converges strongly to z € N, Fiz(T;) N T', where z = Pn;.ilpm(Ti)mpf(z). We
also know that AKTT-condition is so rigorous, and most of the operators
cann’t satisfy this condition. This motivates the development of new algorith-
mic schemes.

Combing Marino and Xu [7] and Yamada [14], Tian [11] considered the
following general viscosity type iterative method

Tyl = anYf(xn) + (I — pop F) Ty, (1.8)

where F' is a k-Lipschitzian continuous operator and n-strongly monotone
operator with k > 0,n > 0. He proved that such sequences converges strongly
to a common solution of split variational inclusion problem and fixed point
problem.

In the present paper, inspired by the above cited works, we consider the
problem (1.4)-(1.5) and combine the iterative method (1.8) with Moudafi’s
SMVIP and constitute a new iterative algorithm. Without the AKTT-condition,
we prove that such sequence converges strongly to & € (2, Fiz(T;) NI, where

2. PRELIMINARIES

Throughout this paper, we write z,, — = and z,, — = to indicate that {x,}
converges weakly to z and converges strongly to x, respectively.

In order to prove our results, we collect some necessary conception and
lemmas in this section.

Definition 2.1. A mapping T : H — H is said to be

(i) nonexpansive, if ||Txz — Ty|| < ||z — y|| for all x,y € H.

(i) firmly nonexpansive, if 2T — I is nonexpansive, or equivalently for all
z,y € H, (Tx —Ty,x —y) > [Tz — Ty,

(iii) strongly positive, if there exists a constant v > 0 such that (T'z,z) >
v||z||? for all z € H.

(iv) monotone, if (Tx —Ty,xz —y) >0 for all x,y € H.

(v) n-strongly monotone, if there exists a constant n > 0 such that (x —
y, Tz — Ty) > nllz— y|?, for all 2,y € H.

Definition 2.2. A multi-valued mapping B : H — 2 is called
(i) monotone, if (u — v, x —y) > 0 whenever u € B(x), v € B(y).
(ii) mazimal, if, in addition, its graph gphB := {(z,y) € HxH :y € B(z)}
is not properly contained in the graph of any other monotone operator.
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It is well known that every nonexpansive operator 17" : H — H satisfies, for
all (z,y) € H x H, the inequality

(o~ Ta) (g~ Ty), Ty~ Ta) < L|[(Tx —2) ~ Ty ) (21)
and therefore, we get, for all (z,y) € Hy x Fix(T),
(x = Tx,y—Tzx) < %HTx—x]P, (2.2)
see e.g., [[2], Theorem 3.1] and [[3], Theorem 2.1].
Lemma 2.3. ([12]) Assume {an} is a sequence of nonnegative real numbers
such that

An+1 < (1 - 7n)an + 6n7
where {yn} is a sequence in (0,1) and {0} is a sequence such that
(i) X521 = oo,
(i) limsup,,_, % <0 ord> o2 | oy < o0.

Then lim,_so an, = 0.

Lemma 2.4. ([4]) Let H be a Hilbert space, C' a closed convex subset of H,
and T : C — C a nonexpansive mapping with Fix(T) # 0. If {z,} is a
sequence in C' weakly converging to x € C and {(I —T)x,} converges strongly
toy € C, then (I —T)x =y. In particular, if y =0, then x € Fiz(T).

Lemma 2.5. In a Hilbert space H, there holds the inequality
|z +yll* < z)* +2{y, x +y), =,y € H.

Lemma 2.6. ([5]) Let B : H — 2 be a multi-valued mazimal monotone
mapping. Then the resolvent mapping JAB : H — H is defined by

JP(z):= (I +AB)"'(z), Yz € H,

for some A > 0. The resolvent operator J/{g 1s single-valued and firmly nonez-
pansive. It is easy deduced that J f s nonexpansive and %—avemged.

Lemma 2.7. ([6]) The composite of finitely many averaged mappings is av-
eraged. That is, if each of the mappings {TZ}ZJ\L1 is averaged, then so s
the composite Ty ---Tn. In particular, if Ty is ai-averaged and Ty is ao-
averaged, where a1, s € (0,1), then both Ty Ty and ToTy are a-averaged, where
=01+ a2 — Q.
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3. MAIN RESULTS

Now we state and prove our main result in this paper.

Theorem 3.1. Let Hy and Hy be two real Hilbert spaces and A : Hy — Ho
be a bounded linear operator. Let {T,,} be a countable family of nonexpansive
mappings of a real Hilbert space H, F be a k-Lipschitzian continuous and n-
strongly monotone operator on H with k > 0 andn > 0, V be a a-Lipschitzian
on H with o > 0. Assume that Q = ;2 Fiz(T;) T # 0. Suppose x1 € H

and 0 < p < ,2?’27 Define a sequence {x,,} as follows:
Up = T (@0 + BAN(JP? — 1) Azy);
Yn = Bnun + iy (Bim1 — Bi) Tyun;
Tn1 = ap YV iy + (I — panF)yn,
where B € (0,7), 0 <~ < Z with 7 = pu(n — $puk?). Suppose an € (0,1] and

{Bn} be a strictly decreasing sequence in (0,1]. If the following conditions are
satisfied:
(i) limy, 500 0y = 0;
(i) Doy an = 005
(%ii) Zzzl |41 — | < 00;
(iv) Doty |Brr1 — Bl < 0o,

Then the sequence {x,} converges strongly to the unique solution x* of the
variational inequality:

(uF —~AV)z*,x —x*) >0, Yo e Q. (3.1)
Equivalently, we have Po(I — uF +~yV)z* = x*.

Proof. We proceed with the following steps:

Step 1. We show that {z,} is bounded. In fact, for some point p € Q, then
we have p = Jflp, Ap = JEQ(Ap) and T;p = p, for all ¢ € N. Since Jfl is
firmly-nonexpansive, so we have

[tn = plI* = | T (wn + BA*(JY? — I) Azy) — pl|?
= || J0 (w0 + BA*(JY? — I)Azy,) — JL )2
< lwn + BA*(J32 — I) Az, — p|?
< lwn = plI> + BIA (I3 = I) A,
+ 28(xy, — p, A*(J22 — 1) Axy,).
It follows that
lun = plI* < llzn — plI* + B>((J2 = 1) Ay, AA*(J32 = 1) Axy,)

3.2
+ 2B(xy, — p, A*(JY2 — I)Ay,). (3:2)
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Axyy, AA*(JP? — T)Azy) < LB?||(J2? — 1) Az, |

Using (2.2) and JfQAp = Ap, we have

JP2 — 1) Axy)

= 28(A(zy — p), (J2 — 1) Azy)
= 26(A(xn — p) + (JI? — ) Axy — (JP? — I) Ay, (J12 — 1) Axy,)

= 28{(J? Az

n— Ap, (JP2 — ) Azy) — |[(J> — I) Az, |}

1
<28 {JIUE = el = |7 - DAz}

< =Bl -
Substituting (3.3)

lln —

I) Az, |
and (3.4) into (3.2), it follows that
plI? < llwn + BA*(J? — I) Awn — p|?
<l = plI? + LB = V(I = 1) Az .

Since € (0, %), we have ||u, — p||? < ||z — p||%.
On the other hand, noting that

lyn = pll = || Bpun + 2(5171 = Bi)Tiun, — p||

So, we can deduce

Next, we estimate

[ 201 —pll =

<
<

=1

< Ballun = pll + Y (Bicr = B) | T — pl|

i=1

< Bullun = pll + > (Bi-1 = B:)[un — pl
i=1

= [Jun — pl|.
lyn — 2l < llzn — pl|.

lanyVa, + (I - ,uoan)yn - pH

YV, — anyVp+ anyVp + (I — pon F )y,

— (I = panF)p — pan Fp||

apyalzn, = pll + (1 = anT)|lyn — pll + anllvVp — uFp||
(1 = an(T —y)) |0 — pll + nlly Vi — pFp||

(3.3)
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Vp—uF
< max{H:vn _p‘,H’ypupH}

T — Yy«

Vo—uF
Smax{nxl_p”JWpupH}

T — Yo
Hence, {z,} is bounded. Therefore we can obtain that {y,}, {u,}, {Tiun},
{Fyn} and {Vz,} are bounded.

Step 2. We show that lim,,_,cc || Zn+1 — || = 0.
Noting that

[Znt1 — T
= [lanyVan, + (I — pon F)yn — (ap—1YVp—1
+ (I = pan-1F)yn-1)||
= llanyVa, — anyVan—1 + anyVa,-1 — an_17Va, 1
+ (I = ponF)yn — (I = pon F)yn—1 + (I = pon F)yn—1 (3.8)
— (I = pan—1F)yn—1||
< apyallzn, — xp—1ll + (1 — an?)[|yn — Y-l
+Ylen — an—1[|[Van-1ll + plom — cn—1[| Fyn—1]
< apyallzn — xp-al| + (1 = an?)[lyn — Yol + o — 1| K,
where K := sup{y||V(xn_1)| + pl|Fyn-1]| : n € N}. At the same time, we
observe that
19 = Yn—1ll

n—1

= || Bnun + Z(ﬂifl = Bi)Tiun — Brn—1un—1 — Z(Bifl — Bi) Tiun—||

i=1 i=1
< Bullun — un—1]] + [Bn — Br-1l|tun—1]| (3.9)

n
+ 3 (Bim1 = Bi)|Tiun — Tl + B — Bl Tottn—1]|
=1

< lun = un—1ll + 18n = Ba—1|([un—1l] + | Troun—-1))-

By Lemma 2.6, we know that J f Yand J f 2 both are firmly nonexpansive, so
are averaged. For 8 € (0, 1), the mapping (I+BA*(J/<32 —1I)A) is averaged (see
[8]). Using Lemma 2.7, we know that the mapping Jy' (I + BA*(JP? — I)A)
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is averaged and hence nonexpansive, then we have
l[un — up—1l|
= ||V (@0 + BA*(JR2 = I)Azy) = T (@n1 + BAT (2 = 1) Az
< || JPHT + BA* (P> — D) Ay — TPV + BAY (TP — 1) A2y

< lzn — zp-al|-

(3.10)
Combing (3.8), (3.9) and (3.10), we obtain
|Tn41 — 2nl| < (1 —an(T — 'YQ)) |zn — Tp—1| + |oan — an-1|K
+1Bn = Bn-1l(1 — anT)(lun-1ll + [ Totn-1]))-
Noticing the conditions (ii), (iii) and (iv), by Lemma 2.3, we have
nhj{.lo [Znt1 — 20| = 0.
Step 3. We show lim,, ;o ||Tiuyn, — up|| =0 for all ¢ € N.
Since p € €1, we note that
[un = plI* > || Trun — Tipl|?
= ||T’zun — Up + Un _pH2
= ||T’7,un - Un||2 + ||un - p”2 + 2<ﬂun — Unp, Up —P>,
which imply that
1
§||Tzun_un||2 < <un_Tiumun_p>' (3'11)
So, we can deduce
1 n
3 > (Bic1 = B) | Toun —
i=1
n
<Y (Bic1 = Bi) (un — Tytin, un — p)
i=1
n
= (1= Bn)un — Y _(Bim1 — Bi)Tittn, ttn — p) (3.12)

=1
<(1 - Bn)un — Yn + Bnln, Un _p>
<Un — Yn, Un _p>
<Un — Tn, Un — p> + <xn — Tn+1, Un _p>

+ <-77n+1 — Yn, Un — p>~
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Since o, — 0 as n — oo, it follows that
im zp41 — yull = lm [anyVa, + (I — panF)yn — |
n—oo n—oo
= lim ay[yVa, — pFy,||
n—oo
=0.

Next, we claim that lim,_,« ||zn, —un| = 0. By (3.5), (3.6) and (3.14), we note
that

2nt1 = plI* < (1= an7)*(|2n — p|* + BB — D[ (JF? — 1) Az, |?)
+ 2an(YVan — pFp, xni1 — p)
< lltn = plI? + BLS = VIR — 1) Azl
+ 20, (YW — pF'p, Tpy1 — p).
It follows that
B(L = LE)|(J32 — I)Azy|?
< lan = pl* = lznt1 = plI® + 200 |7V 20 — pFpll| 2041 — pll
< |2ns1 = znll(lzn = pll + [|2n+1 = pll) + 200 |V an — pFpll||zn1 — pl|-
Since 1 — LB > 0, o, — 0 and ||zp+1 — x| = 0 as n — o0, so
. By _
nhﬁnolo (Jy IAx,|| = 0. (3.13)
Now, the firmly nonexpansiveness of J f ! implies that
lun = plI* = |V (2 + BA*(JR2 — ) Azy) — p|?
= | JP (2 + BA* (I — 1) Ax,) — TP p||2
< <un —DyTn +BA*(J)\BQ - I)Axn _p>
1 *
= 5 tlun —pl* + [z + BAN(IY2 = 1) Ay — p||?
— [[(un —p) — (wn + BA*(JEQ —1I)Az, —p)||2}
1
= 5 {llun = pI* + llzn = pII* + BLS — DI = 1) Az
— |lun =z — BA*(J? — I) Az}
1
< Slun = pl* + Il = I* = (lun — 2al|*
+ BT = D) Az ® — 28(un — 0, A*(J? — 1) Axy))}
1
< Sllun = 1?4+ 2w =l = llup — za?
+ 28] Aun — ) [[[|(J32 = T) Az}
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Hence, we obtain

[t — pl|?

(3.14)
< lwn = plI* = l[un = @al* + 28] Aun — 2) [[[|(J32 = T) Ap|.

Subsequently, by Lemma 2.5, we have

2041 = plI* = lenyVan + (I = pon F)y, — pl?
= lan(yVan — pFp) + (I — pon F)yn — (I — pan F)p||* (3.15)
< (1= an7)?|lyn — plI* + 200 (YV 2y — pFp, Tni1 — p).
It follows from (3.6), (3.14) and (3.15) that

2041 = plI* < (1= an7)?|lun = pl|* + 200 (yV iy — pFp, 241 — p)
< (1= an)* {l|zn = plI* = llun — za?
+ 28] A(un — ) [1(J5? — I) Az}
+ 20, (YW, — pFp, xpi1 — p)
< Nl = plI> = lun — zal® + 28] A(un — ) [[|(JV* = I) Az
+ 20,7V n — pFpll[[zntr — pll,

which is equivalent to

[un — xn”Q < Nznt1 — 2all(lzn — 2l + 2041 — pl)
+ 28] Alup — ) | [[(J32 = 1) Azy| (3.16)
+ 20|y Van — pFp|||zn+1 — pll-
Hence, by (3.16), we have

nlggo [[tn = @nl| = 0. (3.17)
Furthermore, by (3.12), we can deduce limy, o0 > iy (Biz1— Bi) || Tittn —un||* =
0. Since {f,} is strictly decreasing, it follows that for every i € N,

lim || Tiu, — uy|| = 0.
n—oo

Step 4. We claim that limsup,,_, . ((7V — pF)Z,xp41 — T) < 0 where T =
Po(I — pF +~V)z.

Since {u,} is bounded, so, there exist a point u* € H; and a subsequence
{un,} of {un} such that limsup,, .. ((YV — pF)Z, uy, — Z) = limj oo ((7V —
pl)Z, u,, — ) and up,; — u*. Now, T; being nonexpansive, by Lemma 2.4 and
limy, 00 || Tittn, — un|| = 0, we obtain that u* € Fiz(T;). On the other hand,



Explicit iterative algorithm for solving split variational inclusion 679
Up,; = Jfl (zn, + 6A*<J)\BQ — I)Axzy,) can be written as

Tp; — Un, + BA*(JV? — I) Ay,
A
By passing to limit j — oo in (3.18) and by taking into account (3.13), (3.17)
and the fact that the graph of maximal monotone operator is weakly-strongly
closed, we obtain 0 € By (u*), i.e., u* € SOLVIP(Bj). Furthermore, since {x,,}
and {u,} have the same asymptotical behaviour, { Az, } weakly converges to
Au*. Again, by (3.13) and the fact that the resolvent J )]\3 2 is nonexpansive and
Lemma 2.4, we obtain that Au* € JP?(Au*), i.e., Au* € SOLVIP(By). Thus
u* € Q.
By obtuse angle principle,

€ Buun,. (3.18)

limsup((vV — pF)Z, 2pi1 — ) = imsup((YV — pF)Z, un — 7)
n—oo

n—oo
= lim ((YV — uF)Z, un, — )
Jj—o0
=((VV = pF)z,u* — )
<0.

(3.19)

Step 5. We show that =, — .
Noting that

|01 — 2]
= lanyVan + (I — pan )y, — j”2
=[|(I = ponF)yn — (I — pon F)T + an (Vi — /LFj”Q
<N = panF)yn — (I — pan F)E|? + 200 (VW wn — pFE, tpg1 — &)
< (1= an?)?lyn — &l1? + 200 (W y — WVE+VE — pFZ, 2p41 — &)
< (L= anr)?[len = 2|* + anya(lzn — 2| + [|lzne — 2(°)
+ 20, ((VV — pF)%, ny1 — T)
= ((1 — an7)® + anya) lzn — Z|° + anval| e — Z)°
+ 20, (YV — pF)Z, xpy1 — T).
It follows that
[

200,

m«’YV — pE)Z, Tpy1 — I)

2 _
< (1 _ Clkn(T Pya))”lﬁ . i,HZ
— apya
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2

(((W — pF)E, xp1 — ) + L)Hmn - :z||2> .

+ 2an(T - ’)/Oé)
2(1 —ya

1 —apya

Consequently, according to (3.19) and Lemma 2.3, we deduce that {z,} con-
verges strongly to . This completes the proof. O

4. NUMERICAL EXAMPLES

In this part, we present a numerical example to demonstrate the perfor-
mance and convergence of our result as follows.

Example 4.1. Let H; = R?>, Hy = R? and we define B; : R? — R? and

9 0 5 0
B'R2 R2 B B
& by B <o 4)’ 2 <0 6>'

Let A € R>*? : H; — H, be non-singular matrix operator in which elements
are random and A* be an adjoint of A. Let L = ||A*A|> and 8 € (0, 1) is
random. It is easy known that By and By are linear maximal monotone
operators. So, the resolvent operators of B; and Bs are defined by J /{3 ! and

J;\BQ where A > 0, respectively. Let oy, = n%rl, Bn = %—i—Q and {T},} be a class
of non-singular matrix operators which ||7,| = 1 and the element of {T},} is

random. We assume that V = ( (2) (2) > , F= ( ?) g > So, It is clear that

a =2and k =71 = 3. Let v and p are random in the interval (0,~) and

(0, %) respectively, where T = p(n — pk?) and i—’g =2

Next, we state our new algorithm via a numerical example.

Step 1. Choose the initial value for the iterative algorithm z; is random in
interval (0,1 x 10%) x (0,1 x 10%), and the others is defined as above.

Step 2. Given the iterative algorithm as follows:
Up = JP (2 + BAS(JP? — 1) Axy);

Yn = %Hu” + Z?:l(z_% - Z_A%Q)Tzuny
Tptl = nLnyVxn +(I- ,un%rlF)yn,

Step 3. Put n =n + 1 and go to step 2.
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Figure 1. Behavior of LA and u, with A=0.2

x 10
3 T T
X
n
| Yn
251 | E—— b
|
|
2r | h
|
|
|
151 | b
|
|
T 1
|
|
|
05r |, 1
|
\
0 L L L L
0 10 15 20 25 30
number of iterations
10° Figure 2. The mean error of Hxn—xn_1H
35 X T T T
3l i
25r- 7
ol i
151 4
1F 4
0.5 7
0 L L L L
0 10 15 20 25 30

number of iterations



682 C. Zhang and Z. Xu

x 10
3 T

5 Figure 3. The mean error of ly -y,

el

25

Mean(Error)
(%
T

0.5

!

10 T

15
number of iterations

4 Figure 4. The mean error of Hun—u

20

ntll

25

30

Mean(Error)
(&
T

!

15
number of iterations

20

25

30

By Algorithm 4.1, we present the convergence analysis of our iterative al-

gorithm as follows:

Figure.1 shows that the norms of x, y, and u,, converge to the same number
0 with a high speed. Figure.2, Figure.3 and Figure.4 show the error behaviors

of ||zn, — Tn—1ll, |Yn — Yn—1|| and ||, — up—1]| respectively.
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According to the numerical example for the new explicit iterative algorithm
for finding a solution of split variational inclusion problem over the common
fixed points set of a infinite family of nonexpansive mappings in Hilbert spaces
in this paper, it is clear that the convergent speed is so quickly even though
the AKTT-condition dose not exist; see Figure.1.

[1]
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