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Abstract. A fixed point theorem for weakly contractive mappings is proved which satisfy a

generalized contraction condition on a complete metrically convex metric space. The result in

this paper generalizes the relevant results due to Rhoades [13], Alber and Guerre-Delabriere

[2] and others. An illustrative example is also furnished in support of our result.

1. Introduction

There are many results on fixed point theorems for self mapping of a Banach
space. In this direction Banach Contraction Principle is one of the celebrated
theorem. This theorem is widely considered as a source of metric fixed point
theory. Significantly, it has huge applications not only in metric fixed point
theory but in different areas of mathematical research. For the sake of com-
pleteness here we mentioned this celebrated theorem.

Let (X, d) be a complete metric space and let T : X → X satisfy the con-
traction condition:

d(Tx, Ty) ≤ kd(x, y), (1.1)

for all x, y ∈ X, where 0 ≤ k < 1. Then T has a unique fixed point.

There exists a various extention and generalisation of the above said theo-
rem, here we mentioned a few, we cite [5]-[9].
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Recently, Alber and Guerre-Delabriere [2] coined the concept of weakly
contractive maps and obtained fixed point results in Hilbert space for self
mappings. Rhoades [13] extended some of their works to Banach spaces for
the same setting.

However, in many applications the mappings involved is not always a self
map. So, it is interested to find sufficient conditions for which such mappings
will guarantee the existence of a fixed point. Assad and Kirk [4] initiated the
study of fixed point of nonself mappings in metrically convex spaces. The
technique due to Assad and Kirk [4] has been utilized by many researchers
and there exists considerable literature on this topic. To mentioned a few, we
cite [3,4,10,11,12,14].

In this paper, we prove a fixed point theorem for single valued nonself map-
pings by utilizing the idea of Rhoades [13] which either partially or completely
generalize the results due to Rhoades [13], Alber and Guerre-Delabriere [2]
and others. Here, we state the result of Rhoades [13] which runs as follows:

Theorem 1.1. Let (X, d) be a complete metric space, T a weakly contractive
map. Then T has a unique fixed point p in X.

Definition 1.2. Let K be a nonempty subset of a metric space (X, d). A
mapping T : K → X is said to be weakly contractive if Tx ∈ K,Tx ∩
K is nonempty and d(Tx, Ty) ≤ d(x, y)−φ(d(x, y)) where φ : [0,∞)→ [0,∞)
is continuous and nondecreasing function with φ(t) = 0 iff t = 0.

Definition 1.3. ([4]) A metric space (X, d) is said to be metrically convex if
for any x, y ∈ X with x 6= y there exists a point z ∈ X,x 6= z 6= y such that

d(x, z) + d(z, y) = d(x, y).

2. Result

Our result is proved for single valued nonself mappings for weakly contrac-
tive maps.

Theorem 2.1. Let (X, d) be a complete metrically convex metric space and
K be a nonempty closed subset of X. Let T : K → X satisfying:

(i) for each x ∈ δK, Tx ∈ K, and

d(Tx, Ty) ≤ d(x, y)− φ(d(x, y)) (2.1)

where φ : [0,∞)→ [0,∞) is continuous and nondecreasing function
with φ(t) = 0 iff t = 0.

Then T has a unique fixed point in K.
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Proof. Firstly, we proceed to construct two sequences {xn} and {yn} in the
following way. Let x0 ∈ K. Define y1 = Tx0. If y1 ∈ K set y1 = x1. If y1 /∈ K,
then choose x1 ∈ δK so that

d(x0, x1) + d(x1, y1) = d(x0, y1).

If y2 ∈ K then set y2 = x2. If y2 /∈ K, then choose x2 ∈ δK so that

d(x1, x2) + d(x2, y2) = d(x1, y2).

Thus, repeating the foregoing arguments, one obtains two sequences {xn} and
{yn} such that

(ii) yn+1 = Txn,
(iii) yn = xn if yn ∈ K,
(iv) If xn ∈ δK, then d(xn−1, xn) + d(xn, yn) = d(xn−1, yn),where yn /∈ K.

Here, one obtains two types of sets we denote as follows:

P = {xi ∈ {xn} : xi = yi} and Q = {xi ∈ {xn} : xi 6= yi}.

One can note that if xn ∈ Q then xn−1 and xn+1 ∈ P.

We wish to estimate d(xn, xn+1).Now we distinguish the following three cases.

Case 1. If xn and xn+1 ∈ P, then

d(xn, xn+1) = d(Txn−1, Txn) ≤ d(xn−1, xn)− φ(d(xn−1, xn))

≤ d(xn−1, xn), (using monotone property of φ function).

Case 2. If xn ∈ P and xn+1 ∈ Q, then

d(xn, xn+1) + d(xn+1, yn+1) = d(xn, yn+1).

Therefore

d(xn, xn+1) ≤ d(xn, yn+1) = d(Txn−1, Txn) ≤ d(xn−1, xn)− φ(d(xn−1, xn))

≤ d(xn−1, xn), (as in Case 1).

Case 3. If xn ∈ Q and xn+1 ∈ P. Since xn ∈ Q and is a convex linear
combination of xn−1 and yn, it follows that

d(xn, xn+1) ≤ max{d(xn−1, xn+1), d(yn, xn+1)}.

If d(xn−1, xn+1) ≤ d(xn+1, yn), then

d(xn, xn+1) ≤ d(xn+1, yn) = d(Txn−1, Txn)

≤ d(xn−1, xn)− φ(d(xn−1, xn))

≤ d(xn−1, xn), (using monotone property of φ function).
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Otherwise if d(xn+1, yn) ≤ d(xn−1, xn+1), then

d(xn, xn+1) ≤ d(xn−1, xn+1) = d(Txn−2, Txn)

≤ d(xn−2, xn)− φ(d(xn−2, xn))

≤ d(xn−2, xn).

Notice that

d(xn−2, xn) ≤ d(xn−2, xn−1) + d(xn−1, xn)

≤ max{d(xn−2, xn−1), d(xn−1, xn)}.

Here, if d(xn−2, xn−1) ≤ d(xn−1, xn), then d(xn, xn+1) ≤ d(xn−1, xn). Other-
wise, if d(xn−1, xn) ≤ d(xn−2, xn−1), then d(xn, xn+1) ≤ d(xn−2, xn−1). Thus
in all the cases, we have

d(xn, xn+1) ≤ max{d(xn−1, xn), d(xn−2, xn−1)}.
It follows that the sequence {d(xn, xn+1)} is monotonically decreasing. Hence
d(xn, xn+1)→ 0 as n→∞.

Now, we prove that the sequence {xn} is a Cauchy sequence. Let on contrary
that the sequence {xn} is not Cauchy. Then there exists ε > 0 for which we
can find subsequences {xnk

} and {xmk
} such that d(xmk

, xnk
) ≥ ε.

Further, corresponding to each m(k), we can find n(k) in such a way that
the smallest positive integer n(k) > m(k) satisfying d(xmk

, xnk−1
) < ε. Now

we have

ε ≤ d(xmk
, xnk

) ≤ d(xmk
, xnk−1

) + d(xnk−1
, xnk

) < ε+ d(xnk−1
, xnk

).

On letting k →∞, we have d(xmk
, xnk

) = ε. Again,

d(xnk
, xmk

) ≤ d(xnk
, xnk−1

) + d(xnk−1
, xmk−1

) + d(xmk−1
, xmk

)

whereas

d(xnk−1
, xmk−1

) ≤ d(xnk−1
, xnk

) + d(xnk
, xmk

) + d(xmk
, xmk−1

).

Now on letting k →∞ in the above inequalities, one obtains,

lim
k→∞

d(xnk−1
, xmk−1

) = ε.

By setting x = xmk−1
and y = xnk−1

in (2.1), we obtain,

ε ≤ d(xmk−1
, xnk−1

)− φ(d(xmk−1
, xnk−1

)).

On letting k →∞, we have ε > 0, which is a contradiction. Thus the sequence
{x0, x1, x2, x3, · · · , xn−1, xn, xn+1, · · · } is Cauchy and hence convergent.

Let xn → z as n → ∞. Substituting x = xn−1 and y = z in equation (2.1)
we obtain

d(Tz, xn) ≤ d(z, xn−1)− φ(d(xn−1, z)).
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Letting n→∞ and using continuity of φ, we have,

d(Tz, z) ≤ 0− φ(0),

implying thereby Tz = z. This shows that z is a fixed point of T . To prove
that the uniqueness of fixed points.

Let us suppose that z1 and z2 are two fixed points of T. Then

d(Tz1, T z2) ≤ d(z1, z2)− φ(d(z1, z2))

⇒ d(z1, z2) ≤ d(z1, z2)− φ(d(z1, z2))

⇒ φ(d(z1, z2)) ≤ 0,

implying thereby z1 = z2. This shows the uniqueness of fixed point. �

Remark 2.2. By setting K = X in Theorem 2.1, one deduces a theorem due
to Rhoades [13].

Remark 2.3. By setting K = X in Theorem 2.1, one deduces a partial
generalization of theorem due to Alber and Guerre-Delabriere [2].

Corollary 2.4. Let X is a Banach space. Let B be a nonempty closed convex
subset of X and K a nonempty closed subset of B. Let T : K → B satisfying
the contraction condition (2.1) with the property that x ∈ δK relative to B
implies that Tx ∈ K. Then T has a unique fixed point.

By setting K = X, φ(t) = kt, 0 ≤ k < 1 in Theorem 2.1, one deduces a
corrollary in the form of Banach Contraction Principle.

Corollary 2.5. Let (X, d) be a complete metric space and let T : X → X
satisfying contraction condition d(Tx, Ty) ≤ kd(x, y), for all x, y ∈ X, where
0 ≤ k < 1. Then T has a unique fixed point.

3. An illustrative example

Finally, we furnish an example to establish the utility of our result.

Example 3.1. Let X = R with Euclidean metric and K = [0, 1]. Define
T : K → X and φ : [0,∞)→ [0,∞) as

Tx =

 (x− x2) , if 0 ≤ x ≤ 1
2 ,

1 , if 1
2 < x ≤ 1,

and φ(t) =

 t2 , if 0 ≤ t ≤ 1
2 ,

1 , if 1
2 < t ≤ 1.

Since δK(boundary of K) = {0, 1}, where 0 ∈ δK ⇒ T0 = 0 ∈ K and
1 ∈ δK ⇒ T1 = 1 ∈ K.

Moreover, for the verification of contraction condition (2.1), the following
cases arise:
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Case 1. If 0 ≤ x, y ≤ 1
2 , then

d(Tx, Ty) = (x− x2)− (y − y2) = (x− y)− (x2 − y2)
= (x− y)− (x− y)(x+ y)

≤ (x− y)− (x− y)(x− y) = (x− y)− (x− y)2

≤ d(x, y)− φ(d(x, y)).

Case 2. If 0 ≤ x ≤ 1
2 and 1

2 < y ≤ 1, then

d(Tx, Ty) = (x− x2)− 1 ≤ (x− y)− 1 ≤ d(x, y)− φ(d(x, y)).

Case 3. If 1
2 < x, y ≤ 1, then

d(Tx, Ty) = 0 ≤ d(x, y)− φ(d(x, y)).

Thus the contraction condition (2.1) and all other conditions of the Theorem
2.1 are satisfied. Note that ‘0’ is the fixed point of T.
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