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Abstract. In this paper we consider a class of semilinear uncertain dynamic systems on

Banach spaces subject to dynamic and additive uncertainty without any probabilistic struc-

ture. The problem is to find a control law that minimizes the maximum risk. We present

two distinct results on the existence of optimal controls in the presence of system uncertainty

and additive unstructured disturbance. The first result is concerned with the question of

existence of optimal controls from the class of general vector measures, and the second re-

sult is concerned with the question of existence of optimal policies from the class of purely

impulsive controls.

1. Introduction

In this paper we consider optimal control problems in the presence of un-
certainty in the system dynamics and additive perturbation without assuming
any particular probabilistic structure. The problem is formulated as min-max
problem minimizing the maximum loss or equivalently maximizing minimum
payoff. These problems are substantially more difficult compared to the prob-
lems of optimal control of deterministic finite or infinite dimensional systems
[13,16,19]. In recent years substantial interest in impulse driven systems has
been noted. In particular, important and interesting applications in physics,
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engineering, biology and medicine [17,21,22,24,25,26] have been recorded. Im-
pulse driven systems are particular cases of measure driven systems, particu-
larly measures taking values in Banach spaces. In this area substantial progress
has been made as seen in the work of the author [2]-[14] including the refer-
ences therein. Most of the systems in this series of papers are governed by
semilinear evolution equations with the principal operator being the infinites-
imal generator of C0-semigroups except the reference [8]. In [8] the principal
operator is nonlinear, monotone, hemicontinuous, and driven by signed mea-
sure. In most of these cases, the system is infinite dimensional offering the
possibility of further applications in distributed parameter systems (for ex-
ample, systems governed by partial differential equations) arising in physical
and biological sciences. Here in this paper we consider optimal control by
use of vector measures as well as Dirac measures which include the impulse
controls as special cases. We present a unified approach not only for control
of deterministic systems but also for uncertain systems. This is very impor-
tant because most of the systems used in physical and biological sciences are
incomplete in the sense that the values of the fundamental parameters deter-
mining the system are very often only the best estimates thereby introducing
uncertainty. Further, there are unknown external forces perturbing the sys-
tems. These are systems [1] subject to bounded parametric uncertainty as well
as unstructured external forces and therefore do not fall into the class of sto-
chastic differential equations driven by Brownian motion or Poisson random
measures. It is expected that more theoretical development will be inspired
by applications.

The rest of the paper is organized as follows. In section 2, we present some
typical notations. In section 3, we present the mathematical model describing
the system including the uncertainties and formulate the problem considered
in the paper. After introducing the basic assumptions the question of exis-
tence of solutions and their regularity properties are presented. In section
4, we present results on continuous dependence of solutions on the opera-
tors representing perturbation of the semigroup (generator), and the process
representing additive noise. In section 5, these results are used to prove the
existence of optimal control policies from the class of vector measures. In
section 6, purely impulsive controls are considered and existence of optimal
policies are proved.

2. Some notations

Let {X,Y, U} denote a triple of real separable Banach spaces represent-
ing the state space, the space of additive uncertainty, and the control space
respectively. Let I = [0, T ] denote any closed bounded interval. For any sep-
arable reflexive Banach space Z, we let L1(I, Z) denote the space of Bochner
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integrable functions with values in Z, and its dual by L∞(I, Z∗). Let Z1, Z2

be any pair of real Banach spaces and L(Z1, Z2) the Banach space of bounded
linear operators from Z1 to Z2.

In any Banach space Z, and for any s ≥ 0, let Bs(Z) denote the closed ball
of radius s > 0 centered at the origin. Let B∞(I,L(Z1, Z2)) denote the space
of operator valued functions which are measurable in the uniform operator
topology and uniformly bounded on the interval I in the sense that

sup{‖ T (t) ‖L(Z1,Z2), t ∈ I} <∞

for T ∈ B∞(I,L(Z1, Z2)). Suppose this is furnished with the topology of strong
convergence (convergence in the strong operator topology) uniformly on I in
the sense that, given Tn, T ∈ B∞(I,L(Z1, Z2)), Tn → T in this topology iff
for every z ∈ Z1,

sup{|Tn(t)z − T (t)z|Z2 , t ∈ I} → 0

as n→∞. In particular, for any normed space Z, B∞(I, Z) denotes the class
of bounded measurable functions defined on I and taking values from Z.

3. System with uncertainties and problem formulation

Let X,Y, U be real Banach spaces with topological duals denoted by {X∗,
Y ∗, U∗}. The space X denotes the state space where x takes its values from,
Y is the space where additive noise (uncertainty) ξ takes its values from, and
U is the space where the controls u take their values from. The system is
governed by the following semi-linear evolution equation in the Banach space
X,

dx = Axdt+R(t)xdt+ F (t, x(t))dt+G(t)ξ(t)dt+B(t)u(dt),

x(0) = x0, t ∈ I ≡ [0, T ], T <∞, (3.1)

whereA is the infinitesimal generator of a C0-semigroup S(t), t ≥ 0, of bounded
linear operators on X. The operator valued process R, perturbing the semi-
group generator A, takes values from the Banach space L(X) of bounded linear
operators in X.

This represents the uncertainty in the system dynamics (modeling uncer-
tainty), in the sense that the exact value of R at any given time is not known,
but it is known that it takes values from a bounded set in L(X), for example,
the closed ball Bγ(L(X)) of radius γ > 0 around the origin. We denote this
class of operator valued functions by Vγ ≡ B∞(I,Bγ(L(X))).

The function F : I × X −→ X represents nonlinearity in the system. For
most practical situations, it is reasonable to assume that the disturbance pro-
cess {ξ} is bounded. So without any loss of generality we may assume that the
process {ξ} is strongly measurable taking values from the closed ball Bδ(Y ) of
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radius δ > 0 and centered at the origin. We denote this class of disturbance
processes by Dδ ≡ B∞(I,Bδ(Y )). The operator G ∈ L∞(I,L(Y,X)), the space
of essentially bounded uniformly measurable operator valued functions while
the operator B ∈ B∞(I,L(U,X)), the space of bounded uniformly measurable
operator valued functions.

Let ΣI denote the sigma algebra of Borel subsets of the set I andMcabv(ΣI , U)
the space of countably additive bounded (in total variation norm) U valued
vector measures. For any µ ∈ Mcabv(ΣI , U), its total variation norm is given
by

‖ µ ‖v≡ sup
π

∑
σ∈π
|µ(σ)|U ,

where π denotes any finite disjoint measurable partition of the interval I ≡
[0, T ] and the supremum is taken over all such partitions. Furnished with the
total variation norm, Mcabv(ΣI , U) is a Banach space. We denote the admis-
sible controls by Uad ⊂ Mcabv(ΣI , U). Exact choice of the set of admissible
controls is specified later.

The performance of the system over the time horizon I ≡ [0, T ] is measured
by the following functional (called cost functional)

J(u,R, ξ) ≡
∫
I
`(t, x(t))dt+ Φ(x(T )) + Ψ(u) ≡ Ĵ(u,R, ξ) + Ψ(u), (3.2)

where the first term represents the running cost, the second term gives the
terminal cost and the last term given by Ψ(u) represents the cost of control.
In general ` is a Borel measurable map from I × X to R and continuous in
the second argument; Φ : X −→ R is continuous and Ψ : Mcabv(ΣI , U) −→
R0 ≡ [0,∞]. The cost functional depends on control u and the dynamic un-
certainty R and the additive noise (uncertainty) ξ in force during the period
I. Our objective is to find a control u ∈ Uad that minimizes the maximum
risk (maximum possible cost). This problem can be formulated as min-max
problem:

inf
u∈Uad

sup
(R,ξ)∈Vγ×Dδ

J(u,R, ξ).

Given this pessimistic view, an element uo ∈ Uad is said to be optimal if and
only if

Jo(u
o) ≡ sup

(R,ξ)∈Vγ×Dδ
J(uo, R, ξ)

≤ sup
(R,ξ)∈Vγ×Dδ

J(u,R, ξ) ≡ Jo(u), ∀u ∈ Uad. (3.3)

BASIC ASSUMPTIONS: To consider the above problem, we introduce the
following basic assumptions:
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(A1) The Banach spaces {X,Y } are reflexive and U is any real Banach
space.

(A2) The operator A is the infinitesimal generator of a C0-semigroup of
compact operators S(t), t ≥ 0, on X satisfying sup{‖ S(t) ‖L(X), t ∈
I} ≡M ∈ [1,∞).

(A3) The operator valued process R perturbing the semigroup is any uni-
formly measurable operator valued function defined on I and taking
values from the closed ball Bγ(L(X)) of radius γ > 0. This repre-
sents uncertainty in the system model and it is denoted by Vγ ≡
B∞(I,Bγ(L(X))).

(A4) The nonlinear operator F is a Borel measurable map from I × X
to X and uniformly Lipschitz in the second argument with Lipschitz
constant K.

(A5) The disturbance (noise) process ξ : I −→ Y, is any strongly measurable
function taking values from the closed ball Bδ(Y ) of radius δ > 0.
We denote this family by Dδ ≡ B∞(I,Bδ(Y )). This represents the
uncertainty without any probabilistic structure.

(A6) G ∈ L∞(I,L(Y,X)) and B ∈ B∞(I,L(U,X)) ∩ C(I,L(U,X)) where
C(I,L(U,X)) denotes the Banach space of bounded and strongly con-
tinuous operator valued functions.

It is important to mention that we do not assume any probabilistic structure
for the uncertainties {R, ξ}. They are simply bounded strongly measurable
process.

Before we conclude this section we present the following result on the exis-
tence and regularity of solutions of the system (3.1). This is used later in the
paper.

Lemma 3.1. Consider the uncertain system given by (3.1) over any finite
time horizon I ≡ [0, T ], and suppose the assumptions (A1)-(A6) hold. Then,
for every initial state x(0) = x0 ∈ X, and any control u ∈ Uad and disturbance
(R, ξ) ∈ Vγ × Dδ, the system (3.1) has a unique mild solution x ∈ B∞(I,X).
Further, the solution set

X ≡
{
x(u,R, ξ)(·) ∈ B∞(I,X) : u ∈ Uad, R ∈ Vγ , ξ ∈ Dδ

}

is a bounded subset of B∞(I,X).

Proof. By definition, the mild solution of the system (3.1) is given by the
solution of the following integral equation
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x(t) ≡ S(t)x0 +

∫ t

0
S(t− r)R(r)x(r)dr +

∫ t

0
S(t− r)F (r, x(r))dr

+

∫ t

0
S(t− r)G(r)ξ(r)dr +

∫ t

0
S(t− r)B(r)u(dr) (3.4)

on the Banach space X. Define the integral operator F as follows,

(Fx)(t) ≡ S(t)x0 +

∫ t

0
S(t− r)R(r)x(r)dr +

∫ t

0
S(t− r)F (r, x(r))dr

+

∫ t

0
S(t− r)G(r)ξ(r)dr +

∫ t

0
S(t− r)B(r)u(dr), t ∈ I.(3.5)

Clearly it suffices to verify that F has a fixed point. Since R ∈ Vγ ⊂
B∞(I,L(X)), and u ∈ Uad and ξ ∈ Dδ are given, it is easy to verify that
F maps B∞(I,X) into itself and that for each n ∈ N (the set of positive
integers), the n-th iterate of the operator F satisfies the following inequality

‖ Fnx−Fny ‖B∞(I,X)≤ αn ‖ x− y ‖B∞(I,X) (3.6)

where αn = (M(γ + K)T )n/n!. Clearly for sufficiently large n, αn < 1 and
therefore the corresponding iterate Fn is a contraction and by Banach fixed
point theorem it has a unique fixed point, say, x∗ ∈ B∞(I,X). It follows
from this that x∗ is also a unique fixed point of the operator F itself. Hence
follows existence as well as uniqueness of solution for the integral equation
(3.4) and therefore, the existence and uniqueness of a mild solution for the
evolution equation (3.1). That the set X is bounded follows from Gronwall
lemma applied to the following inequality,

|x(t)|X ≤ C1 + C2

∫ t

0
|x(r)|Xdr, t ∈ I,

where C2 = M(γ +K) and

C1 = M
(
|x0|X+δ ‖ G ‖L∞(I,L(Y,X)) + ‖ B ‖B∞(I,L(U,X)) sup{‖ u ‖v, u ∈ Uad}

)
,

with ‖ u ‖v denoting the total variation norm as defined above. Since Uad is a
bounded subset of Mcabv(ΣI , U) it is clear that C1 < ∞. This completes the
brief outline of the proof. �

4. Continuous dependence of solutions

For proof of existence of optimal controls we need continuity of solutions
with respect to the triple {u,R, ξ} ∈ Uad×Vγ×Dδ. Since continuity is crucially
dependent on the topology of both the domain and the target spaces, it is nec-
essary to specify the admissible topologies. For the target space B∞(I,X), we
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have already the natural sup-norm topology. So we must specify the topologies
on the domain spaces

Uad ⊂Mcabv(ΣI , U),

Vγ ≡ B∞(I,Bγ(L(X))) ⊂ B∞(I,L(X))

and Dδ ≡ B∞(I,Bδ(Y )) ⊂ B∞(I, Y ).

(A7) (Admissible Controls Uad) Let C(I, U∗), furnished with the standard
sup norm topology, denote the Banach space of continuous functions
on I with values in the Banach space U∗, the topological dual of U. Let
Mcabv(ΣI , U) denote the space of countably additive U valued vector
measures having bounded total variation. Furnished with the total
variation norm it is a Banach space. It is clear that the embedding

C(I, U∗) ↪→ (Mcabv(ΣI , U))∗

is continuous but not surjective. We assume that Mcabv(ΣI , U) is
equipped with the weak topology τw, and that the admissible controls
Uad is a weakly sequentially compact subset of Mcabv(ΣI , U).

The necessary and sufficient conditions for weak compactness is given by
the celebrated Bartle-Dunford-Schwartz theorem [Diestel and Uhl.Jr. 18, The-
orem 5, p105]. For convenience of the reader we present this below.

Theorem 4.1. (Bartle-Dunford-Schwartz) Suppose both the Banach spaces
{U,U∗} satisfy Radon-Nikodym property (RNP). Then a set M0 ⊂Mcabv(ΣI , U)
is weakly conditionally compact if and if the following three conditions hold:

(c1) M0 is bounded,
(c2) there exists ν ∈ M+

cabv(ΣI) such that limν(σ)→0 |u|(σ) = 0 uniformly
with respect to u ∈M0.

(c3) for each σ ∈ ΣI , the set M0(σ) ≡ {u(σ), u ∈ M0} is a conditionally
weakly compact subset of U.

Now we can characterize the system uncertainty which consists of model uncer-
tainty and uncertainty due to additive noise without satisfying any probabilistic
structure.

(A8) (System Uncertainty Vγ) We consider the set Vγ representing uncer-
tainty in the system model. Since X is a reflexive Banach space, it
is well known that the closed ball Bγ(L(X)) is compact with respect
to the weak operator topology τwo. Using this fact we may now equip
Vγ ≡ B∞(I,Bγ(L(X))) with the Tychonoff product topology and de-
note this by τTwo. With respect to this topology Vγ is a compact
Hausdorff space.
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(A9) (Additive Uncertainty Dδ) We consider the set Dδ ≡ B∞(I,Bδ(Y ))
with Bδ(Y ) denoting the closed ball of radius δ > 0 (centered at the
origin) representing the measurement uncertainty. Reflexivity of Y
implies that Bδ(Y ) is weakly compact. The set Dδ is endowed with
the Tychonoff product topology τTw. With respect to this topology
Dδ is a compact Hausdorff space.

Now we are prepared to consider the question of continuity. This is given
in the following theorem.

Theorem 4.2. Consider the system (3.1) and suppose the assumptions (A7)-
(A9) and those of Lemma 3.1 and Theorem 4.1 hold and that the operator A
is the infinitesimal generator of a compact C0-semigroup S(t), t > 0. Then
the map (u,R, ξ) −→ x(u,R, ξ) is jointly continuous from Uad × Vγ × Dδ to
B∞(I,X) with respect to their respective topologies.

Proof. Let {un, Rn, ξn} ∈ Uad × Vγ × Dδ be a sequence and suppose un
τw−→

uo in Uad, Rn
τTwo−→ Ro in Vγ and ξn

τTw−→ ξo in Dδ. Let {xn, xo} denote the
mild solutions of equation (3.1) corresponding to the triples {(un, Rn, ξn)} and
{(uo, Ro, ξo)} respectively. Then by the definition of mild solutions, {xn, xo}
are the solutions of the following integral equations,

xn(t) = S(t)x0 +

∫ t

0
S(t− s)Rn(s)xn(s)ds+

∫ t

0
S(t− s)F (s, xn(s))ds

+

∫ t

0
S(t− s)G(s)ξn(s)ds+

∫ t

0
S(t− s)B(s)un(ds), t ∈ I, (4.1)

xo(t) = S(t)x0 +

∫ t

0
S(t− s)Ro(s)xo(s)ds+

∫ t

0
S(t− s)F (s, xo(s))ds

+

∫ t

0
S(t− s)G(s)ξo(s)ds+

∫ t

0
S(t− s)B(s)uo(ds), t ∈ I, (4.2)

respectively and they belong to B∞(I,X). Taking the difference and rearrang-
ing the terms suitably, we have the following expression

xo(t)− xn(t)

=

∫ t

0
S(t−r)Rn(r)(xo(r)−xn(r))dr+

∫ t

0
S(t−s)F (s, xo(s))−F (s, xn(s))ds

+

∫ t

0
S(t− r)(Ro(r)−Rn(r))xo(r)dr +

∫ t

0
S(t− r)G(r)(ξo − ξn))(r)dr

+

∫ t

0
S(t− r)B(r)(uo(dr)− un(dr)), t ∈ I. (4.3)
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Introduce the sequence of functions {ei,n, i = 1, 2, 3}n∈N as follows:

e1,n(t) ≡
∫ t

0
S(t− r)(Ro(r)−Rn(r))xo(r)dr, t ∈ I,

e2,n(t) ≡
∫ t

0
S(t− r)G(r)(ξo − ξn)(r)dr, t ∈ I,

e3,n(t) ≡
∫ t

0
S(t− r)B(r)(uo(dr)− un(dr)), t ∈ I.

Clearly, these are elements of B∞(I,X). Using these expressions in equation
(4.3) and evaluating the norms on either side of the identity, it follows from
assumptions (A2)-(A4) that

|xo(t)− xn(t)|X ≤ ηn(t) +M(γ +K)

∫ t

0
|xo(r)− xn(r)|Xdr, t ∈ I, (4.4)

where ηn(t) is given by

ηn(t) ≡ |e1,n(t)|X + |e2,n(t)|X + |e3,n(t)|X .

Hence it follows from Gronwall inequality applied to (4.4) that

|xo(t)− xn(t)|X

≤ ηn(t) +M(γ +K) exp[MT (γ +K)]

∫ t

0
ηn(r)dr, t ∈ I. (4.5)

We show that the expression on righthand side of the above inequality con-
verges to zero uniformly on I. Note that the integrand, defining e1,n, is dom-
inated by 2Mγ|xo(t)|X ≤ 2Mγ ‖ x0 ‖B∞(I,X), t ∈ I. Since Rn → Ro in the
Tychonoff product topology τTwo, it is clear that (Ro(t) − Rn(t))xo(t) con-
verges weakly to zero in X for each t ∈ I. Thus by the compactness of the
semigroup S(t), t > 0, we have e1,n(t)→ 0 strongly in X uniformly on I. Con-
sider the second term e2,n. Since ξn → ξo in the Tychonoff product topology
τTw on Dδ and G ∈ B∞(I,L(Y,X)) and so for each r ∈ I, G(r) ∈ L(Y,X)
(so norm bounded), it is clear that G(r)(ξo(r) − ξn(r)) converges weakly to
zero in X for each r ∈ I, and the integrand is dominated by the integrable
function 2Mδ ‖ G(r) ‖L(Y,X) . Thus again by virtue of compactness of the
semigroup, we conclude that e2,n(t) converges strongly in X uniformly on I.
We use Bartle-Dunford-Schwartz theorem 4.1 and compactness of the semi-
group to prove that e3,n(t) converges strongly to zero uniformly on I. By
our assumption (A7), the set of admissible controls Uad ⊂ Mcabv(ΣI , U) is
weakly compact and hence it follows from Bartle-Dunford-Schwartz theorem
that there exists a measure ν ∈ M+

cabv(ΣI) such that the elements of Uad are
uniformly ν continuous. Since U satisfies RNP, for each sequence {un} ∈ Uad,
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there exists a sequence gn ∈ L1(ν, U) such that for every σ ∈ ΣI

un(σ) =

∫
σ
gn(s)ν(ds).

Since the set Uad is bounded it is clear that the sequence {gn} is contained
in a bounded subset of L1(ν, U) and since the elements of Uad are uniformly
ν-continuous, the sequence {gn} is uniformly integrable. By hypothesis, both
U and U∗ satisfy RNP and therefore it follows from Dunford theorem [Diestel
& Uhl.Jr, 18, Theorem 1, p101] that the sequence {gn} is weakly sequentially

compact and since un
w−→ uo, there exists a go ∈ L1(ν, U) such that gn

w−→ go

in L1(ν, U). Hence e3,n can be written as

e3,n(t) ≡
∫ t

0
S(t− r)B(r)(go(r)− gn(r))ν(dr).

For any ε > 0 and t ∈ I, we can split this integral into two parts giving

e3,n(t) ≡
∫ t

0
S(t− r)B(r)(go(r)− gn(r))ν(dr)

= S(ε)

∫ t−ε

0
S(t− ε− r)B(r)(go(r)− gn(r))ν(dr)

+

∫ t

t−ε
S(t− r)B(r)(go(r)− gn(r))ν(dr). (4.6)

By virtue of compactness of the semigroup, it is clear that the first term
converges to zero uniformly on the interval (ε, T ]. For the second term we use
a well known result that states that a Banach space satisfies RNP if and only
if it satisfies RNP with respect to Lebesgue measure. Since U satisfies RNP
with respect to ν ∈M+

cabv(ΣI), it satisfies RNP also with respect to Lebesgue
measure. Thus there exists an h ∈ L1(ν) such that ν(ds) = hds and the second
term of the expression (4.6) can be rewritten as

En,ε(t) ≡
∫ t

t−ε
S(t− r)B(r)(go(r)− gn(r))ν(dr)

=

∫ t

t−ε
S(t− r)B(r)(go(r)− gn(r))h(r)dr

=

∫ t

t−ε
S(t− r)B(r)(g̃o(r)− g̃n(r))dr, (4.7)

where g̃ = gh ∈ L1(I, U) for g = {go, gn}. Since the operator valued function
B is uniformly bounded we have sup{‖ B(t) ‖L(U,X), t ∈ I} ≡ b < ∞, and
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consequently it follows from (4.7) that

|En,ε(t)|X ≤Mb

∫ t

t−ε
|g̃o − g̃n|Udr.

We conclude from the above inequality and uniform (Bochner) integrability of
the family {g̃o, g̃n} ⊂ L1(I,X), that

lim
ε↓0

En,ε(t) = 0

for all n ∈ N, uniformly on (ε, T ]. Since ε > 0 is arbitrary, it follows from
these facts that ηn(t) ≡ |e1,n(t)|X + |e2,n(t)|X + |e3,n(t)|X → 0 uniformly on

I. Consequently, it follows from the inequality (4.5) that xn(t)
s−→ xo(t) in X

uniformly on I, that is, xn
s−→ xo in B∞(I,X). This completes the proof. �

Note that the cost functional has two parts Ĵ and Ψ. First we prove that
the first component Ĵ , appearing in the expression (3.2), is jointly continuous
on Uad × Vγ ×Dδ.

Corollary 4.3. Suppose the assumptions of Theorem 4.2 hold and the func-
tions ` and Φ satisfy the following assumptions:

(A10) (a1) The integrand ` is measurable in the first variable and continuous
in the second and there exists a p ∈ [1,∞) and g ∈ L+

1 (I) and
c1 ≥ 0, such that

|`(t, x)| ≤ g(t) + c1|x|pX , x ∈ X, t ≥ 0.

(a2) The function Φ is continuous on X and there exist constants
c2, c3 ≥ 0 such that

|Φ(x)| ≤ c2 + c3|x|pX
for the same p.

Then, the functional (u,R, ξ) −→ Ĵ(u,R, ξ) is jointly continuous on Uad ×
Vγ ×Dδ with respect to the topology τw × τTwo × τTw.

Proof. Let {un, Rn, ξn} be a sequence from the set Uad × Vγ × Dδ converg-
ing to {uo, Ro, ξo}. Let xn ∈ B∞(I,X), xo ∈ B∞(I,X), denote the corre-
sponding mild solutions of the evolution equation (3.1). Then by assumption
(A10), it follows from Theorem 4.2 that, along a subsequence if necessary,
`(t, xn(t)) → `(t, xo(t)) a.e; and that it is dominated by an integrable func-
tion since the sequence of solutions {xn} are uniformly bounded [see Lemma
3.1]. Since {xn, xo} ∈ B∞(I,X) and by our assumption the Banach U has
RNP, it is easy to verify that, for each t ∈ I, the states {x(t), xn(t)} are well
defined as elements of X. Thus it follows from continuity of the function Φ
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that Φ(xn(T ))→ Φ(xo(T )). Hence, letting n→∞, it follows from dominated
convergence theorem that

lim
n→∞

Ĵ(un, Rn, ξn) = lim
n→∞

{∫
I
`(t, xn(t))dt+ Φ(xn(T ))

}
=

∫
I
`(t, xo(t))dt+ Φ(xo(T ))

≡ J(uo, Ro, ξo).

This proves the joint continuity of the functional Ĵ as stated. �

Now we are prepared to prove the existence of an optimal control uo ∈ Uad
that solves the min-max problem in the sense of (3.3). For this we need the
notions of upper and lower semi-continuity of multi functions.

Definition 4.4. Let Z1, Z2 be any pair of topological spaces. A multi function
G : Z1 −→ 2Z2 \ ∅ is upper semi-continuous if for every closed set C ⊂ Z2,
the preimage G−1(C) ≡ {x ∈ Z1 : G(x) ∩ C 6= ∅} is closed. And it is lower
semi-continuous if for every open set D ⊂ Z2 the preimage G−1(D) ≡ {x ∈
Z1 : G(x) ∩D 6= ∅} is open.

For details on multi-functions see the Handbook by Hu and Papageorgiou
[16].

5. Existence of optimal control

In this section we consider the question of existence of optimal controls. We
prove this following a similar approach as in [1, Theorem 6.1].

Theorem 5.1. Consider the control system (3.1) with the min-max problem
(3.3). Suppose the assumptions of Theorem 4.2 and Corollary 4.3 hold and
the functional Ψ is weakly lower semicontinuous on Mcabv(ΣI , U) satisfying
Ψ(u) ≥ 0. Then there exists an optimal control uo ∈ Uad in the sense that

Jo(u
o) ≡ sup

R∈Vγ ,ξ∈Dδ
J(uo, R, ξ)

≤ sup
R∈Vγ ,ξ∈Dδ

J(u,R, ξ) ≡ Jo(u), ∀u ∈ Uad. (5.1)

Proof. We prove this in two steps. First we prove that, under the given as-
sumptions, the functional Ĵo given by

Ĵo(u) ≡ sup

{
Ĵ(u,R, ξ), (R, ξ) ∈ Vγ ×Dδ

}
(5.2)
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is continuous and then we show that Jo ≡ Ĵo + Ψ is weakly lower semicontin-
uous. For each u ∈ Uad, define the set

Π(u) ≡ {(R, ξ) ∈ Vγ ×Dδ : Ĵ(u,R, ξ)

= sup{Ĵ(u,Q, η) : (Q, η) ∈ Vγ ×Dδ}}.

By virtue of joint continuity of Ĵ in all its arguments (Corollary 4.3) it is clear

that, for each fixed u ∈ Uad, the functional (R, ξ) −→ Ĵ(u,R, ξ) is τTwo× τTw-
continuous on Vγ × Dδ. Since the set Vγ × Dδ is τTwo × τTw compact, the
set Π(u) is well defined and so Π(u) 6= ∅. In general, this is a multifunction
Π : Uad −→ 2Vγ×Dδ \ ∅. Define, for each u ∈ Uad,

Ĵo(u) ≡ Ĵ(u,Π(u)).

We show that this functional is τw continuous on Uad. Consider the sequence

{un} ⊂ Uad and uo ∈ Uad such that un
τw−→ uo. By definition of Ĵo, it is

clear that Ĵo(u
n) = Ĵ(un,Π(un)) for n ∈ N. Thus there exists a sequence

(Rn, ξn) ∈ Π(un) such that Ĵo(u
n) = Ĵ(un, Rn, ξn). Since Uad × Vγ × Dδ is

τw× τTwo× τTw compact, there exists a subsequence, relabeled as the original
sequence, and a triple (uo, Ro, ξo) ∈ Uad × Vγ ×Dδ such that

(un, Rn, ξn) −→ (uo, Ro, ξo)

with respect to the product topology τw×τTwo×τTw. Again, by virtue of joint
continuity of Ĵ (Corollary 4.3), we have limn→∞ Ĵ(un, Rn, ξn) = Ĵ(uo, Ro, ξo).

Thus, to complete the proof of continuity of the functional u −→ Ĵo(u), we
must show that (Ro, ξo) ∈ Π(uo). For this it suffices to verify that the graph
Gr(Π) of the multifunction Π is closed. It is well known that an upper semi-
continuous multifunction from a Hausdorff topological space to a regular topo-
logical space has closed graph [20, Proposition 2.17]. Thus, as both Uad and
Vγ ×Dδ are Hausdorff regular, it suffices to show that the multifunction Π is
upper semi-continuous. More precisely, we show that u −→ Π(u) is upper semi
continuous (usc) with respect to the given topologies on the domain space Uad
and the target space Vγ ×Dδ. According to the Definition 4.4, we must verify
that, for any closed set C ⊂ Vγ ×Dδ, the preimage

Π−1(C) ≡ {u ∈ Uad : Π(u) ∩ C 6= ∅}

is closed. Let {un} ∈ Π−1(C) ⊂ Uad be any sequence and note that it follows
from the definition of Π that

Ĵ(un,Π(un)) ≥ Ĵ(un, R, ξ), ∀ (R, ξ) ∈ Vγ ×Dδ. (5.3)

Hence, for any sequence {Rn, ξn} ∈ Π(un) ∩ C, we have

Ĵ(un, Rn, ξn) ≥ Ĵ(un, R, ξ), ∀ (R, ξ) ∈ Vγ ×Dδ, n ∈ N. (5.4)
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Since Uad×Vγ×Dδ is compact in the product topology (because of compactness
in their respective topologies), there exists a subsequence, relabeled as the
original sequence, (un, Rn, ξn) and an element (uo, Ro, ξo) ∈ Uad × Vγ × Dδ
such that

(un, Rn, ξn) −→ (uo, Ro, ξo)

in the product topology. Since the topologies are Hausdorff the limit is unique.
Taking the limit in (5.4), it follows from Corollary 4.3, asserting joint conti-

nuity of Ĵ , that

Ĵ(uo, Ro, ξo) ≥ Ĵ(uo, R, ξ) ∀ (R, ξ) ∈ Vγ ×Dδ. (5.5)

Since this holds for all (R, ξ) ∈ Vγ×Dδ, it follows from this inequality and the
definition of the multi function Π that (Ro, ξo) ∈ Π(uo). On the other hand,
since C is closed, the limit of any sequence from it must belong to it and hence
(Ro, ξo) ∈ C and therefore (Ro, ξo) ∈ Π(uo) ∩ C. Thus uo ∈ Π−1(C) proving
the closure as required. Hence u −→ Π(u) ⊂ 2Vγ×Dδ \ ∅ is an upper semi-
continuous multi function and therefore, by Proposition 2.17 [14], the graph

Gr(Π) is closed. Thus we conclude that Ĵ(uo, Ro, ξo) = Ĵ(uo,Π(uo)) = Ĵo(u
o)

proving the continuity, limn→∞ Ĵo(u
n) −→ Ĵo(u

o), as required. This completes
the first part of the proof. By assumption, Ψ is weakly lower semicontinuous
and therefore the functional Jo given by the sum

Jo(u) ≡ Ĵo(u) + Ψ(u)

is also weakly lower semicontinuous. Since Uad is τw compact it is clear that
Jo attains its minimum on Uad. This proves that the min-max problem (5.1),
equivalently (3.3), has a solution and hence an optimal control exists. �

Remark 5.2. An important example of the control cost Ψ(u) is given by the
total variation norm Ψ(u) ≡‖ u ‖v as defined in section 3. It is well known
that the norm in any Banach space is weakly lower semi continuous and hence
this functional is weakly lower semi continuous. Another related functional is
given by Ψ(u) ≡ ϕ(‖ u ‖v) where ϕ is a continuous nonnegative nondecreasing
extended real valued function satisfying ϕ(0) = 0.

In case of linear-quadratic-regulator (LQR) problems, the control cost is
quadratic. In this case

Ψ(u) ≡ (Ku, u) =

∫
I×I
〈K(t, s)u(ds), u(dt)〉U∗,U

where K is the kernel corresponding to the operator

K ∈ L(Mcabv(ΣI , U), C(I, U∗)).
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For example, the kernel may be chosen as the tensor product of linearly inde-
pendent elements from C(I, U∗) ⊂Mcabv(ΣI , U) giving

K(t, s) ≡
∑
i≥1

ϕi(t)⊗ ϕi(s).

Clearly, in this case

0 ≤ Ψ(u) =
∑
i≥1

(∫
I
〈ϕi(t), u(dt)〉U∗,U

)2

≤

( ∞∑
i=1

‖ ϕi ‖2∞

)
‖ u ‖2v,

where ‖ ϕ ‖∞≡ sup{|ϕi(t)|U∗ , t ∈ I} and ‖ u ‖v is the total variation norm of
the vector measure u. Clearly, the operator K is positive and it is also bounded
if
∑∞

i=1 ‖ ϕi ‖2∞<∞. Thus Ψ, as defined above, is lower semicontinuous in the
weak star topology, which is weaker than the weak topology. It is known that
if U has the RNP (Radon Nikodym Property) then, under certain additional
technical assumptions such as continuum hypothesis and that the cardinality
of Mcabv(ΣI) is ≤ 2ℵ0 holds [23], the dual of Mcabv(ΣI , U) is given by the
space B∞(I, U∗) of bounded measurable functions with values in U∗. In this
case {ϕi} ⊂ B∞(I, U∗) and u −→ Ψ(u) is weakly lower semicontinuous.

6. Purely impulsive controls

For practical applications, it is often preferable to consider control policies
which consist of a finite number of impulsive forces delivered at a discrete set
of appropriate time instants to steer the system along a desirable path and
reach the goal with minimum possible cost.

Let I ≡ [0, T ] be any closed bounded interval and D any countable subset
of I and ΣD the power set of D. The class of countably additive discrete
vector measures defined on ΣD and taking values in the Banach space U
having bounded variation is denoted by Mcabv(ΣD, U). By definition, for any
set J ∈ ΣD, an element µ ∈Mcabv(ΣD, U) has the following representation

µ(J) =
∑
t∈J

ut δt

where ut ∈ U and δt denotes the (unit) Dirac measure concentrated at the one
point set {t}. The variation of µ on J is given by |µ|(J) =

∑
t∈J |ut|U and hence

the total variation norm is given by ‖ µ ‖v≡ |µ|(D). With respect to this norm
topology Mcabv(ΣD, U) is a Banach space. Since µ is of bounded variation,
it is clear that for any ε > 0, the cardinality of the set {t ∈ J : |ut|U > ε}
is finite. In case U is the real line, Mcabv(ΣD, R) ≡ Mcabv(ΣD) denotes the
space of signed measures supported on the set D. For any set J ∈ ΣD, an
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element ν ∈Mcabv(ΣD) has the representation

ν(J) ≡
∑
t∈J

αtδt

with αt ∈ R satisfying
∑

t∈J |αt| < ∞. Let ν ∈ M+
cabv(ΣD) having the above

representation with αt ≥ 0 and define the Lebesgue-Bochner space Lp(ν, U),
1 ≤ p <∞, of U valued ν-measurable functions which are Bochner integrable
with respect to the measure ν, that is, for each Γ ∈ ΣD, µ(Γ) ≡

∫
Γ u(t)ν(dt) ∈

U and ∫
I
|u(t)|pUν(dt) =

∑
t∈D

αt|ut|p <∞.

Let N denote the set of natural numbers and let {ti ∈ R : ti ∈ I∩D, i ∈ N} be
any enumeration of the set D. This makes D isomorphic to N . Then it is clear
that Lp(ν, U) is actually equivalent to the weighted sequence space `p(ν, U)
which consists of U valued sequences {ui} ⊂ U such that

∑
i αi|ui|

p
U <∞. In

general, for 1 ≤ p <∞ with 1/p+ 1/q = 1, and any finite positive measure ν,
the dual of Lp(ν, U) equals Lq(ν, U

∗) if and only if U∗ has the Radon-Nikodym
Property (RNP). In the case of sequence spaces it turns out that this is not
necessary. The topological dual of `p(ν, U) (denoted by `p(ν, U)∗) is given by
`q(ν, U

∗) (without requiring U∗ to have RNP). Thus the dual of `1(ν, U) is
given by `∞(ν, U∗). For any u ∈ `p(ν, U) and v ∈ `q(ν, U∗) we have the duality
pairing

(u, v)`p(ν,U),`q(ν,U∗) =

∫
I
(u(t), v(t))U,U∗ν(dt) =

∑
t∈D

αt(ut, vt)U,U∗ .

Clearly, it follows from Hölder inequality that∣∣∣∣∫
I
(u(t), v(t))U,U∗ν(dt)

∣∣∣∣ =

∣∣∣∣∑
t∈D

αt(ut, vt)U,U∗

∣∣∣∣
≤
(∑
t∈D

αt|ut|pU

)1/p(∑
t∈D

αt|vt|qU∗
)1/q

=‖ u ‖`p(ν,U)‖ v ‖`q(ν,U∗) .

We state the following Lemma characterizing conditionally (sequentially) weakly
compact sets in the Banach space `1(ν, U). Let Pt denote the projection map
of `1(ν, U) into its t-section (or t−th coordinate), that is, for each u ∈ `1(ν, U),
Pt(u) = ut ∈ U.

Lemma 6.1. A set K ⊂ `1(ν, U) is conditionally weakly compact if and only
if the following two conditions are satisfied:

(C1)
∑

i≥k αti |uti | → 0 as k →∞ , uniformly for u ∈ K.
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(C2) Pti(K) ≡ {uti , u ∈ K} is conditionally weakly compact in U for each
i ∈ N.

Proof. See [15, Theorem 2, p.183]. �

We are interested in the characterization of weakly compact subsets of the
space of vector measuresMcabv(ΣD, U). This is where our controls take values
from. The following result on the characterization of weak compactness is
essentially the sequential version of the celebrated Bartle-Dunford-Schwartz
theorem [18, Theorem 5, p105] for the continuous case.

Theorem 6.2. A set M0 ⊂Mcabv(ΣD, U) is conditionally weakly compact if
and only if the following conditions hold:

(1) The set M0 is bounded.
(2) There exists a ν ∈M+

cabv(ΣD) such that limν(σ)→0 |u|(σ) = 0 uniformly
with respect to u ∈M0.

(3) For each σ ∈ ΣD, the set {u(σ) : u ∈ M0} is a conditionally weakly
compact subset of U.

Proof. Fundamentally the proof is similar to that of Bartle-Dunford-Schwartz
theorem given by Diestel and Uhl. Jr [18, Theorem 5, p.105] as stated here
in Theorem 4.1. In fact it is simpler. For convenience of the reader we give
a short proof. To prove the necessity, suppose M0 is conditionally weakly
compact. Clearly, the condition (1) is obvious. For each σ ∈ ΣD, define
the linear operator Lσ : Mcabv(ΣD, U) −→ U by Lσ(u) = u(σ). Since M0 is
conditionally weakly compact and Lσ is a bounded linear operator, Lσ(M0)
is conditionally weakly compact proving the necessity of condition (3). We
prove condition (2) by contradiction. Suppose it is false. Then there exists
a sequence {un} ⊂ M0 such that the sequence of scalar measures {|un|(·)} is
not uniformly countably additive. Define the measure µ(·) ≡

∑
n(1/2n)|un|(·)

on ΣD and note that it is a bounded positive measure. Consider the space
`1(µ,U), and the linear operator Tµ : `1(µ,U) −→Mcabv(ΣD, U) given by

(Tµg)(σ) =

∫
σ
g(s)µ(ds), g ∈ `1(µ,U).

We show that Tµ is an isometric-isomorphism of `1(µ,U) on to a closed sub-
space ofMcabv(ΣD, U). Define mg(E) ≡ (Tµg)(E), for E ∈ ΣD. The variation
of the measure mg on any set E ∈ ΣD is given by

|mg|(E) ≡ sup
π

∑
σ∈π
|mg(σ)|U ,

where π is any partition of the set E into a finite number of disjoint ΣD-
measurable sets with the supremum taken over all such partitions. It is clear
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from this that |mg|(E) ≤
∫
E |g(s)|Uµ(ds). Since E(∈ ΣD) is otherwise arbi-

trary, it follows from this that

‖ mg ‖v≤
∫
D
|g(s)|Uµ(ds). (6.1)

Now we verify the reverse inequality. For any g ∈ `1(µ,U) it follows from
Hahn-Banach theorem that there exists an h ∈ `∞(µ,U∗) with ‖ h ‖`∞(µ,U∗)=
1 such that ∫

D
|g(s)|Uµ(ds) =

∫
D
〈g(s), h(s)〉U,U∗ µ(ds).

Since h ∈ `∞(µ,U∗) there exists a sequence of (simple) functions {hn} ⊂
`∞(µ,U∗) converging in µ-measure to h such that

hn(t) ≡
n∑
i=1

u∗i,nχσi,n(t), t ∈ D,

where
⋃n
i=1 σi,n = D for all n ∈ N and u∗i,n ∈ ∂B1(U∗) for 1 ≤ i ≤ n ∈ N.

Thus ∫
D
|g(s)|Uµ(ds) =

∫
D
〈g(s), h(s)〉U,U∗ µ(ds)

= lim
n→∞

∫
D
〈g(s), hn(s)〉U,U∗ µ(ds)

= lim
n→∞

n∑
i=1

〈
mg(σi,n), u∗i,n

〉
U,U∗

≤ lim
n→∞

n∑
i=1

|mg(σi,n)|U ≤ ‖ mg ‖v . (6.2)

It follows from the inequalities (6.1) and (6.2) that Tµ is an isometric iso-
morphism of `1(µ,U) on to a closed subspace of Mcabv(ΣD, U). Clearly the
range of Tµ contains the set {un}, that is, R(Tµ) ⊃ {un}. Since {un(·)} is
not uniformly countably additive, the set T−1

µ ({un}) ⊂ `1(µ,U) is not uni-
formly integrable, and so it follows from Lemma 6.1, condition (C1), that
the set T−1

µ ({un}) can not be contained in a weakly conditionally compact

subset of `1(µ,U), and therefore Tµ(T−1
µ ({un})) = {un} can not be con-

tained in a conditionally weakly compact set M0 leading to a contradic-
tion. Thus condition (2) is necessary. Now we prove that the conditions
(1)-(3) are sufficient for the set M0 to be conditionally weakly compact. Let
M(ν, U) ⊂ Mcabv(ΣD, U) denote the class of ν-continuous vector measures.
It follows from condition (2) that M0 ⊂ M(ν, U). For the given ν, define the
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operator Tν : `1(ν, U) −→M(ν, U) ⊂Mcabv(ΣD, U) by

Tν(h)(E) ≡
∫
E
h(s)ν(ds), for h ∈ `1(ν, U) and E ∈ ΣD.

It is clear from the preceding analysis that Tν is an isometric isomorphism
of `1(ν, U) on to a closed subspace of Mcabv(ΣD, U) and that the range of
Tν contains M0, that is, R(Tν) ⊃ M0. Clearly, T−1

ν (M0) ⊂ `1(ν, U). Since
M0 satisfies conditions (1) and (2), T−1

ν (M0) is a bounded subset of `1(ν, U)
satisfying condition (C1) of Lemma 6.1. It follows from assumption (3) that
for each {ti} ∈ ΣD,

Pti
(
T−1
ν (M0)

)
≡
{
hti , h ∈ T−1

ν (M0)
}

is conditionally weakly compact. Thus condition (C2) of Lemma 6.1 is satis-
fied for K ≡ T−1

ν (M0). Hence, by Lemma 6.1, the set T−1
ν (M0) ⊂ `1(ν, U) is

conditionally weakly compact. Since compactness is preserved under isomor-
phism, we conclude that the set Tν(T−1

ν (M0)) = M0 is conditionally weakly
compact. This completes the proof. �

Now we are prepared to consider control problems for the system (3.1) with
purely impulsive controls as the admissible controls. First we prove a result on
continuity of solution with respect to the triple {u,R, ξ} −→ x(u,R, ξ). Here
we consider admissible controls given by the weak closure of the conditionally
weakly compact set M0 ⊂Mcabv(ΣD, U) of Theorem 6.2. That is Uad = Uo ≡
M

w
0 .

Theorem 6.3. Consider the system (3.1) with admissible controls Uo = M
w
0

and suppose the assumptions of Lemma 3.1 including (A8)-(A9) hold and
that the operator A is the infinitesimal generator of a compact C0-semigroup
S(t), t > 0, and the operator valued function B ∈ C(I,L(U,X)) and that it
is compact for each t ∈ I. Then the map (u,R, ξ) −→ x(u,R, ξ) is jointly
continuous with respect to product topology τw × τTwo × τTw on Uo × Vγ ×Dδ
and the uniform norm topology on B∞(I,X).

Proof. The proof is similar to that of Theorem 4.2 with slight modification
required because of the choice of impulsive controls Uo. It suffices to show that
under the given assumptions the function e3,n (see Theorem 4.2), given by

e3,n(t) ≡
∫ t

0
S(t− r)B(r)(uo(dr)− un(dr)), t ∈ I,

converges to zero strongly in X uniformly in t ∈ I. Since {uo, un} ⊂ Uo it
follows from Theorem 6.2 that there exists a sequence {go, gn} ⊂ `1(ν, U) such
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that

e3,n(t) ≡
∫ t

0
S(t− r)B(r)(uo(dr)− un(dr)),

=

∫ t

0
S(t− r)B(r)(go(r)− gn(r))ν(dr), t ∈ I. (6.3)

Since ν ∈ M+
cabv(ΣD), it has the representation ν(dr) =

∑
αtiδti(dr) where

αti ≥ 0 and δti(·) is the Dirac measure with support {ti} ⊂ D. Hence

e3,n(t) ≡
∑

ti⊂D∩[0,t]

S(t− ti)B(ti)(g
o(ti)− gn(ti))αti , t ∈ I. (6.4)

It is clear that weak convergence of un to uo in Uo implies weak convergence
of gn to go in `1(ν, U) which, in turn, leads to weak convergence of (go(ti) −
gn(ti))αti to zero in U for each {ti} ⊂ D. For t = tk ∈ D, the expression (6.4)
reduces to

e3,n(tk) ≡
∑
i≤k−1

S(tk − ti)B(ti)(g
o(ti)− gn(ti))αti

+B(tk)(g
o(tk)− gn(tk))αtk . (6.5)

Since for each t ∈ I, B(t) ∈ L(U,X) is compact, both the terms on right hand
side of the above identity converge to zero strongly in X. For any t ∈ [tk, tk+1),
we have

e3,n(t) = S(t− tk)e3,n(tk), tk ≤ t < tk+1 (6.6)

and e3,n(·) ∈ C([tk, tk+1), X) followed by a jump at tk+1 of intensity

B(tk+1)(go(tk+1)− gn(tk+1))αtk+1

and they both converge to zero strongly in X. Thus e3,n(t)→ 0 strongly in X
uniformly in t ∈ I. In view of Theorem 4.2 and the necessary modifications as
described above, we conclude that the map (u,R, ξ) −→ x(u,R, ξ) is jointly
continuous with respect to the product topology τw×τTwo×τTw on Uo×Vγ×Dδ
and the supnorm topology on B∞(I,X). This completes the proof. �

Remark 6.4.

(a) It is clear from the expression (6.5) why the assumption on compact-
ness of the semigroup alone does not guarantee strong convergence in
X.

(b) It is also clear from the above result that the mild solutions of equa-
tion (3.1) corresponding to controls from the set Uo are elements of
B∞(I,X) and that each solution x admits a decomposition into a con-
tinuous and a discontinuous part: x = xc +xd where xc ∈ C(I \D,X)
and xd ∈ B∞(D,X).
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Now we are prepared to prove the existence of an optimal control from the
class Uo. Recall that J(u,R, ξ) ≡ Ĵ(u,R, ξ) + Ψ(u) and

Jo(u) ≡ sup{J(u,R, ξ), (R, ξ) ∈ Vγ ×Dδ}.

Theorem 6.5. Consider the system (3.1) with admissible controls Uo = M
w
0

and the min-max problem (3.3). Suppose the functional Ψ(≥ 0) is weakly lower
semicontinuous on Mcabv(ΣD, U) and the assumption (A10) (related to the
cost functional, see Corollary 4.3) and those of Theorem 6.3 hold. Then there
exists a control u∗ ∈ Uo such that Jo(u

∗) ≤ Jo(u) for all u ∈ Uo.

Proof. It follows from Theorem 6.3 that the map (u,R, ξ) −→ x(u,R, ξ) is
jointly continuous with respect to the topology τw×τTwo×τTw on Uo×Vγ×Dδ
and the supnorm topology on B∞(I,X). Thus in the case of sequence spaces as
we have here, the conclusions of Theorem 4.2 and Corollary 4.3 remain valid
(without requiring the pair (U,U∗) to satisfy RNP). Therefore, under the
assumption (A10), related to the functions {`,Φ} determining the functional

Ĵ , it follows from Corollary 4.3 that the functional (u,R, ξ) −→ Ĵ(u,R, ξ) is
jointly continuous on Uo×Vγ×Dδ with respect to the topology τw×τTwo×τTw.
Hence it follows from Theorem 5.1 that u −→ Ĵo(u) is weakly continuous
on Uo and therefore it follows from weak lower semi continuity of Ψ that
u −→ Jo(u) ≡ Ĵo(u) + Ψ(u) is weakly lower semi continuous. Since Uo is
weakly compact there exists a control policy u∗ ∈ Uo such that

Jo(u
∗) ≤ Jo(u), ∀u ∈ Uo.

This completes the proof. �

Remark 6.6. In the case of vector measures with values in general Banach
spaces, one can use Lebesgue decomposition theorem [18, Theorem 9, p31] to
conclude that any vector measure u ∈Mcabv(ΣI , U) admits Lebesgue decom-
position (with respect to Lebesgue measure λ) giving u = uc + us where uc is
λ-continuous and us is singular with respect to λ. Then the set of admissible
controls can be decomposed as Uad = Uc ⊕ Us and so for Uad to be weakly
compact, it is necessary and sufficient that each member of the decomposition
has this property. We believe our results from section 5 and section 6 can be
combined to deal with this case.

An Open Problem in Vector Measure Theory: An interesting open
problem in the general case (where {U,U∗} do not posses RNP) is the prob-
lem of characterization of conditionally (or relatively) weakly compact sets
in Mcabv(ΣI , U) with respect to a topology possibly weaker than the weak
topology used in Bartle-Dunford-Schwartz theorem.
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Interesting Potential Extensions:

(1) Necessary conditions of optimality for impulsive systems without un-
certainties can be found in [5],[6],[7]. Necessary conditions of optimal-
ity of output feedback control law for uncertain stochastic systems can
be found in [10]. It will be interesting to develop necessary conditions
of optimality for uncertain systems driven and controlled by vector
measures considered here.

(2) An interesting problem is to extend the results of this paper to a
larger class of systems where the operator valued function B appearing
in equation (3.1) is state dependent as in [11]. Also it is of interest
to extend the results of this paper to infinite dimensional stochastic
systems subject to both the system and measurement uncertainty as
in [1].
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