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Abstract. Let X be a Banach space with the unit sphere SX = {x ∈ X : ‖x‖ = 1}. In

this paper, inspired by Banaś et. al., in [1], the new parameter SYX(ε) = sup{〈x − y, fx〉 :

x, y ∈ SX , ‖x+y‖
2
≥ 1 − ε for some fx ∈ ∇x}, where ∇x ⊆ SX∗ is the norm 1 supporting

functionals at x, is introduced. Several properties of this parameter are investigated. The

main result are that if SYX(t) < 2, for some t ∈ (0, 1] then X is uniformly non-square; and

if SYX(ε) < 1 + 2ε for some 0 < ε < 1
2
, then both X and X∗ have uniform normal structure.

In particular, if εU = limε→0 SYX(ε) < 1, then X is uniformly non-square and both X and

X∗ have uniform normal structure. We have an example to show this condition is the best

possible.
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1. Introduction

Let X be a Banach space with the unit sphere SX = {x ∈ X : ‖x‖ = 1}
and the closed unit ball BX = {x ∈ X : ‖x‖ ≤ 1}. For x ∈ SX , let ∇x ⊂ SX∗
be the set of norm 1 supporting functionals of SX at x, that is, f ∈ ∇x ⇐⇒
〈x, f〉 = 1. For a nonempty subset C of X, the diameter of C is denoted by
diamC, that is, diamC = sup{‖x− y‖ : x, y ∈ C}.

Definition 1.1. ([3]) Let X be a Banach space. A nonempty bounded and
convex subset K of X is said to have normal structure if for every convex
subset C of K that contains more than one point there is a point x0 ∈ C such
that

sup{‖x0 − y‖ : y ∈ C} < diamC.

A Banach space X is said to have

• normal structure if every bounded convex subset of X has normal
structure;
• weak normal structure if every weakly compact convex set K of X has

normal structure;
• uniform normal structure if there exists 0 < c < 1 such that for every

bounded closed convex subset C of K that contains more than one
point there is a point x0 ∈ C such that

sup{‖x0 − y‖ : y ∈ C} < c · diamC.

Remark 1.2. The following facts are known.

• uniform normal structure =⇒ normal structure =⇒ weak normal
structure.
• In the setting of reflexive spaces, normal structure ⇐⇒ weak normal

structure.

Let C be a nonempty subset of a Banach spaceX. A mapping T : C → C
is called to be non-expensive whenever ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C.
A Banach space has fixed point property if for every bounded closed and
convex subset C of X and for each non-expansive mapping T : C → C, there
is a point x ∈ C such that x = Tx (see [14]). It was proved by Kirk [13]
that if X has normal structure, then it has fixed point property. Since then
many mathematician have investigated various sufficient conditions for normal
structure.

In [4], Clarkson introduced the following modulus of convexity: δX(ε) =
inf{1 − 1

2‖x + y‖ : x, y ∈ SX , ‖x − y‖ ≥ ε}, where 0 ≤ ε ≤ 2. It was proved
that if there exists ε > 0 such that δX(1 + ε) > ε

2 , then X has uniform normal
structure [8].
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In [7], Gao introduced the modulus of U -convexity which is a generalization
of δX(ε): UX(ε) = inf{1− 1

2‖x+ y‖ : x, y ∈ SX , 〈x− y, fx〉 ≥ ε for some fx ∈
∇x}, where 0 ≤ ε ≤ 2. This measures a certain geometric property of the unit
sphere SX . It was also proved that if there exists δ > 0 such that UX(12−δ) > 0,
then X has uniform normal structure. Mazcuñán-Navarro [14] proved that a
Banach space X has fixed point property if there exists δ > 0 such that
UX(1− δ) > 0. This was strengthened by Saejung [15]. In fact, it was proved
that if a Banach space X is super-reflexive, then the moduli of U -convexity
of the ultra-power XU of X and of X itself coincide. By using ultra-power
method he showed that a Banach space X and its dual X∗ have uniform
normal structure whenever UX(1) > 0.

On the other hand, Banas-Hajnosz-Wedrychowicz [1] introduced the fol-
lowing parameter βX(ε) = sup{‖x − y‖ : x, y ∈ SX , 12‖x + y‖ ≥ 1 − ε}. The
properties of βX(ε) were obtained, and a relationship between this new mod-
ulus and δX(ε) were studied.

In this paper, inspired by the modulus βX(ε) of Banas et al. [1], the new pa-
rameter SYX(ε), an inverse function of UX(ε) in a certain sense, is introduced
and its properties are investigated. Some sufficient conditions of SYX(ε) for
uniform non-squareness and uniform normal structure are given in terms of
this parameter. More precisely, if SYX(t) < 2, for some t ∈ (0, 1] then X is
uniformly non-square; if SYX(ε) < 1 + 2ε for some 0 < ε < 1

2 , then both X

and X∗ have uniform normal structure, and if SYX(ε) < 2 for some 1
2 ≤ ε < 1,

then X has normal structure. In particular, if εU = limε→0 SYX(ε) < 1, then
X is uniformly non-square and both X and X∗ have uniform normal structure.
We have an example to show this condition is the best possible.

2. Main results

First let us recall the concept of the ultra-power technique. Let U be a
ultrafilter on the set N of natural numbers, that is, it is a filter on N which is
maximal with respect to set inclusion. We also assume that it is nontrivial,
that is, it is not of the form {A ⊂ N : i0 ∈ A} for some i0 ∈ N. From now on,
we assume that U is a nontrivial ultrafilter. A sequence {xn} in a Banach space
X converges to an element x ∈ X with respect to U if {n ∈ N : xn ∈ U} ∈ U
for each neighborhood U of x. In this case, we write limU xn = x. Let `∞(X)
denote the set all bounded sequences {xn} in X, that is, sup{‖xn‖ : n ∈ N} <
∞ and let NU := {{xn} ∈ `∞(X) : limU ‖xn‖ = 0}. The ultra-power of X
with respect to U is the quotient space `∞(X)/NU equipped with the quotient
norm | · |U . We write {xn}U to denote the elements of `∞(X)/NU and it is
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not hard to see that |{xn}U |U = limU ‖xn‖. Note that, since U is nontrivial,
X can be embedded isometrically into XU (see [5], [17].)

Definition 2.1. Let X be a Banach space. The function SYX : [0, 1]→ [0, 2]
defined by

SYX(ε) = sup

{
〈x− y, fx〉 : x, y ∈ SX ,

‖x+ y‖
2

≥ 1− ε, fx ∈ ∇x

}
is called the modulus of SY -convexity of X.

Proposition 2.2. Suppose that X is a Banach space and 0 ≤ ε ≤ 1. Then

SYX(ε) = sup

{
〈x− y, fx〉 : x ∈ SX , y ∈ BX ,

‖x+ y‖
2

≥ 1− ε for some fx ∈ ∇x

}
.

Proof. Let ŜY X(t) denote the right hand of the expression of the proposition.

Obviously, SYX(t) ≤ ŜY X(t). To see the reverse inequality, let η > 0. Then
there exist elements x ∈ SX , y ∈ BX and x∗ ∈ ∇x such that

‖x+ y‖
2

≥ 1− ε and 〈x− y, x∗〉 > ŜY X(t)− η.

Let y′, y′′ ∈ SX be such that 〈y′, x∗〉 = 〈y′′, x∗〉 and y = (1 − α)y′ + αy′′ for
some α ∈ [0, 1]. This implies that (1− α)‖x+ y′‖+ α‖x+ y′′‖ ≥ 2(1− ε). So
we may assume that ‖x+ y′‖ ≥ 2(1− ε). Note that 〈x− y′, x∗〉 = 〈x− y, x∗〉.
This implies that

SYX(ε) ≥ 〈x− y′, x∗〉 > ŜY X(ε)− η.

Since η > 0 is arbitrary, we have SYX(ε) ≥ ŜY X(ε). This completes the
proof. �

Theorem 2.3. The following are some basic properties of SYX(ε) :

• SYX(ε) = sup
{
〈x− y, fx〉 : x, y ∈ SX , ‖x+y‖

2 = 1− ε, fx ∈ ∇x

}
.

• SYX(ε) is an increasing function of ε.
• For any Banach space X and 0 ≤ ε ≤ 1, SYX(ε) ≤ βX(ε).
• For any Banach space X, SYX(1) = 2.
• For a Hilbert space H,

SYH(ε) =

{
1−

√
1− 4ε(2− ε)(1− ε)2 if 0 ≤ ε ≤ 1− 1√

2
,

1 +
√

1− 4ε(2− ε)(1− ε)2 if 1− 1√
2
≤ ε ≤ 1.
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Lemma 2.4. ([2], Bishop-Phelps-Bollobás) Let X be a Banach space and

ε ∈ (0, 1). Then for each z ∈ BX and h ∈ SX∗ with 〈z, h〉 > 1− ε2

4 there exist
x ∈ SX and x∗ ∈ ∇x such that ‖x− z‖ < ε and ‖x∗ − h‖ < ε.

Proposition 2.5. Suppose that X is a superreflexive space and U is a non-
trivial ultrafilter on N. Then SYXU (t) = SYX(t) for all t ∈ [0, 1].

Proof. Since X can be embedded into XU isometrically, we may consider X as
a subspace of XU . It then follows from the definition that SYX(ε) ≤ SYXU (ε).

We now prove the reverse inequality. For any small η > 0, from the defini-
tion of SYXU (ε), let {xn}U ∈ SXU , {yn}U ∈ SXU , and let {fn}U ∈ ∇{xn}U be
such that

1

2
|{xn}U + {yn}U |U ≥ 1− ε

and

〈{xn}U − {yn}U , {fn}U 〉 ≥ SYXU (ε)− η.

Set

P = {n : 1− η < ‖xn‖ < 1 + η};
Q = {n : 1− η < ‖fn‖ < 1 + η};
W = {n : 〈xn − yn, fn〉 ≥ SYXU (ε)− η};

T = {n :
1

2
‖xn + yn‖ ≥ 1− ε}.

Note that all the sets P,Q,W and T belong to U and so does the intersection
P ∩Q ∩W ∩ T . In particular, P ∩Q ∩W ∩ T 6= ∅.

Let n ∈ P ∩Q ∩W ∩ T be fixed. This implies that

1− η < ‖xn‖ < 1 + η;

1− η < ‖fn‖ < 1 + η;

1− η < 〈xn, fn〉 < 1 + η;

〈xn − yn, fn〉 ≥ SYXU (ε)− η;

1

2
‖xn + yn‖ ≥ 1− ε.

If necessary, we normalize vectors xn and fn to use Lemma 2.4 because η can
be arbitrarily small. Then there are zn ∈ SX and gzn ∈ SX∗ such that

• gzn ∈ ∇zn ;
• 1

2‖zn − yn‖ ≥ 1− ε;
• 〈zn − yn, gzn〉 > SYXU (ε)− η.
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This implies that SYX(ε) ≥ SYXU (ε)−η. Since η > 0 can be arbitrarily small,
we have

SYXU (ε) ≤ SYX(ε).

This complites that proof. �

Definition 2.6. ([6, 9, 10]) A Banach space X is said to be uniformly non-
square if there exists a δ > 0 such that either 1

2‖x+y‖ ≤ 1−δ or 1
2‖x−y‖ ≤ 1−δ

for any x, y ∈ SX .

Theorem 2.7. If SYX(ε) < 2 for some ε ∈ (0, 1] then X is uniformly non-
square.

Proof. Suppose that X is not uniformly non-square. Then there are sequences
{yn} and {zn} in SX such that limn ‖yn + zn‖ = limn ‖yn − zn‖ = 2. For
each n ∈ N, let hn ∈ SX∗ be such that 〈zn − yn, hn〉 = ‖zn − yn‖. Note that
limn〈zn, hn〉 = − limn〈yn, hn〉 = 1. It follows from Lemma 2.4 that there are
sequences {xn} in SX and {x∗n} in SX∗ such that

• 〈xn, x∗n〉 = 1 for all n ∈ N;
• limn ‖xn − zn‖ = limn ‖x∗n − hn‖ = 0.

It follows that

lim
n
‖xn + yn‖ ≥ lim

n
(‖zn + yn‖ − ‖zn − xn‖) = lim

n
‖zn + yn‖ = 2.

Moreover, limn〈yn, x∗n〉 = limn〈yn, x∗n−hn〉+ 〈yn, hn〉 = −1. The last equality
follows since limn |〈yn, x∗n − hn〉| ≤ limn ‖yn‖‖x∗n − hn‖ = 0. Therefore, we
have limn〈xn − yn, x∗n〉 = 2. Consequently, SYX(ε) = 2 for all ε ∈ (0, 1]. �

Lemma 2.8. ([16]) If X is a superreflexive Banach space and fails to have

normal structure, then there are elements x̃1, x̃2, x̃3 ∈ SXU and f̃1, f̃2, f̃3 ∈
S(XU )∗ such that

• |x̃i − x̃j |U = 1 and 〈x̃i, f̃j〉 = 0 for all i 6= j;

• 〈x̃i, f̃i〉 = 1 for all i = 1, 2, 3.

Theorem 2.9. If SYX(ε) < 1+2ε for some ε ∈ (0, 1/2], then X and X∗ have
uniform normal structure.

Proof. We assume that SYX(ε) < 1 + 2ε for some ε ∈ (0, 1/2]. This implies
that X is uniformly non-square and hence super-reflexive. Suppose first that
X does not have normal structure. So there are elements x̃1, x̃2, x̃3 ∈ SXU and

f̃1, f̃2, f̃3 ∈ S(XU )∗ satisfying all the conditions in Lemma 2.8. Set x := x̃1− x̃2,
y := (1− 2ε)x̃1 + 2εx̃2 and x∗ = −f̃2. Note that
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• 〈x,x∗〉 = 1;
• |x + y|U = |(2− 2ε)x̃1 − (1− 2ε)x̃2|U

≥ 〈(2− 2ε)x̃1 − (1− 2ε)x̃2, f̃1〉 = 2− 2ε;

• 〈x− y,x∗〉 = 1− 〈(1− 2ε)x̃1 + 2εx̃2,−f̃2〉 = 1 + 2ε.

This implies that
SYX(ε) = SYXU (ε) ≥ 1 + 2ε.

Consequently, if SYX(ε) < 1 + 2ε for some ε ∈ (0, 1/2], then X has normal
structure.

Secondly, we show that ifX does not have normal structure, then SYX∗(ε) ≥
1+2ε. To see this, we set x∗ := f̃1, y∗ := 2εf̃2− (1−2ε)f̃3 and x∗∗ := x̃1− x̃2.
Note that

• 〈x∗,x∗∗〉 = 1;

• |x∗ + y∗|U = |f̃1 + 2εf̃2 − (1− 2ε)f̃3|U
≥ 〈f̃1 + 2εf̃2 − (1− 2ε)f̃3, x̃1 − x̃3〉 = 2− 2ε;

• 〈x∗ − y∗,x∗∗〉 = 〈x̃1 − x̃2, f̃1 − 2εf̃2 + (1− 2ε)f̃3〉 = 1 + 2ε.

This implies that

SYX∗(t) = SY(X∗)U (ε) = SY(XU )∗(t) ≥ 1 + 2ε.

In this second part, we can conclude that if SYX(ε) < 1 + 2ε for some ε ∈
(0, 1/2], then X∗ has normal structure.

Finally, to conclude the uniform normal structure of X and X∗, we just
invoke the fact that uniform normal structure and super-normal structure are
the same whenever the space is super-reflexive [12]. �

We now discuss the situation ε ∈ [1/2, 1). Here we give a partial result.
We do not known that if the following result can conclude the uniform normal
structure of the dual space.

Theorem 2.10. If SYX(ε) < 2 for some ε ∈ [1/2, 1), then X has uniform
normal structure.

Proof. We assume that SYX(ε) < 2 for some ε ∈ [1/2, 1). We then follow the
first part of the proof of the preceding theorem but we set y := x̃2−(2ε−1)x̃1.
Note that

• |y|U = |(2ε− 1)(x̃2 − x̃1)− (2− 2ε)x̃2)|U
≤ (2ε− 1)|x̃2 − x̃1|U + (2− 2ε)|x̃2|U = 1;

• |x + y|U = 2(1− ε);
• 〈x− y,x∗〉 = 2.

This implies that
SYX(ε) = SYXU (ε) = 2.

�
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We now present a sufficient condition of βX(t) for uniform normal structure.

Corollary 2.11. If βX(t) < 1 + 2t for some t ∈ (0, 1/2], then X is uniformly
non-square and both X and X∗ have uniform normal structure.

Corollary 2.12. If limε→0 SYX(ε) < 1, then X is uniformly non-square and
both X and X∗ have uniform normal structure.

Proof. This is a direct result of Theorem 2.7 and Theorem 2.9. �

For a Banach space X, we define εU = sup{ε ≥ 0 : UX(ε) = 0} to be the
characteristic of U -convexity of a space X.

Proposition 2.13. limε→0 SYX(ε) = εU .

Proof. The idea of the proof is similar to the proof of Theorem 3.1 in [1]. If
εU = 0, we have limε→0 SYX(ε) ≥ εU . Otherwise, fix t < εU . From definition
of UX(ε) and εU , for an arbitrary ε > 0 there exist x, y ∈ S(X) and fx ∈ ∇x

such that 〈x− y, fx〉 = t, and 1− ‖x+y‖
2 ≤ ε.

From definition of SYX(ε), this implies that SYX(ε) ≥ t, therefore

lim
ε→0

SYX(ε) ≥ t.

Since t can be arbitrarily close to εU , we have that limε→0 SYX(ε) ≥ εU . We
prove the inverse direction. Let t > 0 be arbitrarily small. Since SYX(ε) be a
nondecresing function, from definition of SYX(ε) there exist x, y ∈ S(X), fx ∈
∇x such that 1− ‖x+y‖

2 = t, and 〈x− y, fx〉 = SYX(t) ≥ limε→0 SYX(ε).
From definition of UX(ε), this implies UX(limε→0 SYX(ε)) ≤ t. Since t can

be arbitrarily small, UX(limε→0 SYX(ε)) = 0. Therefore from definition of εU ,
we have limε→0 SYX(ε) ≤ εU . �

We borrow the following example from [15] to show that the condition of
Corollary 2.12 is the best possible.

Example 2.14. For p ∈ (1,∞), we denote by lp,∞ the lp space with the norm

‖x‖ = max{‖x+‖p, ‖x−‖p},
where x+ and x− are the positive and negative part of x respectively. It is
known that lp,∞ is a superreflexive space and fails to have normal structure
[11]. Moreover, Ulp,∞(1) = 0 and Ulp,∞(ε) > 0 for all ε > 1 [15]. It follows
from Proposition 2.13 that εU = limε→0 SYX(ε) = 1.
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