Nonlinear Functional Analysis and Applications Vol. 21, No. 4 (2016), pp. 717-725

http://nfaa.kyungnam.ac.kr/journal-nfaa Copyright \bigodot 2016 Kyungnam University Press

ON BANAS-HAJNOSZ-WEDRYCHOWICZ TYPE MODULUS OF CONVEXITY AND FIXED POINT PROPERTY

Satit Saejung^{1,2,3} and Ji Gao⁴

¹Department of Mathematics, Faculty of Science Khon Kaen University, Khon Kaen 40002, Thailand

²The Centre of Excellence in Mathematics, Commission on Higher Education (CHE) Sri Ayudthaya Road, Bangkok 10400, Thailand

³Research Center for Environmental and Hazardous Substance Management Khon Kaen University, Khon Kaen, 40002, Thailand e-mail: saejung@kku.ac.th

⁴Department of Mathematics Community College of Philadelphia, Philadelphia, PA 19130-3991, USA e-mail: jgao@ccp.edu

Abstract. Let X be a Banach space with the unit sphere $S_X = \{x \in X : \|x\| = 1\}$. In this paper, inspired by Banaś *et. al.*, in [1], the new parameter $SY_X(\varepsilon) = \sup\{\langle x - y, f_x \rangle : x, y \in S_X, \frac{\|x+y\|}{2} \ge 1 - \varepsilon$ for some $f_x \in \nabla_x\}$, where $\nabla_x \subseteq S_{X^*}$ is the norm 1 supporting functionals at x, is introduced. Several properties of this parameter are investigated. The main result are that if $SY_X(t) < 2$, for some $t \in (0, 1]$ then X is uniformly non-square; and if $SY_X(\varepsilon) < 1 + 2\varepsilon$ for some $0 < \varepsilon < \frac{1}{2}$, then both X and X^{*} have uniform normal structure. In particular, if $\varepsilon_U = \lim_{\varepsilon \to 0} SY_X(\varepsilon) < 1$, then X is uniformly non-square and both X and X^{*} have uniform normal structure. We have an example to show this condition is the best possible.

⁰Received May 13, 2016. Revised July 20, 2016.

⁰2010 Mathematics Subject Classification: 46B20, 47H09, 47H10.

 $^{^0\}mathrm{Keywords}$: Non-expansive mapping, normal structure, uniformly non-square space, uniform normal structure.

⁰Corresponding author: Ji Gao.

S. Saejung and J. Gao

1. INTRODUCTION

Let X be a Banach space with the unit sphere $S_X = \{x \in X : ||x|| = 1\}$ and the closed unit ball $B_X = \{x \in X : ||x|| \le 1\}$. For $x \in S_X$, let $\nabla_x \subset S_{X^*}$ be the set of norm 1 supporting functionals of S_X at x, that is, $f \in \nabla_x \iff \langle x, f \rangle = 1$. For a nonempty subset C of X, the *diameter* of C is denoted by diam C, that is, diam $C = \sup\{||x - y|| : x, y \in C\}$.

Definition 1.1. ([3]) Let X be a Banach space. A nonempty bounded and convex subset K of X is said to have *normal structure* if for every convex subset C of K that contains more than one point there is a point $x_0 \in C$ such that

$$\sup\{\|x_0 - y\| : y \in C\} < \operatorname{diam} C.$$

A Banach space X is said to have

- *normal structure* if every bounded convex subset of X has normal structure;
- *weak normal structure* if every weakly compact convex set K of X has normal structure;
- uniform normal structure if there exists 0 < c < 1 such that for every bounded closed convex subset C of K that contains more than one point there is a point $x_0 \in C$ such that

$$\sup\{\|x_0 - y\| : y \in C\} < c \cdot \operatorname{diam} C.$$

Remark 1.2. The following facts are known.

- uniform normal structure \implies normal structure \implies weak normal structure.
- In the setting of reflexive spaces, normal structure \iff weak normal structure.

Let C be a nonempty subset of a Banach space X. A mapping $T: C \to C$ is called to be non-expensive whenever $||Tx - Ty|| \leq ||x - y||$ for all $x, y \in C$. A Banach space has fixed point property if for every bounded closed and convex subset C of X and for each non-expansive mapping $T: C \to C$, there is a point $x \in C$ such that x = Tx (see [14]). It was proved by Kirk [13] that if X has normal structure, then it has fixed point property. Since then many mathematician have investigated various sufficient conditions for normal structure.

In [4], Clarkson introduced the following modulus of convexity: $\delta_X(\varepsilon) = \inf\{1 - \frac{1}{2} ||x + y|| : x, y \in S_X, ||x - y|| \ge \varepsilon\}$, where $0 \le \varepsilon \le 2$. It was proved that if there exists $\varepsilon > 0$ such that $\delta_X(1 + \varepsilon) > \frac{\varepsilon}{2}$, then X has uniform normal structure [8].

In [7], Gao introduced the modulus of U-convexity which is a generalization of $\delta_X(\varepsilon)$: $U_X(\varepsilon) = \inf\{1 - \frac{1}{2} || x + y || : x, y \in S_X, \langle x - y, f_x \rangle \ge \varepsilon$ for some $f_x \in \nabla_x\}$, where $0 \le \varepsilon \le 2$. This measures a certain geometric property of the unit sphere S_X . It was also proved that if there exists $\delta > 0$ such that $U_X(\frac{1}{2}-\delta) > 0$, then X has uniform normal structure. Mazcuñán-Navarro [14] proved that a Banach space X has fixed point property if there exists $\delta > 0$ such that $U_X(1-\delta) > 0$. This was strengthened by Saejung [15]. In fact, it was proved that if a Banach space X is super-reflexive, then the moduli of U-convexity of the ultra-power $X_{\mathcal{U}}$ of X and of X itself coincide. By using ultra-power method he showed that a Banach space X and its dual X* have uniform normal structure whenever $U_X(1) > 0$.

On the other hand, Banas-Hajnosz-Wedrychowicz [1] introduced the following parameter $\beta_X(\varepsilon) = \sup\{||x - y|| : x, y \in S_X, \frac{1}{2}||x + y|| \ge 1 - \varepsilon\}$. The properties of $\beta_X(\varepsilon)$ were obtained, and a relationship between this new modulus and $\delta_X(\varepsilon)$ were studied.

In this paper, inspired by the modulus $\beta_X(\varepsilon)$ of Banas et al. [1], the new parameter $SY_X(\varepsilon)$, an inverse function of $U_X(\varepsilon)$ in a certain sense, is introduced and its properties are investigated. Some sufficient conditions of $SY_X(\varepsilon)$ for uniform non-squareness and uniform normal structure are given in terms of this parameter. More precisely, if $SY_X(t) < 2$, for some $t \in (0, 1]$ then X is uniformly non-square; if $SY_X(\varepsilon) < 1 + 2\varepsilon$ for some $0 < \varepsilon < \frac{1}{2}$, then both X and X^{*} have uniform normal structure, and if $SY_X(\varepsilon) < 2$ for some $\frac{1}{2} \le \varepsilon < 1$, then X has normal structure. In particular, if $\varepsilon_U = \lim_{\varepsilon \to 0} SY_X(\varepsilon) < 1$, then X is uniformly non-square and both X and X^{*} have uniform normal structure. We have an example to show this condition is the best possible.

2. Main results

First let us recall the concept of the ultra-power technique. Let \mathcal{U} be a ultrafilter on the set \mathbb{N} of natural numbers, that is, it is a filter on \mathbb{N} which is maximal with respect to set inclusion. We also assume that it is *nontrivial*, that is, it is not of the form $\{A \subset \mathbb{N} : i_0 \in A\}$ for some $i_0 \in \mathbb{N}$. From now on, we assume that \mathcal{U} is a nontrivial ultrafilter. A sequence $\{x_n\}$ in a Banach space X converges to an element $x \in X$ with respect to \mathcal{U} if $\{n \in \mathbb{N} : x_n \in U\} \in \mathcal{U}$ for each neighborhood U of x. In this case, we write $\lim_{\mathcal{U}} x_n = x$. Let $\ell^{\infty}(X)$ denote the set all bounded sequences $\{x_n\}$ in X, that is, $\sup\{\|x_n\| : n \in \mathbb{N}\} < \infty$ and let $\mathcal{N}_{\mathcal{U}} := \{\{x_n\} \in \ell^{\infty}(X) : \lim_{\mathcal{U}} \|x_n\| = 0\}$. The ultra-power of Xwith respect to \mathcal{U} is the quotient space $\ell^{\infty}(X)/\mathcal{N}_{\mathcal{U}}$ equipped with the quotient norm $|\cdot|_{\mathcal{U}}$. We write $\{x_n\}_{\mathcal{U}}$ to denote the elements of $\ell^{\infty}(X)/\mathcal{N}_{\mathcal{U}}$ and it is not hard to see that $|\{x_n\}_{\mathcal{U}}|_{\mathcal{U}} = \lim_{\mathcal{U}} ||x_n||$. Note that, since \mathcal{U} is nontrivial, X can be embedded isometrically into $X_{\mathcal{U}}$ (see [5], [17].)

Definition 2.1. Let X be a Banach space. The function $SY_X : [0,1] \to [0,2]$ defined by

$$SY_X(\varepsilon) = \sup\left\{ \langle x - y, f_x \rangle : x, y \in S_X, \frac{\|x + y\|}{2} \ge 1 - \varepsilon, f_x \in \nabla_x \right\}$$

is called the *modulus of SY-convexity* of X.

Proposition 2.2. Suppose that X is a Banach space and $0 \le \varepsilon \le 1$. Then

$$SY_X(\varepsilon) = \sup\left\{ \langle x - y, f_x \rangle : x \in S_X, y \in B_X, \\ \frac{\|x + y\|}{2} \ge 1 - \varepsilon \text{ for some } f_x \in \nabla_x \right\}$$

Proof. Let $\widehat{SY}_X(t)$ denote the right hand of the expression of the proposition. Obviously, $SY_X(t) \leq \widehat{SY}_X(t)$. To see the reverse inequality, let $\eta > 0$. Then there exist elements $x \in S_X$, $y \in B_X$ and $x^* \in \nabla_x$ such that

$$\frac{\|x+y\|}{2} \ge 1-\varepsilon \quad \text{and} \quad \langle x-y, x^* \rangle > \widehat{SY}_X(t) - \eta.$$

Let $y', y'' \in S_X$ be such that $\langle y', x^* \rangle = \langle y'', x^* \rangle$ and $y = (1 - \alpha)y' + \alpha y''$ for some $\alpha \in [0,1]$. This implies that $(1-\alpha)||x+y'|| + \alpha ||x+y''|| \ge 2(1-\varepsilon)$. So we may assume that $||x + y'|| \ge 2(1 - \varepsilon)$. Note that $\langle x - y', x^* \rangle = \langle x - y, x^* \rangle$. This implies that

$$SY_X(\varepsilon) \ge \langle x - y', x^* \rangle > \widehat{SY}_X(\varepsilon) - \eta.$$

Since $\eta > 0$ is arbitrary, we have $SY_X(\varepsilon) \geq \widehat{SY}_X(\varepsilon)$. This completes the proof.

Theorem 2.3. The following are some basic properties of $SY_X(\varepsilon)$:

- SY_X(ε) = sup { ⟨x y, f_x⟩ : x, y ∈ S_X, ||x+y||/2 = 1 − ε, f_x ∈ ∇_x }.
 SY_X(ε) is an increasing function of ε.
- For any Banach space X and $0 \le \varepsilon \le 1$, $SY_X(\varepsilon) \le \beta_X(\varepsilon)$.
- For any Banach space X, $SY_X(1) = 2$.
- For a Hilbert space H,

$$SY_H(\varepsilon) = \begin{cases} 1 - \sqrt{1 - 4\varepsilon(2 - \varepsilon)(1 - \varepsilon)^2} & \text{if } 0 \le \varepsilon \le 1 - \frac{1}{\sqrt{2}}, \\ 1 + \sqrt{1 - 4\varepsilon(2 - \varepsilon)(1 - \varepsilon)^2} & \text{if } 1 - \frac{1}{\sqrt{2}} \le \varepsilon \le 1. \end{cases}$$

Lemma 2.4. ([2], Bishop-Phelps-Bollobás) Let X be a Banach space and $\varepsilon \in (0,1)$. Then for each $z \in B_X$ and $h \in S_{X^*}$ with $\langle z,h \rangle > 1 - \frac{\varepsilon^2}{4}$ there exist $x \in S_X$ and $x^* \in \nabla_x$ such that $||x - z|| < \varepsilon$ and $||x^* - h|| < \varepsilon$.

Proposition 2.5. Suppose that X is a superreflexive space and \mathcal{U} is a nontrivial ultrafilter on \mathbb{N} . Then $SY_{X_{\mathcal{U}}}(t) = SY_X(t)$ for all $t \in [0, 1]$.

Proof. Since X can be embedded into $X_{\mathcal{U}}$ isometrically, we may consider X as a subspace of $X_{\mathcal{U}}$. It then follows from the definition that $SY_X(\varepsilon) \leq SY_{X_{\mathcal{U}}}(\varepsilon)$.

We now prove the reverse inequality. For any small $\eta > 0$, from the definition of $SY_{X_{\mathcal{U}}}(\varepsilon)$, let $\{x_n\}_{\mathcal{U}} \in S_{X_{\mathcal{U}}}, \{y_n\}_{\mathcal{U}} \in S_{X_{\mathcal{U}}}$, and let $\{f_n\}_{\mathcal{U}} \in \nabla_{\{x_n\}_{\mathcal{U}}}$ be such that

$$\frac{1}{2}|\{x_n\}_{\mathcal{U}} + \{y_n\}_{\mathcal{U}}|_{\mathcal{U}} \ge 1 - \varepsilon$$

and

$$\langle \{x_n\}_{\mathcal{U}} - \{y_n\}_{\mathcal{U}}, \{f_n\}_{\mathcal{U}} \rangle \ge SY_{X_{\mathcal{U}}}(\varepsilon) - \eta$$

 Set

$$P = \{n : 1 - \eta < ||x_n|| < 1 + \eta\}; Q = \{n : 1 - \eta < ||f_n|| < 1 + \eta\}; W = \{n : \langle x_n - y_n, f_n \rangle \ge SY_{X_{\mathcal{U}}}(\varepsilon) - \eta\}; T = \{n : \frac{1}{2} ||x_n + y_n|| \ge 1 - \varepsilon\}.$$

Note that all the sets P, Q, W and T belong to \mathcal{U} and so does the intersection $P \cap Q \cap W \cap T$. In particular, $P \cap Q \cap W \cap T \neq \emptyset$.

Let $n \in P \cap Q \cap W \cap T$ be fixed. This implies that

$$1 - \eta < ||x_n|| < 1 + \eta;$$

$$1 - \eta < ||f_n|| < 1 + \eta;$$

$$1 - \eta < \langle x_n, f_n \rangle < 1 + \eta;$$

$$\langle x_n - y_n, f_n \rangle \ge SY_{X_{\mathcal{U}}}(\varepsilon) - \eta;$$

$$\frac{1}{2} ||x_n + y_n|| \ge 1 - \varepsilon.$$

If necessary, we normalize vectors x_n and f_n to use Lemma 2.4 because η can be arbitrarily small. Then there are $z_n \in S_X$ and $g_{z_n} \in S_{X^*}$ such that

•
$$g_{z_n} \in \nabla_{z_n};$$

$$\frac{1}{2}\|z_n - y_n\| \ge 1 - \varepsilon;$$

• $\langle z_n - y_n, g_{z_n} \rangle > SY_{X_{\mathcal{U}}}(\varepsilon) - \eta.$

This implies that $SY_X(\varepsilon) \ge SY_{X_U}(\varepsilon) - \eta$. Since $\eta > 0$ can be arbitrarily small, we have

$$SY_{X_{\mathcal{U}}}(\varepsilon) \leq SY_X(\varepsilon)$$

This complites that proof.

Definition 2.6. ([6, 9, 10]) A Banach space X is said to be uniformly nonsquare if there exists a $\delta > 0$ such that either $\frac{1}{2}||x+y|| \le 1-\delta$ or $\frac{1}{2}||x-y|| \le 1-\delta$ for any $x, y \in S_X$.

Theorem 2.7. If $SY_X(\varepsilon) < 2$ for some $\varepsilon \in (0,1]$ then X is uniformly non-square.

Proof. Suppose that X is not uniformly non-square. Then there are sequences $\{y_n\}$ and $\{z_n\}$ in S_X such that $\lim_n ||y_n + z_n|| = \lim_n ||y_n - z_n|| = 2$. For each $n \in \mathbb{N}$, let $h_n \in S_{X^*}$ be such that $\langle z_n - y_n, h_n \rangle = ||z_n - y_n||$. Note that $\lim_n \langle z_n, h_n \rangle = -\lim_n \langle y_n, h_n \rangle = 1$. It follows from Lemma 2.4 that there are sequences $\{x_n\}$ in S_X and $\{x_n^*\}$ in S_{X^*} such that

- $\langle x_n, x_n^* \rangle = 1$ for all $n \in \mathbb{N}$;
- $\lim_{n \to \infty} ||x_n z_n|| = \lim_{n \to \infty} ||x_n^* h_n|| = 0.$

It follows that

$$\lim_{n} ||x_{n} + y_{n}|| \ge \lim_{n} (||z_{n} + y_{n}|| - ||z_{n} - x_{n}||) = \lim_{n} ||z_{n} + y_{n}|| = 2.$$

Moreover, $\lim_n \langle y_n, x_n^* \rangle = \lim_n \langle y_n, x_n^* - h_n \rangle + \langle y_n, h_n \rangle = -1$. The last equality follows since $\lim_n |\langle y_n, x_n^* - h_n \rangle| \le \lim_n ||y_n|| ||x_n^* - h_n|| = 0$. Therefore, we have $\lim_n \langle x_n - y_n, x_n^* \rangle = 2$. Consequently, $SY_X(\varepsilon) = 2$ for all $\varepsilon \in (0, 1]$.

Lemma 2.8. ([16]) If X is a superreflexive Banach space and fails to have normal structure, then there are elements $\tilde{x}_1, \tilde{x}_2, \tilde{x}_3 \in S_{X_{\mathcal{U}}}$ and $\tilde{f}_1, \tilde{f}_2, \tilde{f}_3 \in S_{(X_{\mathcal{U}})^*}$ such that

- $|\widetilde{x}_i \widetilde{x}_j|_{\mathcal{U}} = 1$ and $\langle \widetilde{x}_i, \widetilde{f}_j \rangle = 0$ for all $i \neq j$;
- $\langle \widetilde{x}_i, \widetilde{f}_i \rangle = 1$ for all i = 1, 2, 3.

Theorem 2.9. If $SY_X(\varepsilon) < 1 + 2\varepsilon$ for some $\varepsilon \in (0, 1/2]$, then X and X^{*} have uniform normal structure.

Proof. We assume that $SY_X(\varepsilon) < 1 + 2\varepsilon$ for some $\varepsilon \in (0, 1/2]$. This implies that X is uniformly non-square and hence super-reflexive. Suppose first that X does not have normal structure. So there are elements $\tilde{x}_1, \tilde{x}_2, \tilde{x}_3 \in S_{X_{\mathcal{U}}}$ and $\tilde{f}_1, \tilde{f}_2, \tilde{f}_3 \in S_{(X_{\mathcal{U}})^*}$ satisfying all the conditions in Lemma 2.8. Set $\mathbf{x} := \tilde{x}_1 - \tilde{x}_2$, $\mathbf{y} := (1 - 2\varepsilon)\tilde{x}_1 + 2\varepsilon\tilde{x}_2$ and $\mathbf{x}^* = -\tilde{f}_2$. Note that

Banas-Hajnosz-Wedrychowicz type modulus of convexity

- $\langle \mathbf{x}, \mathbf{x}^* \rangle = 1;$
- $|\mathbf{x} + \mathbf{y}|_{\mathcal{U}} = |(2 2\varepsilon)\widetilde{x}_1 (1 2\varepsilon)\widetilde{x}_2|_{\mathcal{U}}$ $\geq \langle (2 - 2\varepsilon)\widetilde{x}_1 - (1 - 2\varepsilon)\widetilde{x}_2, \widetilde{f}_1 \rangle = 2 - 2\varepsilon;$ • $\langle \mathbf{x} - \mathbf{y}, \mathbf{x}^* \rangle = 1 - \langle (1 - 2\varepsilon)\widetilde{x}_1 + 2\varepsilon\widetilde{x}_2, -\widetilde{f}_2 \rangle = 1 + 2\varepsilon.$

This implies that

$$SY_X(\varepsilon) = SY_{X_U}(\varepsilon) \ge 1 + 2\varepsilon.$$

Consequently, if $SY_X(\varepsilon) < 1 + 2\varepsilon$ for some $\varepsilon \in (0, 1/2]$, then X has normal structure.

Secondly, we show that if X does not have normal structure, then $SY_{X^*}(\varepsilon) \ge 1+2\varepsilon$. To see this, we set $\mathbf{x}^* := \widetilde{f}_1$, $\mathbf{y}^* := 2\varepsilon \widetilde{f}_2 - (1-2\varepsilon)\widetilde{f}_3$ and $\mathbf{x}^{**} := \widetilde{x}_1 - \widetilde{x}_2$. Note that

•
$$\langle \mathbf{x}^*, \mathbf{x}^{**} \rangle = 1;$$

• $|\mathbf{x}^* + \mathbf{y}^*|_{\mathcal{U}} = |\widetilde{f}_1 + 2\varepsilon \widetilde{f}_2 - (1 - 2\varepsilon) \widetilde{f}_3|_{\mathcal{U}}$
 $\geq \langle \widetilde{f}_1 + 2\varepsilon \widetilde{f}_2 - (1 - 2\varepsilon) \widetilde{f}_3, \widetilde{x}_1 - \widetilde{x}_3 \rangle = 2 - 2\varepsilon;$
• $\langle \mathbf{x}^* - \mathbf{y}^*, \mathbf{x}^{**} \rangle = \langle \widetilde{x}_1 - \widetilde{x}_2, \widetilde{f}_1 - 2\varepsilon \widetilde{f}_2 + (1 - 2\varepsilon) \widetilde{f}_3 \rangle = 1 + 2\varepsilon$

This implies that

$$SY_{X^*}(t) = SY_{(X^*)_{\mathcal{U}}}(\varepsilon) = SY_{(X_{\mathcal{U}})^*}(t) \ge 1 + 2\varepsilon.$$

In this second part, we can conclude that if $SY_X(\varepsilon) < 1 + 2\varepsilon$ for some $\varepsilon \in (0, 1/2]$, then X^* has normal structure.

Finally, to conclude the uniform normal structure of X and X^* , we just invoke the fact that uniform normal structure and super-normal structure are the same whenever the space is super-reflexive [12].

We now discuss the situation $\varepsilon \in [1/2, 1)$. Here we give a partial result. We do not known that if the following result can conclude the uniform normal structure of the dual space.

Theorem 2.10. If $SY_X(\varepsilon) < 2$ for some $\varepsilon \in [1/2, 1)$, then X has uniform normal structure.

Proof. We assume that $SY_X(\varepsilon) < 2$ for some $\varepsilon \in [1/2, 1)$. We then follow the first part of the proof of the preceding theorem but we set $\mathbf{y} := \widetilde{x}_2 - (2\varepsilon - 1)\widetilde{x}_1$. Note that

• $|\mathbf{y}|_{\mathcal{U}} = |(2\varepsilon - 1)(\widetilde{x}_2 - \widetilde{x}_1) - (2 - 2\varepsilon)\widetilde{x}_2)|_{\mathcal{U}}$ $\leq (2\varepsilon - 1)|\widetilde{x}_2 - \widetilde{x}_1|_{\mathcal{U}} + (2 - 2\varepsilon)|\widetilde{x}_2|_{\mathcal{U}} = 1;$ • $|\mathbf{x} + \mathbf{y}|_{\mathcal{U}} = 2(1 - \varepsilon);$ • $\langle \mathbf{x} - \mathbf{y}, \mathbf{x}^* \rangle = 2.$

This implies that

 $SY_X(\varepsilon) = SY_{X_U}(\varepsilon) = 2.$

We now present a sufficient condition of $\beta_X(t)$ for uniform normal structure.

Corollary 2.11. If $\beta_X(t) < 1 + 2t$ for some $t \in (0, 1/2]$, then X is uniformly non-square and both X and X^* have uniform normal structure.

Corollary 2.12. If $\lim_{\varepsilon \to 0} SY_X(\varepsilon) < 1$, then X is uniformly non-square and both X and X^{*} have uniform normal structure.

Proof. This is a direct result of Theorem 2.7 and Theorem 2.9. \Box

For a Banach space X, we define $\varepsilon_U = \sup \{ \varepsilon \ge 0 : U_X(\varepsilon) = 0 \}$ to be the characteristic of U-convexity of a space X.

Proposition 2.13. $\lim_{\varepsilon \to 0} SY_X(\varepsilon) = \varepsilon_U$.

Proof. The idea of the proof is similar to the proof of Theorem 3.1 in [1]. If $\varepsilon_U = 0$, we have $\lim_{\varepsilon \to 0} SY_X(\varepsilon) \ge \varepsilon_U$. Otherwise, fix $t < \varepsilon_U$. From definition of $U_X(\varepsilon)$ and ε_U , for an arbitrary $\varepsilon > 0$ there exist $x, y \in S(X)$ and $f_x \in \nabla_x$ such that $\langle x - y, f_x \rangle = t$, and $1 - \frac{\|x + y\|}{2} \le \varepsilon$.

From definition of $SY_X(\varepsilon)$, this implies that $SY_X(\varepsilon) \ge t$, therefore

$$\lim_{\varepsilon \to 0} SY_X(\varepsilon) \ge t$$

Since t can be arbitrarily close to ε_U , we have that $\lim_{\varepsilon \to 0} SY_X(\varepsilon) \ge \varepsilon_U$. We prove the inverse direction. Let t > 0 be arbitrarily small. Since $SY_X(\varepsilon)$ be a nondecressing function, from definition of $SY_X(\varepsilon)$ there exist $x, y \in S(X), f_x \in \nabla_x$ such that $1 - \frac{\|x+y\|}{2} = t$, and $\langle x - y, f_x \rangle = SY_X(t) \ge \lim_{\varepsilon \to 0} SY_X(\varepsilon)$. From definition of $U_X(\varepsilon)$, this implies $U_X(\lim_{\varepsilon \to 0} SY_X(\varepsilon)) \le t$. Since t can

From definition of $U_X(\varepsilon)$, this implies $U_X(\lim_{\varepsilon \to 0} SY_X(\varepsilon)) \leq t$. Since t can be arbitrarily small, $U_X(\lim_{\varepsilon \to 0} SY_X(\varepsilon)) = 0$. Therefore from definition of ε_U , we have $\lim_{\varepsilon \to 0} SY_X(\varepsilon) \leq \varepsilon_U$.

We borrow the following example from [15] to show that the condition of Corollary 2.12 is the best possible.

Example 2.14. For $p \in (1, \infty)$, we denote by $l_{p,\infty}$ the l_p space with the norm $\|x\| = \max\{\|x^+\|_p, \|x^-\|_p\},$

where x^+ and x^- are the positive and negative part of x respectively. It is known that $l_{p,\infty}$ is a superreflexive space and fails to have normal structure [11]. Moreover, $U_{l_{p,\infty}}(1) = 0$ and $U_{l_{p,\infty}}(\varepsilon) > 0$ for all $\varepsilon > 1$ [15]. It follows from Proposition 2.13 that $\varepsilon_U = \lim_{\varepsilon \to 0} SY_X(\varepsilon) = 1$.

Acknowledgments: The research of the first author is supported by the Thailand Research Fund and Khon Kaen University (RSA5980006).

References

- J. Banas, A. Hajnosz, and S. Wedrychowicz, On convexity and smoothness of Banach space, Comment. Math. Univ. Carolin., 31(3) (1990), 445–452.
- [2] B. Bollobás, An extension to the theorem of Bishop and Phelps, Bull. London Math. Soc., 2 (1970), 181–182.
- [3] M.S. Brodskiĭ and D.P. Mil'man, On the center of a convex set, (Russian) Doklady Akad. Nauk SSSR (N.S.) 59 (1948), 837–840.
- [4] J. Clarkson, Uniform Convex Spaces, Trans. Amer. Math. Soc., 40 (1936), 396–414.
- [5] D. Dacunha-Castelle and J.L. Krivine, Applications des ultraproduits à l'étude des espaces et des algèbres de Banach, (French) Studia Math., 41 (1972), 315–334.
- [6] J. Diestel, Geometry of Banach spaces-selected topics, Lecture Notes in Mathematics, Vol. 485. Springer-Verlag, Berlin-New York, 1975.
- [7] J. Gao, Normal structure and modulus of U-convexity in Banach spaces, Function spaces, differential operators and nonlinear analysis (Paseky nad Jizerou, 1995), Prometheus, Prague, (1996) 195–199.
- [8] J. Gao, Normal hexagon and more general Banach spaces with uniform normal structure, Applied Mathematics Letters, 16 (2003), 273–278.
- J. Gao and K.-S. Lau, On two classes of Banach spaces with uniform normal structure, Studia Math., 99(1) (1991), 41–56.
- [10] R.C. James, Uniformly non-square Banach spaces, Ann. of Math., 80(2) (1964), 542– 550.
- [11] L.A. Karlovitz, Existence of fixed points of nonexpansive mappings in a space without normal structure, Pacific J. Math., 66(1) (1976), 153–159.
- [12] M.A. Khamsi, Uniform smoothness implies super-normal structure property, Nonlinear Anal., 19(11) (1992), 1063–1069.
- [13] W.A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72 (1965), 1004–1006.
- [14] E.V. Mazcuñán-Navarro, On the modulus of u-convexity of Ji Gao, Abstr. Appl. Anal., 2003(1), (2003), 49–54.
- [15] S. Saejung, On the modulus of U-convexity, Abstr. Appl. Anal., 2005(1), (2005), 59–66.
- [16] S. Saejung, Sufficient conditions for uniform normal structure of Banach spaces and their duals, J. Math. Anal. Appl., 330(1) (2007), 597–604.
- [17] B. Sims, "Ultra"-techniques in Banach space theory, Queen's Papers in Pure and Applied Mathematics, 60. Queen's University, Kingston, ON, 1982.