
Nonlinear Functional Analysis and Applications
Vol. 21, No. 4 (2016), pp. 727-741

http://nfaa.kyungnam.ac.kr/journal-nfaa
Copyright c© 2016 Kyungnam University Press KUPress

INEXACT PROJECTION METHOD FOR THE
VARIATIONAL INEQUALITIES OVER THE FIXED

POINT SET AND ITS APPLICATION
TO CDMA DATA NETWORKS

Ngo Xuan Phuong1 and Vu The Ngoc2

1Department of Mathematics
University of Fire Fighting and Prevention, Vietnam

e-mail: ngoxuanphuong.edu@gmail.com

2Department of Mathematics
The North Vietnam College for Agriculture and Rural Development

e-mail: ngocthevu.math@gmail.com

Abstract. We propose a new iteration method for solving variational inequalities over the

fixed point set of a firmly nonexpansive mapping, where the cost functions are continuous

and not necessarily monone, which is called the inexact subgradient method. One application

of the problem is a power control for a direct-sequence code-division multiple-access data

network. Finally, we present some numerical experiments to illustrate the behavior of the

proposed algorithms.

1. Introduction

Let T : Rn → Rn be a firmly nonexpansive mapping, i.e., ‖T (x)−T (y)‖2 ≤
〈T (x) − T (y), x − y〉 for all x, y ∈ Rn, and mapping F : Rn → R. We con-
sider the following variational inequalities over the fixed point set

(
shortly,

V I(F, F ix(T ))
)
:

Find x∗ ∈ Fix(T ) such that 〈F (x∗), y − x∗〉 ≥ 0, ∀ y ∈ Fix(T ),

where Fix(T ) := {x ∈ C : Tx = x}. Problem V I(F, F ix(T )) is a special class
of equilibrium problems on the nonempty closed convex constraint set. Many
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iterative methods for solving such problems have been presented in [3, 4, 5,
8, 9, 17, 18]. A well-known application of this problem is the power-control
problem for code-division multiple-access (shortly, CDMA) systems (see [10,
11, 12, 19, 22]). Power control is needed for efficient resource allocation and
interference management in the uplink and downlink of CDMA systems. For
a power-control, user terminal has to be able to quickly transmit at an ideal
power level such that it can get a sufficient signal-to-interference-plus-noise
ratio (shortly, SINR) and achieve the required quality of service. In the uplink,
each user must transmit just enough power to achieve the required quality of
service without causing unnecessary interference to other users in the system.
One method of doing so is a game-theoretic approach, the preferences of users
are represented by utility functions. We consider a utility function in [11, 13,
15, 19] defined as the follows: Let I := {1, · · · , s} be the set of users and
Ck := [ak, bk] be the strategy set for the kth user, where ak ≥ 0 and bk > 0
are the minimum power and the maximum allowed power for transmission of
the kth user. Then, the common power set of all users is

C := C1 × · · · × Cs.

Recently, Tse et al., in [19], for each x = (x1, · · · , xs) ∈ C, introduced the
utility function as follows

fi(x) :=
Lci(1− e−ti(x))K

K
,

where
− L is the number of information bits;
− K is the total number of bits in a packet;
− ci is the transmission rate for the ith user, which is also the ratio of

the bandwidth to the processing gain;
− Denote the channel gain for the ith user by hi, the processing gain by
N > 0, and the noise power by σ2. Then, the signal-to-interference-
plus-noise ratio SINR is defined as

ti(x) :=
xih

2
i

σ2 + 1
N

∑
j 6=i

xjh2j
. (1.1)

For each t ∈ R+ := {x ∈ R : x ≥ 0}, the expresion (1 − e−t)K is the approx-
imate packet success rate (shortly, PSR). Thus, users choose their transmit
powers in order to maximize their utility functions fi(x) for all i = 1, · · · , s.
The mapping F : C → Rn is defined by

F (x) =

(
−∂f1
∂x1

(x), · · · ,−∂fs
∂xs

(x)

)T
,
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and

∂fi
∂xi

(x) =
LNcih

2
i e
−ti(x)

(
1− e−ti(x)

)K−1
Nσ2 +

∑
j 6=i

xjh2j
, ∀ i = 1, · · · , s.

Then, a power-control point x∗ for CDMA systems is and only if it is a solution
to Problem V I(F, F ix(T )). When each users strategy set depends on only the
transmit power, some users far from the base station might not be able to
get a sufficient SINR. Moreover, in point of fact that each users strategy set
depends on the other users strategies. To solve these problems, Iiduka and
Yamada in [12] replaced the strategy set C by a polyhedral set:⋂

i∈I
{x ∈ Rn : ti(x) ≥ δi} ∩ C,

where δi > 0 for all i ∈ I is the required SINR for the ith user in the network.
However, Yamada in [21] showed that, in general, when the noise power is
enough large, this strategy set may be empty set. Then, the author produced
a generalized convex feasible set as follows:

Ĉ :=

{
x̄ ∈ Rn : x̄ ∈ argminx∈C

∑
i∈I

λid
2(x,Di)

}
, (1.2)

where Di := {x ∈ Rn : ti(x) ≥ δi}, τi ∈ (0, 1) such that
∑

i∈I τi = 1 and
d(x,Di) := min{‖x− y‖ : y ∈ Di}. Set

T (x) := PrC

(∑
i∈I

τid(x,Di)

)
. (1.3)

Then T is nonexpansive, and x̄ ∈ Ĉ if and only if x̄ ∈ Fix(T ).

In this paper, we investigate a new and efficient global algorithm for solv-
ing variational inequalities over the fixed point set of a firmly nonexpansive
mapping. To solve the problem, most of current algorithms are based on the
metric projection onto a nonempty closed convex constraint set, in general,
which is not easy to compute. The fundamental difference here is that, at each
main iteration in the proposed algorithm, we only require computing the sim-
ple projection. Moreover, by choosing suitable regularization parameters, we
show that the iterative sequence globally converges to a solution of Problem
V I(F, F ix(T )).

The paper is organized as follows. Section 2 recalls some concepts related to
variational inequalities over the fixed point set of nonexpansive mapping, that
will be used in the sequel and a new iteration scheme. Section 3 investigates
the convergence theorem of the iteration sequences presented in Section 2 as
the main results of our paper. Application to the problem is a power control
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for a direct-sequence code-division multiple-access data network is presented
in Section 4.

2. Preliminaries

We list some well known definitions and the projection under the Euclidean
norm, which will be required in our following analysis.

Definition 2.1. Let C be a nonempty closed convex subset of Rn, we denote
the metric projection on C by PrC(·), i.e.,

PrC(x) = argmin{‖y − x‖ : y ∈ C}, ∀x ∈ Rn.

The mapping F : C → Rn is said to be

(i) monotone on C if for each x, y ∈ C,

〈F (x)− F (y), x− y〉 ≥ 0;

(ii) pseudomonotone on C if for each x, y ∈ C,

〈F (y), x− y〉 ≥ 0⇒ 〈F (y), x− y〉 ≥ 0.

It is well-known that the gradient method in [20] solves the convex opti-
mization problem:

min{f(x) : x ∈ C}, (2.1)

where Ci is a closed convex subset of Rn for all i = 1, · · · ,m, C := ∩mi=1Ci, and
f is a differentiable convex function on C. The iteration sequence {xk} of the
method is defined by xk+1 := PC(xk − λ∇f(xk)). When C is arbitrary closed
convex, in general, computation of the metric projection PC is not necessarily
easy and hence it is not effective for solving the convex optimization problem.
To overcome this drawback, Yamada in [21] proposed a fixed point iteration
method

xk+1 := T (xk − λk∇f(xk)),

where T is a nonexpansive mapping defined by T (x) :=
∑m

i=1 βiPCi(x) for
all x ∈ C, βi ∈ (0, 1) such that

∑m
i=1 βi = 1. Under certain parameters

βi(i = 1, · · · ,m), the sequence {xk} converges a solution to Problem (2.1).
Also this method has applied for signal processing problems (see [15, 19]).
Motivated the fixed point iteration method, Iiduka and Yamada in [12] pro-
posed a subgradient-type method for the variational inequalities over the fixed
point set of a nonexpansive mapping V I(F, F ix(T )) and applied for the Nash
equilibrium model in noncooperative games. Under an asymtotic optimiza-
tion condition is satisfied. The authors showed that the iterative sequence
converges a point in the problem without the metric projection onto a closed
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convex set. Very recently, Iiduka in [11] proposed the fixed point optimization
algorithm for solving the following variational inequalities:

Finding x∗ ∈ C such that 〈F (x∗), x− x∗〉 ≥ 0, ∀x ∈ C,
where C is a nonempty closed convex subset of Rn, F : C → Rn, over the
fixed point set Fix(T ) of a firmly nonexpansive mapping T : C → Rn. In each
iteration of the algorithm, in order to get the next iterate xk+1, one orthogonal
projection onto C included Fix(T ) is calculated, according to the following
iterative step. Given the current iterate xk, calculate{

yk := T (xk − λkF (xk)),

xk+1 := PrC(αkx
k + (1− αk)yk).

Under certain conditions over parameters λk, αk(k ≥ 1), and asymtotic opti-
mization conditions

⋂∞
k=1

{
u ∈ Fix(T ) : 〈F (xk), x− xk〉 ≤ 0

}
6= ∅ is satisfied.

Then, the iterative sequence {xk} converges a solution to the variational in-
equalities over the fixed point set of the firmly nonexpansive mapping. In
fact, the asymtotic optimization condition, in some cases, is is very difficult to
define. In order to avoid this requirement, we propose a new iteration method
without both the asymtotic optimization condition and computing the metric
projection on a closed convex set. Our algorithm is described more detailed
as follows.

Algorithm 2.2. (Initialization) Take a point x0 ∈ Rn such that M ≤ ‖x0‖,
η0 := ‖x0‖, a positive number ρ > 0, and the positive sequences {βk}, {ρk}, {εk}
verifying the following conditions:

ρ < ρk, lim
k→∞

εk = 0,
∞∑
k=0

βk
ρk

= +∞,
∞∑
k=0

β2k <∞. (2.2)

Step 1. Let xk ∈ Rn. Choose arbitrary λk ∈ (0, 1) such that

(1− λk)(‖xk‖+M) ≤ βk
for all k ≥ 0. Define γk := max{ρk, ‖F (xk)‖}, αk := βk

γk
and

Ck := {x ∈ Rn : ‖x‖ ≤ ηk + 1}. Evaluate tk := PCk
(xk − αkF (xk)).

Step 2. Compute

xk+1 := T (λkx
k + (1− λk)tk), ηk+1 := max{ηk, ‖xk+1‖}, k := k + 1.

Note that Ck = {x ∈ Rn : ‖x‖ ≤ ηk + 1} is a closed ball. Therefore, the
metric projection PCk

(xk − αkF (xk)) is computed by

tk =
ηk + 1

‖xk − αkF (xk)‖
(xk − αkF (xk)).
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3. Convergent results

To investigate the convergence of Algorithm 2.2, we recall the following
technical lemmas, which will be used in the sequel.

Lemma 3.1. ([16]) Let {ak}, {bk} and {ck} be the three nonnegative sequences
satisfying the following condition:

ak+1 ≤ (1 + bk)ak + ck.

If
∑∞

i=1 bk <∞ and
∑∞

i=1 ck <∞, then limk→∞ ak exists.

We are now in a position to prove some convergence theorems.

Theorem 3.2. Let C be a nonempty closed convex subset of Rn, T : C → Rn
is a firmly nonexpansive mapping such that Fix(T ) is bounded by M > 0.
Then, the sequence {xk} generalized by Algorithm 2.2 converges to a solution
of Problem V I(F, F ix(T )).

Proof. We divide the proof into four steps.

Step 1. For each x∗ ∈ Sol(F, F ix(T )), we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (1− λ2k)‖tk − xk‖2 + 2(2− λk)β2k. (3.1)

Indeed, from tk := PCk
(xk − αkF (xk)), it follows that

〈αkF (xk) + tk − xk, x− tk〉 ≥ 0, ∀x ∈ Ck. (3.2)

Using the assumption ‖x‖ ≤ ‖x0‖ for all x ∈ Fix(T ) and Ck ⊆ Ck+1 for all
k ≥ 0, we have Fix(T ) ⊆ Ck. Then, substituting x = x∗ into (3.2), we get

〈αkF (xk) + tk − xk, x∗ − tk〉 ≥ 0.

Combinating this and the inequality

‖tk − x∗‖2 = ‖xk − x∗‖2 − ‖tk − xk‖2 + 2〈xk − tk, x∗ − tk〉,

we have

‖tk − x∗‖2 ≤ ‖xk − x∗‖2 − ‖tk − xk‖2 + 2αk〈F (xk), x∗ − tk〉. (3.3)

Since (3.3), xk+1 := T (λkx
k + (1− λk)tk) and the equaltity

‖λx+ (1− λ)y‖2

= λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2, ∀λ ∈ [0, 1], x, y ∈ Rn,
(3.4)
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we get

‖xk+1 − x∗‖2

= ‖T (λkx
k + (1− λk)tk)− T (x∗)‖2

≤ ‖λkxk + (1− λk)tk − x∗‖2

= λk‖xk − x∗‖2 + (1− λk)‖tk − x∗‖2 − λk(1− λk)‖tk − xk‖2

≤ λk‖xk − x∗‖2 + (1− λk)
[
‖xk − x∗‖2 − ‖tk − xk‖2 + 2αk〈F (xk), x∗ − tk〉

]
− λk(1− λk)‖tk − xk‖2

= ‖xk − x∗‖2 − (1− λ2k)‖tk − xk‖2 + 2αk(1− λk)〈F (xk), x∗ − tk〉.

Thus

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (1− λ2k)‖tk − xk‖2

+ 2αk(1− λk)〈F (xk), x∗ − tk〉.
(3.5)

From γk := max{ρk, ‖F (xk)‖} and αk := βk
γk

, it follows that

αk‖F (xk)‖ =
βk
γk
‖F (xk)‖ =

βk‖F (xk)‖
max{ρk, ‖F (xk)‖}

≤ βk. (3.6)

By the definition of the metric projection PrCk
and (3.6), we have

‖tk − xk‖2 ≤ 〈αkF (xk), xk − tk〉 ≤ αk‖F (xk)‖‖xk − tk‖ ≤ βk‖tk − xk‖. (3.7)

Combinating (3.5), (3.6) and (3.7), we get

‖xk+1 − x∗‖2

≤ ‖xk − x∗‖2 − (1− λ2k)‖tk − xk‖2 + 2αk(1− λk)〈F (xk), x∗ − xk〉

+ 2αk(1− λk)‖F (xk)‖‖xk − tk‖

≤ ‖xk − x∗‖2 − (1− λ2k)‖tk − xk‖2 + 2αk(1− λk)‖F (xk)‖‖x∗ − xk‖
+ 2(1− λk)β2k
≤ ‖xk − x∗‖2 − (1− λ2k)‖tk − xk‖2 + 2βk(1− λk)(‖xk‖+M)

+ 2(1− λk)β2k
≤ ‖xk − x∗‖2 − (1− λ2k)‖tk − xk‖2 + 2(2− λk)β2k.

This implies (3.1).
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Step 2. Claim that lim
k→∞

‖xk+1 − xk‖ = 0 and lim
k→∞

‖xk − T (xk)‖ = 0.

Indeed, using (3.3), (3.4) and the definition of the firmly nonexpansive map-
ping, we have

‖xk+1 − x∗‖2

= ‖T (λkx
k + (1− λk)tk)− T (x∗)‖2

≤ 〈λkxk + (1− λk)tk − x∗, xk+1 − x∗〉

=
1

2
[‖λkxk+(1− λk)tk−x∗‖2 + ‖xk+1−x∗‖2 − ‖λkxk+(1− λk)tk−xk+1‖2]

≤ 1

2
[λk‖xk − x∗‖2 + (1− λk)‖tk − x∗‖2 − λk(1− λk)‖xk − tk‖2

+ ‖xk+1 − x∗‖2]− 1

2
[λk‖xk − xk+1‖2 + (1− λk)‖tk − xk+1‖2

− λk(1− λk)‖xk − tk‖2]

=
1

2
[λk‖xk − x∗‖2 + ‖xk+1 − x∗‖2 − λk‖xk − xk+1‖2 − (1− λk)‖tk − xk+1‖2

+ (1− λk)‖tk − x∗‖2]

≤ 1

2

[
λk‖xk − x∗‖2 + ‖xk+1 − x∗‖2 − λk‖xk − xk+1‖2 − (1− λk)‖tk − xk+1‖2

+ (1− λk)
(
‖xk − x∗‖2 − ‖tk − xk‖2 + 2αk〈F (xk), x∗ − tk〉

)]
.

Hence, we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − λk‖xk − xk+1‖2 − (1− λk)‖tk − xk+1‖2

− (1− λk)‖tk − xk‖2 + 2(1− λk)〈F (xk), x∗ − tk〉. (3.8)

Applying Lemma 3.1 for the sequences in the inequality (3.1), there exists

A := lim
k→∞

‖xk − x∗‖. (3.9)

From Initialization of Algorithm 2.2 that λk ∈ (0, 1), (1−λk)(‖xk‖+‖x0‖) ≤ βk
and

∞∑
k=0

β2k <∞, it follows that

lim
k→∞

λk = 1.

Combinating this, (3.8) and (3.9), we get

lim
k→∞

‖xk+1 − xk‖ = 0.
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Using this, the nonexpansive property of T and lim
k→∞

λk = 1, we have

‖xk+1 − T (xk+1)‖ =‖T (λkx
k + (1− λk)tk)− T (xk+1)‖

≤‖λkxk + (1− λk)tk − xk+1‖

≤λk‖xk − xk+1‖+ (1− λk)‖tk − xk+1‖
→0 as k →∞.

Since {xk} is bounded, there exists η := sup{ηk : k ≥ 0} < ∞ and a subse-
quence {xki} which converges to x̄ as i→∞.

Step 3. Claim that x̄ ∈ Fix(T ) ∩ B(0, η + 1 − δ), where δ ∈ (0, 1) and the
open ball is defined by

B(0, η + 1− δ) := {x ∈ Rn : ‖x‖ < η + 1− δ}.

Indeed, from η := sup{ηk : k ≥ 0} < ∞ and δ ∈ (0, 1), it follows that
the existence of k0 such that ηk ≥ η − δ for all k ≥ k0. It means that
B(0, η + 1− δ) ⊆ Ck for all k ≥ k0. Then, we have

‖x̄‖ = lim
i→∞
‖xki‖ ≤ η < η + 1− δ.

Thus, x̄ ∈ B(0, η + 1− δ).
Now we suppose that x̄ 6= T (x̄). By Step 2 and Opial’s condition, we get

lim
i→∞
‖xki − x̄‖ < lim

i→∞
‖xki − T (x̄)‖

≤ lim
i→∞

(
‖xki − T (xki)‖+ ‖T (xki)− T (x̄)‖

)
= lim

i→∞
‖T (xki)− T (x̄)‖

≤ lim
i→∞
‖xki − x̄‖.

This is a contradiction. So, x̄ = T (x̄).

Step 4. Claim that x̄ ∈ Sol(F, F ix(T )) and the sequence {xk} converges to x̄.
Indeed, from (3.6), it follows that 0 ≤ ρ‖F (xk)‖ ≤ ‖F (xk)‖max{ρk, ‖F (xk)‖} =

αk‖F (xk)‖ ≤ βk. Using
∞∑
k=0

βk < ∞ and ρ > 0, we have lim
k→∞

‖F (xk)‖ = 0.

Combinating this and Step 3, we have

〈F (x̄), y − x̄〉 ≥ 0, ∀ y ∈ Fix(T ) ∩B(0, η + 1− δ).

Denote g(z) := 〈F (x̄), z − x̄〉. Then, g is convex and

g(z) ≥ g(x̄) = 0, ∀ z ∈ Fix(T ) ∩B(0, η + 1− δ).
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Thus, x̄ is a local minimizer of g. Since Fix(T ) is nonempty convex, x̄ is also
a global minimizer of g, i.e., g(z) ≥ g(x̄) for all z ∈ Fix(T ). This means that

〈F (x̄), z − x̄〉 ≥ 0, ∀ z ∈ Fix(T ).

So, x̄ ∈ Sol(F, F ix(T )).

To prove {xk} converges to x̄, we suppose that the subsequence {xkj} also
converges to x̂ as j → ∞. By a same way, we also have x̂ ∈ V I(F, F ix(T )).
Suppose that x̄ 6= x̂. Then, using Opial’s condition, we have

lim
k→∞

‖xk − x̄‖ = lim
i→∞
‖xki − x̄‖

< lim
i→∞
‖xki − x̂‖

= lim
k→∞

‖xk − x̂‖

= lim
j→∞

‖xkj − x̂‖

< lim
j→∞

‖xkj − x̄‖

= lim
k→∞

‖xk − x̄‖.

This is a contradiction. Thus, the sequence {xk} converges to x̄ ∈ Sol(F,
F ix(T )). �

4. Application to power-control problem

Now we illustrate our algorithm to present a computational method for the
control-power problem for cdoe-division multiple-access systems. Note that

(i) The common power set C := C1 × · · · ×Cs, the required SINR for the
ith user in the network Di := {x ∈ Rn : ti(x) ≥ δi}, where ti is defined
by (1.1).

(ii) The generalized convex feasible set Ĉ is given by (1.2).

Power control problem is to find a power-control solution x∗ ∈ Ĉ for efficient
resource allocation and interference management in the uplink and downlink
of CDMA systems. We define two mappings T : Rn → Rn and S : Rn → Rn,
as follows: For each x ∈ Rn, T (x) is defined by (1.3) and

S(x) :=
1

2
(x+ T (x)) .

Then, Yamada in [21] showed that T is nonexpansive on Rn and S is firmly

nonexpansive on Rn. Moreover, Ĉ 6= ∅ and Ĉ = Fix(S) hold. Therefore,
we can see that the power control problem can be formulated as Problem
V I(F, F ix(S)), where the bifunction f defined by f(x, y) := 〈F (x), y−x〉, the
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operator F : Rn → Rn, and the derivatives ∇xifi(x) of the function fi forward
to xi at x defined by

F (x) :=
(
−∇x1f1(x),−∇x2f2(x), · · · ,−∇xsfs(x)

)T
and

∇xifi(x) =
Lcie

−ti(x)h2i
[
1− e−ti(x)

]K−1
σ2 + 1

N

∑
j 6=i

xjh2j
.

By Algorithm 2.2 and Theorem 3.2, we get the following algorithm and con-
vergent theorem for the power control problem.

Algorithm 4.1. (Initialization) Take a point x0 ∈ Rn such that M ≤ ‖x0‖,
η0 := ‖x0‖, a positive number ρ > 0 and the positive sequences {βk}, {ρk},
{εk} verifying the following conditions:

lim
k→∞

εk = 0,

∞∑
k=0

βk
ρk

= +∞,
∞∑
k=0

β2k <∞.

• Let xk ∈ Rn. Choose λk ∈ (0, 1) such that (1 − λk)(‖xk‖ + M) ≤ βk
for all k ≥ 0. Define γk := max{ρk, ‖F (xk)‖}, αk := βk

γk
, and Ck :=

{x ∈ Rn : ‖x‖ ≤ ηk + 1}. Evaluate tk := PCk
(xk − αkF (xk)).

• Compute

xk+1 := S(λkx
k + (1− λk)tk), ηk := max{ηk, ‖xk+1‖}.

Note that PCk
(xk − αkF (xk)) is computed by

tk =
ηk + 1

‖xk − αkF (xk)‖
(xk − αkF (xk)).

Theorem 4.2. Let {xn} be the sequence generated by Algorithm 4.1. As-

sume that Ĉ is bounded by M > 0. Then, the sequence {xk} converges to a

power-control solution x∗ ∈ Ĉ for efficient resource allocation and interfer-
ence management in the uplink and downlink of CDMA systems of the power
control problem.

To illustrate the inexact subgradient algorithm, we consider the power con-
trol problem for CDMA systems based on the model proposed by Meshkati
et. al., in [15]. In this model, each packet contains 100b of informations for 9
users and

- The processing gain: N = 100.
- The total number of bits in a packet: K = 100.
- The number of information bits: L = 100.
- The transmission rate for the ith user: ci = 104bits/s.
- The noise power: σ2 = 10× 10−14 watts.
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- The strategy set of the ith user: ai = 0.1 watts, bi = 1 watts.
- The channel gain for the ith user: hi = 0.3

d2i
, where di is the distance

from the ith user to the base station. Now we assume that d1 =
310m, d2 = 460m, d3 = 570m, d4 = 660m, d5 = 740m, d6 = 810m, d7 =
880m, d8 = 940m, d9 = 1000m.

- The coefficient of the nonexpansive mapping T defined by (1.3): τi =
i
45 .

- The coefficient δi of the required SINR for the ith user in the network
Di: δi = 1.

The parameters in Algorithm 4.1 are chosen as follows:

βk :=
1

(k + 1)2
, ρk := 1 +

1

k + 1
, λk = 1− 1

2k2(‖xk‖+K)
.

From ai = 0.1 watts and bi = 1 watts, it follows that ‖x‖ ≤ 3 for all x ∈
Fix(S). Therefore, we can choose M = 3. It follows from Algorithm 4.1 and
Theorem 4.2 that xk is an ε- power control point in uplink and downlink of
CDMA systems if

‖xk+1 − xk‖ ≤ ε.

The following computations are performed by Matlab R2008a running on a
PC Desktop Intel(R) Core(TM)i5 650@3.2GHz 3.33GHz 4Gb RAM.

It xk1 xk2 xk3 xk4 xk5 xk6 xk7 xk8 xk9
0 1 1 1 1 1 1 1 1 1
1 0.8616 0.9827 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.7324 0.959 0.9935 0.9971 0.9995 1.0000 1.0000 1.0000 1.0000
3 0.6182 0.9369 0.9855 0.9932 0.9976 0.9995 1.0000 1.0000 1.0000
4 0.5169 0.9168 0.9778 0.9893 0.9955 0.9984 1.0000 1.0000 1.0000
5 0.4271 0.8989 0.9707 0.9856 0.9934 0.9971 1.0000 1.0000 1.0000
6 0.3478 0.8830 0.9642 0.9822 0.9915 0.9959 1.0000 1.0000 1.0000
7 0.2776 0.8689 0.9585 0.9792 0.9897 0.9948 1.0000 1.0000 1.0000
8 0.2156 0.8564 0.9534 0.9765 0.9881 0.9938 1.0000 1.0000 1.0000
9 0.1607 0.8453 0.9489 0.9740 0.9867 0.9928 1.0000 1.0000 1.0000
10 0.1304 0.8354 0.9448 0.9719 0.9854 0.9920 1.0000 1.0000 1.0000
11 0.1152 0.8263 0.9410 0.9698 0.9842 0.9912 0.9995 1.0000 1.0000
12 0.1076 0.8175 0.9374 0.9679 0.9830 0.9904 0.9990 1.0000 1.0000
13 0.1038 0.8088 0.9338 0.9659 0.9818 0.9896 0.9984 1.0000 1.0000
14 0.1019 0.8002 0.9302 0.9640 0.9806 0.9888 0.9979 1.0000 1.0000
15 0.1009 0.7917 0.9267 0.9621 0.9794 0.9881 0.9973 1.0000 1.0000

Table 1: Numerical results of Algorithm 4.1 with ε = 10−3.
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The approximate solution obtained after 15 iterations is

x15 = (0.1009, 0.7917, 0.9267, 0.9621, 0.9794, 0.9881, 0.9973, 1.0000, 1.0000)T .

The following tables list the numerical results of Algorithm 4.1 with some
changes such as the tolerance ε = 10−6, the coefficient τi = 1

9(i = 1, · · · , 9) of
the nonexpansive mapping T , and the starting point
x0 = (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5)T .
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Figure 1. The iterative graph of the users.

Base on the preliminary numerical results reported in the tables, we can
see that the same as some other well-known algorithms such as the proximal
point algorithm for solving variational inequalities in [14], the fixed point op-
timization algorithm for solving equilibrium problems on the fixed point set
of a nonexpansive mapping in [2, 11, 13], and other methods in [1, 6, 7, 9], the
rapicdity of the algorithm depends very much on the starting point. More-
over, the efficiency of the algorithm depends very much on the choice of the
parameters ρ, βk, ρk and the coefficients of the firmly nonexpansive mapping
S.

5. Conclusion

This paper presented an iterative algorithm for solving variational inequal-
ities over the fixed point set of a nonexpansive mapping T . By choosing the
suitable regular parameters, we show that the sequences generated by the al-
gorithm globally converge to a solution of Problem V I(F, fix(T )). Comparing
with the current methods, the fundamental difference here is that, the algo-
rithm only requires the continuity of the mapping F and convergence of the
proposed algorithms does not require F to satisfy any type of monotonicity.
Moreover, in general, computing the exact subgradient of a subdifferentiable
function is too expensive, our algorithm only requires to compute approx-
imate. From the preliminary numerical results reported in the tables, the



740 N. X. Phuong and V. T. Ngoc

algorithm seems to be efficient to solve a power control for a direct-sequence
code-division multiple-access data network.
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