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Abstract. In this paper, we prove a common fixed point theorem for two pairs of weakly

compatible mappings in a metric space satisfying a contractive condition of integral type by

using an implicit relation of Popa [7] and the property (E.A) introduced recently by Aamri

and Mautawakil [1] as a generalization of noncompatible mappings. Our theorem generalizes

Theorem 2 of Aamri and Mautawakil in the sense that we can obtain its contractive condition

as an special case of our contractive condition. Further, our theorem is a slight variation

of Theorem 5 of Popa in the sense that we have replaced the Meir-Keeler type contractive

condition to impose the property (E.A). Thus we have unified and generalized both results

by using implicit relation and property (E.A) under the integral type mappings.

1. Introduction

The notion of weak commutativity of Sessa [8] is generalized by Jungck [3] for
compatible mappings and further generalized by Jungck and Rhoades [4] for
weakly compatible mappings. In the sequel, the noncompatibility and various
types of compatibility were used to study the existence of a common fixed
point. The noncompatibility as a tool for finding fixed points is introduced
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by Pant [5, 6]. The noncompatibility is further generalized by introducing
property (E.A) in a metric space by Aamri and Mautawakil [1]. They estab-
lished some common fixed point theorems under strict contractive condition
for weakly compatible mappings satisfying property (E.A).

On the other hand, Popa [7] used the implicit relation for two pairs of weakly
compatible self-maps of Meir-Keeler type contractive condition to relax the
continuity of mappings in the metric space.

2. Preliminaries and Definitions

In 1982, Sessa introduced the notion of weak commutativity as follows:

Definition 2.1. [8] Two self-maps A and S of a metric space (X, d) are said
to be weakly commuting if d(ASx, SAx) ≤ d(Ax, Sx), ∀x ∈ X.

It is clear that two commuting mappings are weakly commuting but the
converse is not true as shown in [8]. Jungck [3] extended this concept in the
following way:

Definition 2.2. [3] Let A and S be two self-maps of a metric space (X, d). A
and S are said to be compatible if

lim
n→∞ d(ASxn, SAxn) = 0, (2.1)

whenever there exists a sequence {xn} in X such that

lim
n→∞Axn = lim

n→∞Sxn = t,

for some t ∈ X.

Obviously, two weakly commuting mappings are compatible, but the con-
verse is not true as shown in [3]. Note that, if the limit on the left hand side
of (2.1) is either nonzero or nonexistent, then the pair is called noncompatible.

In 1998, Jungck introduced weakly compatible maps as follows:

Definition 2.3. [4] Two self-maps A and S of a metric space (X, d) are said
to be weakly compatible if they commute at their coincidence points; i.e.,

ASu = SAu, for u ∈ X whenever Au = Su. (2.2)

It is easy to see that two compatible maps are weakly compatible but the
converse is not true as shown in [4]. A noncompatible pair may also satisfy
weakly compatible property (see Examples 2.5 and 2.6 below).

Recently, Aamri and Mautawakil [1] generalized the notion of noncompati-
bility by introducing the property (E.A) in the following way:
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Definition 2.4. [1] Let A and S be two self-maps of a metric space (X, d)
then they are said to satisfy property (E.A), if there exists a sequence {xn} in
X such that

lim
n→∞Axn = lim

n→∞Sxn = t, for some t ∈ X. (2.3)

Notice that weakly compatibility and property (E.A) are independent to
each other.

Example 2.5. Let X = [0, 1] and d be the usual metric on X. Define f, g :
X → X by fx = (

√
5− 4(2x− 1)2−1)/4 and gx = (1

3) fractional part of (1−
x), ∀x ∈ X. Then we observe that the sequence {xn} = {1− 1

n} satisfies (2.3)
for t = 0 and (f, g) satisfies property (E.A), but (f, g) is noncompatible; as
limn→∞ fxn = 0 = limn→∞ gxn but limn→∞ d(fgxn, gfxn) 6= 0. Further, f
and g are weakly compatible since they commute at their coincidence points
x = 0, 1

4 and 1.

Example 2.6. Let X = [0, 2] and d be the usual metric on X. Define f, g :
X → X by:

fx = 0, if 0 < x ≤ 1 and fx = 1, if x = 0 or 1 < x ≤ 2; and

gx = [x], the greatest integer less than or equal to x, ∀x ∈ X.
Consider the sequence {xn = 1 − 1

n}n≥2 in (0, 1) (or {xn = 1 + 1
n}n≥2 in

(1, 2)) then we have limn→∞ fxn = limn→∞ gxn = t, for some t ∈ [0, 2]. Thus
the pair (f, g) satisfies property (E.A). But f and g are not weakly compatible;
as each u1 ∈ (0, 1) and u2 ∈ (1, 2) are coincidence points of f and g, where
they do not commute. Moreover, they commute at x = 0, 1 and 2 but none of
these points are coincidence points of f and g. Further, (f, g) is noncompatible
for all the sequences in [0, 2]. Hence, (E.A) does not imply weak compatibility.

Example 2.7. To check that weakly compatible property does not imply
(E.A), it is enough to consider X = [0, 1], d the usual metric on X, and f(x) =
0, g(x) = 1, ∀x ∈ X. Hence, for all sequence {xn} in X, limn→∞ fxn = 0 6=
1 = limn→∞ gxn.

3. Implicit Relation

Let R and R+ denote the set of real and non-negative real numbers, respec-
tively, throughout our further discussion. We now state an implicit relation
[7] as follows:

Let F be the set of all continuous functions

F : (t1, · · · , t6) ∈ R6
+ −→ F (t1, · · · , t6) ∈ R

satisfying the following conditions:
(F1) : F (u, 0, u, 0, 0, u) ≤ 0 =⇒ u = 0, (3.1)
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(F2) : F (u, 0, 0, u, u, 0) ≤ 0 =⇒ u = 0. (3.2)
The function F : R6

+ → R is said to satisfy condition (Fu) if:
(Fu) : F (u, u, 0, 0, u, u) ≥ 0, ∀u > 0. (3.3)

The following are some examples of implicit relation satisfying (F1), (F2), (Fu).

Example 3.1. Let F (t1, ..., t6) = pt1 − qt2 + r(t3 − t4) + s(−t5 + t6), where
r + s < p, −r − s < p and q ≤ p. Then:
(F1) : F (u, 0, u, 0, 0, u) = u(p + r + s) ≤ 0 implies u = 0;
(F2) : F (u, 0, 0, u, u, 0) = u(p− r − s) ≤ 0 implies u = 0 and
(Fu) : F (u, u, 0, 0, u, u) = u(p− q) ≥ 0, ∀u > 0.

Example 3.2. Let F (t1, ..., t6) = pt1+max{−qt2, (t3−t4)/2, −s(t5−t6)/2},
where 0 ≤ s, q, and 0 < p. Then:
(F1) : F (u, 0, u, 0, 0, u) = pu + max{0, u/2, su/2} = u(p + max{1/2, s/2}) ≤
0 ⇒ u = 0;
(F2) : F (u, 0, 0, u, u, 0) = pu + max{0,−u/2,−su/2} = up ≤ 0 ⇒ u = 0;
(Fu) : F (u, u, 0, 0, u, u) = pu + max{−qu, 0, 0} = up ≥ 0, ∀u > 0.

Example 3.3. Let F (t1, ..., t6) = t1 −max{qt2, −r(t3 − t4)/2, (t5 − t6)/2},
where 0 ≤ q ≤ 1 and 0 ≤ r < 2. Then:
(F1) : F (u, 0, u, 0, 0, u) = u−max{0,−ru/2,−u/2} = u ≤ 0 ⇒ u = 0;
(F2) : F (u, 0, 0, u, u, 0) = u −max{0, ru/2, u/2} = u(1 −max{r/2, 1/2}) ≤
0 ⇒ u = 0;
(Fu) : F (u, u, 0, 0, u, u) = u−max{qu, 0, 0} = u− qu = u(1− q) ≥ 0, ∀u > 0.

Example 3.4. Let F (t1, ..., t6) = t1 − hmax{t2, t4 − t3, t5 − t6}, where
0 ≤ h < 1. Then:
(F1) : F (u, 0, u, 0, 0, u) = u− hmax{0,−u,−u} = u ≤ 0 ⇒ u = 0;
(F2) : F (u, 0, 0, u, u, 0) = u− hmax{0, u, u} = u(1− h) ≤ 0 ⇒ u = 0;
(Fu) : F (u, u, 0, 0, u, u) = u− hmax{u, 0, 0} = u(1− h) ≥ 0, ∀u > 0.

Example 3.5. Let F (t1, ..., t6) = t21 − at22 + t3t4 − bt25 + ct26, where a, b, c ≥ 0,
1 > b and a + b− c ≤ 1. Then:
(F1) : F (u, 0, u, 0, 0, u) = u2(1 + c) ≤ 0 ⇒ u = 0;
(F2) : F (u, 0, 0, u, u, 0) = u2(1− b) ≤ 0 ⇒ u = 0 and
(Fu) : F (u, u, 0, 0, u, u) = u2(1− a− b + c) ≥ 0, ∀u > 0.
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Example 3.6. Let F (t1, ..., t6) = t21−at22 + t23− t24 +bt25 +ct26, where a, b, c ≥ 0,
b > 0 and a− b− c ≤ 1. Then:
(F1) : F (u, 0, u, 0, 0, u) = u2 + u2 + cu2 = (2 + c)u2 ≤ 0 ⇒ u = 0;
(F2) : F (u, 0, 0, u, u, 0) = bu2 ≤ 0 ⇒ u = 0 and
(Fu) : F (u, u, 0, 0, u, u) = u2(1− a + b + c) ≥ 0, ∀u > 0.

Example 3.7. Let F (t1, ..., t6) = t31−k(t32−t33+t34+t35−t36), where 0 ≤ k < 1/2.
Then:
(F1) : F (u, 0, u, 0, 0, u) = u3(1 + 2k) ≤ 0 ⇒ u = 0,
(F2) : F (u, 0, 0, u, u, 0) = u3(1− 2k) ≤ 0 ⇒ u = 0 and
(Fu) : F (u, u, 0, 0, u, u) = u3(1− k) ≥ 0, ∀u > 0.

We will use the implicit relation of Popa [7] to relax the continuity of
two pairs of weakly compatible mappings satisfying property (E.A) and a
contractive condition of integral type mapping. The main purpose of our
paper is to prove a common fixed point theorem for generalized noncom-
patible weakly compatible non continuous pairs of self-mappings satisfying
a Lebesgue-integral type contractive condition. We will use the method of
Aliouche [2] to prove the existence of coincidence and fixed point.

4. Main Result

Throughout this section, let ψ be a non-negative real-valued function ψ :
R+ → R+, which is a Lebesgue-integrable mapping such that
(a) ψ is summable and non-negative,
(b)

∫ ε
0 ψ(t)dt > 0, for all ε > 0,

(c)
∫

ψ(t)dt is a non-decreasing function in R+.

Let N denote the set of positive integer numbers. Let F be the set of all
continuous functions F : (t1, ..., t6) ∈ R6

+ −→ F (t1, ..., t6) ∈ R which also
satisfy (F1), (F2) and (Fu).

Now we state and prove our main theorem.
Theorem 4.1. Let A, B, S and T be four self-mappings of a metric space
(X, d) such that
(i) A(X) ⊆ T (X), B(X) ⊆ S(X),
(ii) suppose there exists a continuous function F ∈ F such that

F
( ∫ d(Ax,By)

0 ψ(t)dt,
∫ d(Sx,Ty)
0 ψ(t)dt,

∫ d(Ax,Sx)
0 ψ(t)dt,

∫ d(By,Ty)
0 ψ(t)dt,

∫ d(By,Sx)
0 ψ(t)dt,

∫ d(Ax,Ty)
0 ψ(t)dt

)
< 0,
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for all x, y ∈ X where F ∈ F satisfies conditions (F1), (F2) and (Fu), and ψ
satisfies the conditions (a), (b) and (c),
(iii) (A,S) and (B, T ) are weakly compatible,
(iv) (A, S) or (B, T ) satisfies property (E.A).

If the range of one of the mappings is a complete subspace of X, then A, B,
S and T have a unique common fixed point.

Proof. Suppose (B, T ) satisfies property (E.A), then there exists a sequence
{xn} in X such that limn→∞Bxn = limn→∞ Txn = z for some z ∈ X. Since
B(X) ⊆ S(X), there exists a sequence {yn} in X such that Bxn = Syn

for all n ∈ N. It follows that limn→∞ d(Syn, Txn) = 0. Now we show that
limn→∞ d(Ayn, z) = 0. Indeed, in view of implicit relation (ii), we have

F
( ∫ d(Ayn,Bxn)

0 ψ(t)dt,
∫ d(Syn,Txn)
0 ψ(t)dt,

∫ d(Ayn,Syn)
0 ψ(t)dt,

∫ d(Bxn,Txn)
0 ψ(t)dt,

∫ d(Bxn,Syn)
0 ψ(t)dt,

∫ d(Ayn,Txn)
0 ψ(t)dt

)
< 0,

i.e., F
( ∫ d(Ayn,Bxn)

0 ψ(t)dt,
∫ d(Bxn,Txn)
0 ψ(t)dt,

∫ d(Ayn,Bxn)
0 ψ(t)dt,

∫ d(Bxn,Txn)
0 ψ(t)dt, 0,

∫ d(Ayn,Txn)
0 ψ(t)dt

)
< 0.

Note that lim sup
n→∞

∫ d(Ayn,Txn)
0 ψ(t)dt = lim sup

n→∞

∫ d(Ayn,Bxn)
0 ψ(t)dt. Indeed,

∣∣∣∣∣
∫ d(Ayn,Txn)

0
ψ(t)dt−

∫ d(Ayn,Bxn)

0
ψ(t)dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ d(Ayn,Bxn)

d(Ayn,Txn)
ψ(t)dt

∣∣∣∣∣ ,

and the measure of the interval tends to zero as n →∞:

|d(Ayn, Bxn)− d(Ayn, Txn)| ≤ d(Byn, Txn), ∀n.

Besides, if
∫ d(Aynk

,Bxnk
)

0 ψ(t)dt tends to lim sup
n→∞

∫ d(Ayn,Bxn)
0 ψ(t)dt, as k →∞,

then
∫ d(Aynk

,Txnk
)

0 ψ(t)dt also tends to lim sup
n→∞

∫ d(Ayn,Bxn)
0 ψ(t)dt, as k →∞.

Thus, taking into account that F is continuous, and using that

lim
n→∞

∫ d(Bxn,Txn)

0
ψ(t)dt = 0,

it yields, taking lim sup in the inequality deduced from the implicit relation,

F
(

lim sup
n→∞

∫ d(Ayn,Bxn)
0 ψ(t)dt, 0, lim sup

n→∞

∫ d(Ayn,Bxn)
0 ψ(t)dt,
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0, 0, lim sup
n→∞

∫ d(Ayn,Bxn)
0 ψ(t)dt

)
≤ 0.

Using (F1), we obtain lim sup
n→∞

∫ d(Ayn,Bxn)
0 ψ(t)dt = 0. Whence by (b),

lim
n→∞Ayn = lim

n→∞Bxn = lim
n→∞Syn = lim

n→∞Txn = z. (4.1)

Next, suppose that S(X) is a complete subspace of X, then for this z ∈ X,
there exists some u ∈ X such that z = Su. As a consequence, we obtain

lim
n→∞ d(Ayn, Su) = lim

n→∞ d(Bxn, Su) = lim
n→∞ d(Txn, Su) = lim

n→∞ d(Syn, Su) = 0.

Now we claim that Au = z. If not, then using the implicit relation (ii) we
have

F
( ∫ d(Au,Bxn)

0 ψ(t)dt,
∫ d(Su,Txn)
0 ψ(t)dt,

∫ d(Au,Su)
0 ψ(t)dt,

∫ d(Bxn,Txn)
0 ψ(t)dt,

∫ d(Bxn,Su)
0 ψ(t)dt,

∫ d(Au,Txn)
0 ψ(t)dt

)
< 0.

Letting n →∞, it yields

F
(

lim
n→∞

∫ d(Au,Bxn)
0 ψ(t)dt, lim

n→∞
∫ d(Su,Txn)
0 ψ(t)dt,

lim
n→∞

∫ d(Au,Su)
0 ψ(t)dt, lim

n→∞
∫ d(Bxn,Txn)
0 ψ(t)dt,

lim
n→∞

∫ d(Bxn,Su)
0 ψ(t)dt, lim

n→∞
∫ d(Au,Txn)
0 ψ(t)dt

)
≤ 0.

Now, the continuity of the integral operator with (b) implies that,

F
(∫ d(Au,z)

0
ψ(t)dt, 0,

∫ d(Au,z)

0
ψ(t)dt, 0, 0,

∫ d(Au,z)

0
ψ(t)dt

)
≤ 0,

which, on using (F1) yields
∫ d(Au,z)
0 ψ(t)dt = 0. So that, by (b), Au = z.

Therefore u is a coincidence point of A and S.

Further, since A(X) ⊆ T (X), then z = Au implies z ∈ T (X). Let v ∈ X
such that Tv = z. We claim that Bv = z. For, setting x = yn and y = v in
the implicit relation (ii), we have

F
( ∫ d(Ayn,Bv)

0 ψ(t)dt,
∫ d(Syn,T v)
0 ψ(t)dt,

∫ d(Ayn,Syn)
0 ψ(t)dt,

∫ d(Bv,Tv)
0 ψ(t)dt,

∫ d(Bv,Syn)
0 ψ(t)dt,

∫ d(Ayn,T v)
0 ψ(t)dt

)
< 0,
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letting n →∞ and then using condition (b) it yields

F
(∫ d(z,Bv)

0
ψ(t)dt, 0, 0,

∫ d(Bv,z)

0
ψ(t)dt,

∫ d(Bv,z)

0
ψ(t)dt, 0

)
≤ 0,

using (F2) it implies
∫ d(z,Bv)
0 ψ(t)dt = 0, yielding Bv = z. Therefore v is a

coincidence point of B and T .

The weak compatibility of A with S and B with T implies that Sz = SAu =
ASu = Az and Tz = TBv = BTv = Bz.

In order to show that z is a coincidence point of A, B, S and T , let us show
that Az = Bz. Contrary, let Az 6= Bz. Then, setting x = z and y = z in (ii),
we have successively

F
( ∫ d(Az,Bz)

0 ψ(t)dt,
∫ d(Sz,Tz)
0 ψ(t)dt,

∫ d(Az,Sz)
0 ψ(t)dt,

∫ d(Bz,Tz)
0 ψ(t)dt,

∫ d(Bz,Sz)
0 ψ(t)dt,

∫ d(Az,Tz)
0 ψ(t)dt

)
< 0,

F
(∫ d(Az,Bz)

0
ψ(t)dt,

∫ d(Az,Bz)

0
ψ(t)dt, 0, 0,

∫ d(Bz,Az)

0
ψ(t)dt,

∫ d(Az,Bz)

0
ψ(t)dt

)
< 0,

which contradicts (Fu). So that Az = Bz. Therefore z is a coincidence point
of A, B, S and T .

Now, we claim that z is a common fixed point of A, B, S and T . If Az 6= z,
then by putting z for x and v for y in (ii), we have successively

F
( ∫ d(Az,Bv)

0 ψ(t)dt,
∫ d(Sz,Tv)
0 ψ(t)dt,

∫ d(Az,Sz)
0 ψ(t)dt,

∫ d(Bv,Tv)
0 ψ(t)dt,

∫ d(Bv,Sz)
0 ψ(t)dt,

∫ d(Az,Tv)
0 ψ(t)dt

)
< 0,

F
(∫ d(Az,z)

0
ψ(t)dt,

∫ d(Az,z)

0
ψ(t)dt, 0, 0,

∫ d(z,Az)

0
ψ(t)dt,

∫ d(Az,z)

0
ψ(t)dt

)
< 0,

which contradicts (Fu). Thus z is a common fixed point of A, B, S and T .

Similar arguments arise if we assume that the range of either of the mappings
A, B or T is a complete subspace of X. The uniqueness of z follows easily by
using (ii) and then (b). This completes the proof. ¤



A common fixed point theorem of integral type using implicit relation 9

Remark 4.2. Note that, in the implicit relation, the strict ’<’ sign can be
replaced by ’≤’ just by considering the strict inequality in condition (Fu), that
is, F (u, u, 0, 0, u, u) > 0, ∀u > 0.

Remark 4.3. In Theorem 4.1, if we replace condition a) by the following
assumption:

• ψ summable on each compact interval, but not summable on R+, and
non-negative,

then, in order to guarantee (see the first part of the proof of Theorem 4.1) that
lim sup

n→∞

∫ d(Ayn,Bxn)
0 ψ(t)dt is finite, we must admit that the sequence Ayn is

bounded. Hence, in this more general case, we must add the following hypoth-
esis:

(v): • {Byn} is a bounded sequence for every {yn} ⊆ X such that
{Tyn} is convergent (in case (A, S) satisfies property (E.A)), and

• {Ayn} is a bounded sequence for every {yn} ⊆ X such that {Syn}
is convergent (in case (B, T ) satisfies property (E.A)).

Alternatively, we can consider the following condition:

(vi): • Case (A,S) satisfies (E.A): If {zn}, {rn} and {wn} are non-
negative sequences such that {zn} → ∞, {wn} → ∞, as n → ∞
and

F (zn, rn, rn, zn, wn, 0) ≤ 0, n ∈ N,

then {rn} 6→ 0, as n →∞.
• Case (B, T ) satisfies (E.A): If {zn}, {rn} and {wn} are non-

negative sequences such that {zn} → ∞, {wn} → ∞, as n → ∞
and

F (zn, rn, zn, rn, 0, wn) ≤ 0, n ∈ N,

then {rn} 6→ 0, as n →∞.

For instance, in the proof of Theorem 4.1, assuming that (B, T ) satisfies (E.A),
we get
F

( ∫ d(Ayn,Bxn)
0 ψ(t)dt,

∫ d(Bxn,Txn)
0 ψ(t)dt,

∫ d(Ayn,Bxn)
0 ψ(t)dt,

∫ d(Bxn,Txn)
0 ψ(t)dt, 0,

∫ d(Ayn,Txn)
0 ψ(t)dt

)
< 0.

If {Ayn} is not bounded, then {d(Ayn, Bxn)} is not bounded and, thus, there
exists a subsequence such that {d(Aynk

, Bxnk
)} → ∞. Since ψ is not summa-

ble on R+, then
∫ d(Aynk

,Bxnk
)

0 ψ(t)dt → ∞ and
∫ d(Aynk

,Txnk
)

0 ψ(t)dt → ∞, as
k → ∞. This joint to the previous inequality and condition (vi) implies that∫ d(Bxnk

,Txnk
)

0 ψ(t)dt 6→ 0, which is a contradiction. We proceed similarly in
the case where (A,S) satisfies (E.A).
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Example 4.4. For function F in Example 3.1, F (t1, ..., t6) = pt1−qt2+r(t3−
t4) + s(−t5 + t6), where r + s < p, −r − s < p and q ≤ p, condition (vi) is
satisfied, adding additional conditions on the constants. Consider either p > r
and s ≤ 0, or p ≥ r and s < 0. Under these conditions, if {zn}, {rn} and
{wn} are nonnegative sequences such that {zn} → ∞, {wn} → ∞, as n →∞
and

F (zn, rn, rn, zn, wn, 0) ≤ 0, n ∈ N,

then
pzn − qrn + r(rn − zn) + s(−wn) ≤ 0, n ∈ N,

which yields
(p− r)zn − swn ≤ (q − r)rn, n ∈ N.

This inequality is not possible if q − r ≤ 0 and, for q − r > 0, we obtain
{rn} → ∞, as n →∞. On the other hand, consider that either p + r > 0 and
s ≥ 0, or p + r ≥ 0 and s > 0. If F (zn, rn, zn, rn, 0, wn) ≤ 0, n ∈ N, then

pzn − qrn + r(zn − rn) + swn ≤ 0, n ∈ N,

which implies
(p + r)zn + swn ≤ (q + r)rn, n ∈ N.

This inequality is not possible if q + r = 0 and, for q + r > 0, we obtain
{rn} → ∞, as n → ∞. Note that we must impose different conditions to the
constants, depending on the pair which satisfies property (E.A), to deduce the
validity of condition (vi).

Example 4.5. For function F in Example 3.2,

F (t1, ..., t6) = pt1 + max{−qt2, (t3 − t4)/2, −s(t5 − t6)/2},
where 0 ≤ s, q, and 0 < p, (vi) is valid. Consider {zn}, {rn} and {wn}
nonnegative sequences such that {zn} → ∞, {wn} → ∞, as n →∞ and

F (zn, rn, rn, zn, wn, 0) = pzn + max{−qrn, (rn− zn)/2, −swn/2} ≤ 0, n ∈ N,

then pzn ≤ min{qrn, (zn − rn)/2, swn/2} and pzn ≤ qrn, n ∈ N. If q = 0,
this inequality is not valid and, if q > 0, {rn} → ∞, as n →∞. On the other
hand, if

F (zn, rn, zn, rn, 0, wn) = pzn + max{−qrn, (zn − rn)/2, swn/2} ≤ 0, n ∈ N,

then
pzn ≤ min{qrn, (rn − zn)/2, −swn/2}, n ∈ N,

and, similarly, {rn} → ∞, as n →∞. Hence (vi) holds.

Taking into account Remarks 4.2 and 4.3, if we put ψ(t) = 1 in condition
(ii) we get the following Corollary.
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Corollary 4.6. Let A, B, S and T be four self-mappings of a metric space
(X, d) such that (i), (iii), (iv) and one of the conditions (v) or (vi) hold.
Further,
(ii)o there exists a continuous function F ∈ F satisfying (F1), (F2) and (Fu)
such that for all x, y ∈ X, the contractive condition:

F
(
d(Ax,By), d(Sx, Ty), d(Ax, Sx), d(By, Ty), d(By, Sx), d(Ax, Ty)

) ≤ 0,

holds. If the range of one of the mappings is a complete subspace of X, then
A, B, S and T have a unique common fixed point.

Remark 4.7. Since property (E.A) and weak compatibility are independent
to each other, we can not remove condition (iii) or (iv) from Theorem 4.1.

Remark 4.8. If we take S = T = idX (the identity map on X) in Corollary
4.6, we get the implicit relation

F
(
d(Ax,By), d(x, y), d(Ax, x), d(By, y), d(By, x), d(Ax, y)

) ≤ 0,

for x, y ∈ X. Choosing

F (t1, t2, ..., t6) = G(t1)− φ

(
G

(
max

{
t2, t3, t4,

1
2
(t5 + t6)

}))
,

where G and φ are continuous, then the implicit relation can be written as

G(d(Ax,By)) ≤

≤ φ

(
G

(
max

{
d(x, y), d(Ax, x), d(By, y),

1
2

(d(By, x) + d(Ax, y))
}))

,

for x, y ∈ X, which is similar to the condition in Theorem 1 [9]. Note that
conditions (F1), (F2) and (Fu) hold for this choice of F if G(t) > 0, for t > 0
and φ(t) < t, for t > 0.

Remark 4.9. Taking G the identity map in Remark 4.8, then F (t1, t2, ..., t6) =
t1 − φ

(
max

{
t2, t3, t4,

1
2(t5 + t6)

})
, with φ continuous, and we obtain the im-

plicit relation
∫ d(Ax,By)

0
ψ(t)dt

≤ φ

(∫ max{d(Sx,Ty),d(Ax,Sx),d(By,Ty), 1
2
(d(By,Sx)+d(Ax,Ty))}

0
ψ(t)dt

)
,

for x, y ∈ X. Taking S = T = idX in this inequality, we get the implicit
relation in Corollary 1 [9]:
∫ d(Ax,By)

0
ψ(t)dt ≤ φ

(∫ max{d(x,y),d(Ax,x),d(By,y), 1
2
(d(By,x)+d(Ax,y))}

0
ψ(t)dt

)
.
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Remark 4.10. Taking F (t1, t2, ..., t6) = t1−φ (max {t2, t4, t5}) , for φ : R+ →
R+ continuous, we obtain the implicit relation

∫ d(Ax,By)

0
ψ(t)dt ≤ φ

(∫ max{d(Sx,Ty),d(By,Ty),d(By,Sx)}

0
ψ(t)dt

)
,

for x, y ∈ X, which coincides with Condition (1) in Theorem 1 [2].
Taking ψ(t) = 1 in this inequality, we get Condition (1) in Theorem 2 [1]:

d(Ax,By) ≤ φ (max{d(Sx, Ty), d(By, Ty), d(By, Sx)}) ,

for x, y ∈ X. Note that (F1), (F2) and (Fu) hold for F if φ(0) = 0, and
φ(t) < t, for t > 0. Moreover, under these assumptions, condition (vi) of
Theorem 4.1 holds (case (B, T ) satisfies (E.A)).

Taking into account that continuity of F can be weakened in Theorem 4.1,
we can obtain results which extend the above mentioned Theorems.
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