Nonlinear Functional Analysis and Applications Vol. 22, No. 1 (2017), pp. 1–22 ISSN: 1229-1595(print), 2466-0973(online)

http://nfaa.kyungnam.ac.kr/journal-nfaa Copyright \odot 2017 Kyungnam University Press

SOLUTION SENSITIVITY FOR A SYSTEM OF GENERALIZED NONLINEAR EQUATIONS IN BANACH SPACES

Jong Kyu Kim¹ and Salahuddin²

¹Department of Mathematics Educaion Kyungnam University, Changwon, Gyeongnam, 51767, Korea e-mail: jongkyuk@kyungnam.ac.kr

²Department of Mathematics Jazan University, Jazan, Kingdom of Saudi Arabia e-mail: salahuddin12@mailcity.com

Abstract. In this work, we study the behaviour and sensitivity analysis of solution set for a system of generalized nonlinear equations with parametricaly (A, η, m) -accretive mapping in q-uniformly smooth Banach spaces.

1. INTRODUCTION

Nonlinear variational inequalities and variational inclusions are providing mathematical models to some problems arising in optimization and controls, economics and engineering sciences [3, 4, 15]. Sensitivity analysis for solutions of variational inequalities with single-valued mappings have been studied by many authors (see [7, 16]).

By using the resolvent operator techniques, Agarwal et al. [1], Jeong [13] studied a new system of parametric generalized nonlinear mixed quasi variational inclusion in Hilbert spaces and in $L_p(p \geq 2)$ spaces, respectively. In 2008, using the concepts and techniques of resolvent operator, Lan [18] studied the behaviour and sensitivity analysis of solution set for a new system of

 0 Received December 11, 2015. Revised May 18, 2016.

⁰ 2010 Mathematics Subject Classification: 49J40, 47H06.

⁰Keywords: Sensitivity analysis, parametricaly (A, η, m) -accretive mapping, parametricaly relaxed cocoercive mapping, parametric resolvent operators, system of generalized nonlinear equations, q-uniformly smooth Banach spaces..

generalized parametric variational inclusions with (A, η) -accretive mappings in Banach spaces.

Recently Kim et al. [17] considered the methods of parametric (A, η, m) proximal operator to studied the behaviour and sensitivity analysis of the solution set for a system of equations in Hilbert spaces.

In this work, we study the behaviour and sensitivity analysis of solution set for a system of generalized nonlinear equations in q -uniformly smooth Banach spaces. The present results improve and extend many results in the literatures.

2. Basic Foundation

Let X be a Banach space with dual space X^* and $\langle \cdot, \cdot \rangle$ be the dual pairing between X and X^* , $CB(X)$ denotes the family of all nonempty closed bounded subsets of X and 2^X denote the family of all nonempty subset of X. The generalized duality mapping $J_q: X \to 2^{X^*}$ is defined by

$$
J_q(x) = \left\{ x^* \in X^* : \langle x, x^* \rangle = ||x||^q, ||x^*|| = ||x||^{q-1} \right\} \forall x \in X,
$$

where $q > 1$ is a constant. In particular $J = J_2$ is called the normalized duality mapping. It is well known that J_q is single-valued if X^* is strictly convex and that

$$
J_q(x) = \|x\|^{q-2} J_2(x), \ \forall x \neq 0.
$$

If $X = H$ is a Hilbert space, then J_2 becomes the identity mapping of H. The modulus of smoothness of X is the function $\rho_X : [0, \infty) \to [0, \infty)$ defined by

$$
\rho_X(t) = \sup \left\{ \frac{1}{2} \left(\|x + y\| + \|x - y\| \right) - 1 : \|x\| \le 1, \|y\| \le t \right\}.
$$

A Banach space X is called uniformly smooth if

$$
\lim_{t \to 0} \frac{\rho_X(t)}{t} = 0.
$$

X is called q-uniformly smooth if there exists a constant $c > 0$ such that

$$
\rho_X(t) \le ct^q, q > 1.
$$

Note that J_q is single-valued if X is uniformly smooth. It is know that

$$
L_p(l_p) \text{ or } W_m^p = \begin{cases} p-\text{uniformly smooth} & \text{if } 1 < p < 0, \\ 2-\text{uniformly smooth} & \text{if } p \ge 2. \end{cases}
$$

A Banach space X is said to be uniformly convex if given $\epsilon > 0$ there exists $\delta > 0$ such that for all $x, y \in X$ with $||x|| \leq 1$, $||y|| \leq 1$ and $||x - y|| \geq \epsilon$,

$$
\|\frac{1}{2}(x+y)\| \le 1 - \delta.
$$

It is well known that L_p, l_p and Sobolev spaces $W_m^p(1 < p < \infty)$ are uniformly convex.

Lemma 2.1. Let r and s be two non negative real numbers. Then

$$
(r+s)^q \le 2^q (r^q + s^q).
$$

Proof.

$$
(r+s)^{q} \leq (2 \max\{r,s\})^{q} = 2^{q}(\max\{r,s\})^{q} \leq 2^{q}(r^{q}+s^{q}).
$$

Lemma 2.2. ([26]) A space X is q-uniformly smooth if and only if there exists a constant $c_q > 0$ such that for all $x, y \in X$

$$
||x + y||^{q} \le ||x||^{q} + q\langle y, j_{q}(x)\rangle + c_{q}||y||^{q}.
$$

In this paper, we consider the following system of (A, η, m) -proximal operator equation systems. For each fixed $(\omega, \lambda) \in \Omega \times \Lambda$ finding $(z, t), (x, y) \in$ $X_1 \times X_2$ such that $u \in S(x, \omega), v \in T(y, \lambda)$ and

$$
\begin{cases} p(x,\omega) + \rho^{-1} R_{\rho,A_1}^{M(\cdot,x,\omega)}(z) = E(x,v,\omega), \\ h(y,\lambda) + \varrho^{-1} R_{\varrho,A_2}^{N(\cdot,y,\lambda)}(t) = F(u,y,\lambda), \end{cases}
$$
 (2.1)

where Ω and \wedge are two nonempty open subsets of q-uniformly smooth Banach spaces in which the parameter ω and λ takes values, respectively.

 $S: X_1 \times \Omega \to 2^{X_1}$ and $T: X_2 \times \Lambda \to 2^{X_2}$ are set-valued mappings, $E: X_1 \times$ $X_2 \times \Omega \to X_1, F: X_2 \times X_1 \times \Lambda \to X_2, f: X_1 \times \Omega \to X_1, g: X_2 \times \Lambda \to X_2, \eta_1:$ $X_1\times X_1\times\Omega\to X_1, \eta_2:X_2\times X_2\times\wedge\to X_2, p:X_1\times\Omega\to X_1$ and $h:X_2\times\wedge\to X_2$ are nonlinear single-valued mappings, $A_1: X_1 \rightarrow X_1, A_2: X_2 \rightarrow X_2$ are mappings, $M: X_1 \times X_1 \times \Omega \to 2^{X_1}$ is an (A_1, η_1, m_1) -accretive mapping with $f(X_1,\omega) \cap dom M(\cdot,z,\omega) \neq \emptyset$ and for all $(t,\lambda) \in X_2 \times \wedge, N : X_2 \times X_2 \times \wedge \rightarrow$ 2^{X_2} is an (A_2, η_2, m_2) -accretive mapping with $g(X_2, \lambda) \cap dom N(\cdot, t, \lambda) \neq \emptyset$, respectively.

 $R_{aA_1}^{M(\cdot,x,\omega)}$ $\frac{M(\cdot,x,\omega)}{\rho,A_1}=I-A_1\left(J_{\rho,A_1}^{M(\cdot,x,\omega)}\right)$ $\binom{M(\cdot,x,\omega)}{\rho,A_1}$ and $R_{\varrho,A_2}^{N(\cdot,y,\lambda)}$ $\frac{N(\cdot,y,\lambda)}{\varrho,A_2}=I-A_2\left(J^{N(\cdot,y,\lambda)}_{\varrho,A_2}\right)$ $\left(\begin{matrix} N(\cdot,y,\lambda) \\ \varrho,A_2 \end{matrix}\right)$, where I is an identity mapping.

 $A_1\left(J_{\rho,A_1}^{M(\cdot,x,\omega)}\right)$ $\left(\begin{smallmatrix} A \cdot (\cdot , x , \omega) \ \rho , A_{1} \end{smallmatrix} \right) = A_{1} \left(J_{\rho , A_{1}}^{M(\cdot , x , \omega)} \right)$ $\left(\begin{smallmatrix} A (\cdot , x , \omega) \ \rho , A_{1} \end{smallmatrix} \right) (z), A_{2} \left(J_{\varrho , A_{2}}^{N(\cdot , y , \lambda)} \right)$ $\left(\begin{smallmatrix} A(N(\cdot,y,\lambda)\ bA_2 \end{smallmatrix} \right) = A_2 \left(J_{\varrho,A_2}^{N(\cdot,y,\lambda)} \right)$ $\left(\begin{smallmatrix} N(\cdot,y,\lambda)\ \varrho,A_2 \end{smallmatrix}\right)(t)$ and $R_{aA_1}^{M(\cdot,x,\omega)}$ $\mathcal{L}^{M(\cdot,x,\omega)}_{\rho,A_1} = (A_1 + \rho M(\cdot,x,\omega))^{-1},\ R^{N(\cdot,y,\lambda)}_{\varrho,A_2},$ $_{\varrho,A_2}^{N(\cdot,y,\lambda)} = (A_2 + \varrho N(\cdot,y,\lambda))^{-1}$ for all $x, z \in X_1, y, t \in X_2, u \in S(x, \omega), v \in T(y, \lambda)$ and $(\omega, \lambda) \in \Omega \times \Lambda$.

For appropriate and suitable choice of $E, F, M, N, S, T, f, g, p, h, A_i, \eta_i$ and X_i for $i = 1, 2$, one see that problem (2.1) is a generalized version of some problems which includes a number (systems) of (parametric) quasi variational inclusions, (parametric) generalized quasi variational inclusions studied by many authors as special cases (see [2, 5, 8, 9, 10, 12, 19, 23, 24, 25]).

 \Box

3. Preliminaries

In the sequel, let \land be a nonempty open subset of q-uniformly smooth Banach space X in which the parameter λ takes values.

Definition 3.1. Let $A: X \times \wedge \rightarrow X, \eta: X \times X \times \wedge \rightarrow X$ be single-valued mappings. The mapping A is said to be

(i) parametrically accretive if

$$
\langle A(x,\lambda) - A(y,\lambda), j_q(x-y) \rangle \ge 0, \ \forall x, y \in X, \lambda \in \wedge;
$$

(ii) parametrically strictly accretive if

$$
\langle A(x,\lambda) - A(y,\lambda), j_q(x-y) \rangle = 0, \ x \neq y, \forall x, y \in X, \lambda \in \wedge;
$$

(iii) parametrically γ -strongly accretive if

$$
\langle A(x,\lambda)-A(y,\lambda), j_q(x-y)\rangle \geq \gamma ||x-y||^q, \; \forall x,y \in X, \lambda \in \wedge;
$$

(iv) parametrically r-strongly η -accretive if

$$
\langle A(x,\lambda) - A(y,\lambda), j_q(\eta(x,y)) \rangle \ge r \|x - y\|^q, \ \forall x, y \in X, \lambda \in \wedge.
$$

Definition 3.2. A single-valued mapping $\eta: X \times X \times \wedge \rightarrow X$ is said to be parametrically τ -Lipschitz continuous if there exists a constant $\tau > 0$ such that

$$
\|\eta(x, y, \lambda)\| \le \|x - y\|, \ \forall x, y \in X, \lambda \in \Lambda.
$$

Definition 3.3. Let $A: X \times \wedge \rightarrow X, \eta: X \times X \times \wedge \rightarrow X$ be two single-valued mappings. The set-valued mapping $M: X \times X \times \wedge \rightarrow 2^X$ is said to be

(i) parametrically m-relaxed η -accretive if there exists a constant $m > 0$ such that

$$
\langle u - v, j_q(\eta(x, y, \lambda)) \rangle \ge -m \|x - y\|^q,
$$

for all $x, y \in X, u \in M(\cdot, x, \lambda), v \in M(\cdot, y, \lambda);$

- (ii) parametrically (A, η, m) -accretive if
	- (1) M is parametrically m-relaxed η -accretive mapping;
	- (2) $(A + \rho M)(X) = X$ for every $\rho > 0$.

Definition 3.4. A mapping $T : X \times X \times \wedge \rightarrow X$ is said to be

(i) parametrically m-relaxed accretive in the first argument if there exists a constant $m > 0$ such that

$$
\langle T(x, u, \lambda) - T(y, u, \lambda), j_q(x - y) \rangle \ge -m ||x - y||^q,
$$

for all $(x, y, u, \lambda) \in X \times X \times X \times \Lambda$;

Solution sensitivity for a system of nonlinear equations 5

(ii) parametrically s-cocoercive in the first argument if there exists a constant $s > 0$ such that

$$
\langle T(x, u, \lambda) - T(y, u, \lambda), j_q(x - y) \rangle \ge s \| T(x, u, \lambda) - T(y, u, \lambda) \|^q,
$$

for all $(x, y, u, \lambda) \in X \times X \times X \times \wedge;$

(iii) parametrically γ -relaxed cocoercive with respect to $A: X \times \wedge \rightarrow X$ in the first argument of T if there exists a constant $\gamma > 0$ such that

$$
\langle T(x, u, \lambda) - T(y, u, \lambda), j_q(A(x) - A(y)) \rangle \ge -\gamma ||T(x, u, \lambda) - T(y, u, \lambda)||^q,
$$

for all $(x, y, u, \lambda) \in X \times X \times X \times \wedge$;

(iv) parametrically (γ, α) -relaxed cocoercive with respect to $A: X \times \wedge \rightarrow X$ in the first argument of T if there exists constants $\epsilon > 0$ and $\alpha > 0$ such that

$$
\langle T(x, u, \lambda) - T(y, u, \lambda), j_q(A(x) - A(y)) \rangle \ge -\gamma ||T(x, u, \lambda) - T(y, u, \lambda)||^q
$$

+ $\alpha ||A(x) - A(y)||^q$,

for all $(x, y, u, \lambda) \in X \times X \times X \times \wedge;$

(v) parametrically μ -Lipschitz continuous if there exists a constant $\mu > 0$ such that

 $||T(x, u, \lambda) - T(y, u, \lambda)|| \leq \mu ||x - y||,$

for all $(x, y, u, \lambda) \in X \times X \times X \times \Lambda$.

Remark 3.5. When $X = H$ is a real Hilbert space, then the Definition 3.1 reduces to the definition of parametrically monotonicity, parametrically strict monotonicity and parametrically strong monotonicity with respect to A, respectively (see $[6, 14]$).

Example 3.6. Let $T : X \times \wedge \rightarrow X$ be a parametrically nonexpansive mapping. If we set $F = I - T$ where I is an identity mapping, then F is parametrically 1 $\frac{1}{2}$ -cocoercive.

Proof. For any two elements $x, y \in X, \lambda \in \wedge$, we have

$$
||F(x,\lambda) - F(y,\lambda)||^2
$$

= $||(I - T)(x,\lambda) - (I - T)(y,\lambda)||^2$
= $\langle (I - T)(x,\lambda) - (I - T)(y,\lambda), (I - T)(x,\lambda) - (I - T)(y,\lambda) \rangle$
 $\leq 2[||x - y||^2 - \langle x - y, T(x,\lambda) - T(y,\lambda) \rangle]$
= $2\langle x - y, F(x,\lambda) - F(y,\lambda) \rangle$.

Hence F is parametrically $\frac{1}{2}$ -cocoercive.

Example 3.7. Let C be a nonempty closed convex subset of X and a projection mapping $P: X \times \wedge \rightarrow C$ be a parametrically nonexpansive. Then P is parametrically 1-cocoercive.

Proof. For any $x, y \in X, \lambda \in \wedge$, we have

$$
||P(x,\lambda) - P(y,\lambda)||^2 = \langle P(x,\lambda) - P(y,\lambda), P(x,\lambda) - P(y,\lambda) \rangle
$$

\$\leq \langle x - y, P(x,\lambda) - P(y,\lambda) \rangle\$.

Thus P is parametrically 1-cocoercive.

Example 3.8. A parametricaly r-strongly monotone (and hence parametrically r-expanding) mapping $T : X \times \wedge \rightarrow X$ is parametrically $(r+r^2, 1)$ -relaxed cocoercive with respect to I.

Proof. For any two elements $x, y \in X, \lambda \in X$, we have

$$
||T(x, \lambda) - T(y, \lambda)||^2 \ge r||x - y||,
$$

$$
\langle T(x, \lambda) - T(y, \lambda), x - y \rangle \ge r||x - y||^2
$$

and so

$$
||T(x,\lambda) - T(y,\lambda)||^2 + \langle T(x,\lambda) - T(y,\lambda), x - y \rangle \ge (r + r^2) ||x - y||^2,
$$

for all $x, y \in X, \lambda \in \wedge$. Hence, we have

$$
\langle T(x,\lambda) - T(y,\lambda), x - y \rangle \ge (-1) \|T(x,\lambda) - T(y,\lambda)\|^2 + (r + r^2) \|x - y\|^2,
$$

for all $x, y \in X, \lambda \in \Lambda$. Therefore T is parametrically $(r + r^2, 1)$ -relaxed cocoercive with respect to I .

Remark 3.9. Clearly every parametrically m-cocoercive mapping is parametrically m-relaxed cocoercive while each parametrically r-strongly monotone mapping is parametrically $(r + r^2, 1)$ -relaxed cocoercive with respect to I.

Definition 3.10. A mapping $p: X \times \wedge \rightarrow X$ is said to be

(i) parametrically δ -strongly accretive with respect to the first argument if there exists a constant $\delta \in (0,1)$ such that

$$
\langle p(x,\lambda)-p(y,\lambda),j_q(x-y)\rangle\geq \delta||x-y||^q, \forall x,y\in X,\lambda\in\wedge;
$$

(ii) parametrically σ -Lipschitz continuous with respect to the first argument if there exists a constant $\sigma > 0$ such that

$$
||p(x, \lambda) - p(y, \lambda)|| \ge \sigma ||x - y||^q, \ \forall x, y \in X, \lambda \in \wedge.
$$

Definition 3.11. Let $F: X \times \wedge \rightarrow 2^X$ be a multi-valued mapping. Then F is said to be parametricaly $\tau \text{-} \widetilde{\mathcal{H}}$ -Lipschitz continuous in the first argument if there exists a constant $\tau > 0$ such that

$$
\mathcal{H}(F(x,\lambda), F(y,\lambda)) \leq \tau ||x - y||, \ \forall x, y \in X, \lambda \in \wedge,
$$

where $\widetilde{\mathcal{H}}: 2^X \times 2^X \to (-\infty, +\infty) \cup \{+\infty\}$ is the Hausdorff metric *i.e.*,

$$
\widetilde{\mathcal{H}}(A,B) = \max \left\{ \sup_{x \in A} \inf_{y \in B} ||x - y||, \sup_{x \in B} \inf_{y \in A} ||x - y|| \right\}, \forall A, B \in 2^X.
$$

Lemma 3.12. ([21]) Let (X,d) be a complete metric space and $T_1, T_2 : X \rightarrow$ $CB(X)$ be two set-valued contractive mappings with same contractive constant $t \in (0,1)$ *i.e.*,

$$
\widetilde{\mathcal{H}}(T_i(x), T_i(y)) \le td(x, y), \ \forall x, y \in X, i = 1, 2.
$$

Then

$$
\widetilde{\mathcal{H}}(F(T_i), F(T_i)) \leq \frac{1}{1-t} \sup_{x \in X} \widetilde{\mathcal{H}}(T_1(x), T_2(x)),
$$

where $F(T_1)$ and $F(T_2)$ are fixed point sets of T_1 and T_2 , respectively.

Lemma 3.13. Let η : $X \times X \times \wedge \rightarrow X$ be a single-valued mapping. Let $A: X \times \wedge \rightarrow X$ be a parametrically r-strictly *η*-accretive mapping and M : $X \times \wedge \rightarrow 2^X$ be a parametrically (A, η) -accretive mapping. Then for a constant $\rho > 0$, the parametric resolvent operator associated with A and M is defined by

$$
R_{\rho,A}^{M,\eta}(x) = (A + \rho M)^{-1}(x), \ \forall x \in X.
$$

Note that $R_{\rho,A}^{M,\eta} = (A + \rho M)^{-1}$ is a single-valued mapping. We remark that M is a parametrically (A, η, m) -accretive mapping with respect to the first argument for any fixed $(z, \lambda) \in X \times \wedge$, we define

$$
R_{\rho,A}^{M(\cdot,z,\lambda),\eta}(x) = (A + \rho M(\cdot,z,\lambda))^{-1}(x), \ \forall x \in D(M),
$$

which is called a parametric resolvent operator associated with A and $M(\cdot, z, \lambda)$.

Lemma 3.14. Let X be a q-uniformly smooth Banach space, $\eta: X \times X \times \wedge \rightarrow$ X be a single-valued parametrically τ -Lipschitz continuous mapping, $A: X \times$ $\wedge \rightarrow X$ be a parametrically r-strongly *η*-accretive mapping and $M: X \times X \times Y$ $\wedge \rightarrow 2^{X}$ be a parametrically (A, η, m) -accretive mapping. Then the parametric resolvent operator $R_{\rho,A}^{M,\eta}: X \to X$ is $\frac{\tau^{q-1}}{r-\rho m}$ $\frac{\tau^{q-1}}{r-\rho m}$ -Lipschitz continuous, i.e.,

$$
||R_{\rho,A}^{M(\cdot,z,\lambda),\eta}(x)-R_{\rho,A}^{M(\cdot,z,\lambda),\eta}(y)||\leq \frac{\tau^{q-1}}{r-\rho m}||x-y||, \forall x,y\in X,\lambda\in\wedge.
$$

In connection with the parametric (A, η, m) -proximal operator equation systems (2.1), we consider the following generalized parametric variational inclusion systems: for each fixed $(\omega, \lambda) \in \Omega \times \Lambda$ finding $(x, u) \in X_1 \times X_2, u \in$ $S(x, \omega), v \in T(y, \lambda)$ and

$$
\begin{cases} 0 \in p(x,\omega) - E(x,v,\omega) + M(x,x,\omega), \\ 0 \in h(y,\lambda) - F(u,y,\lambda) + N(y,y,\lambda). \end{cases}
$$
 (3.1)

Now, for each fixed $(\omega, \lambda) \in \Omega \times \Lambda$, the solution set $Q(\omega, \lambda)$ of problem (2.1) is denoted by

$$
Q(\omega, \lambda) = \left\{ (z, t, x, y) \in X_1 \times X_2 \times X_1 \times X_2 : \exists u \in S(x, \omega), v \in T(y, \lambda) \text{ such that } \right\}
$$

$$
p(x, \omega) + \rho^{-1} R_{\rho, A_1}^{M(\cdot, x, \omega)}(z) = E(x, v, \omega) \text{ and }
$$

$$
h(y, \lambda) + \rho^{-1} R_{\rho, A_2}^{N(\cdot, y, \lambda)}(t) = F(u, y, \lambda) \right\}.
$$

In this works, our aim is to study the behaviour of the solution set $Q(\omega, \lambda)$ and the conditions on these operators $T, S, F, E, M, N, p, h, \eta_1, \eta_2, A_1, A_2$ under which the function $Q(\omega, \lambda)$ is continuous or Lipschitz continuous with respect to the parameter $(\omega, \lambda) \in \Omega \times \Lambda$.

4. Sensitivity Analysis for Solution sets

In the sequel, we first transfer the problem (3.1) into a problem of finding parametric fixed point of the associated parametric (A, η, m) -resolvent operator.

Lemma 4.1. For each fixed $(\omega, \lambda) \in \Omega \times \Lambda$, an elements $(x, y) \in Q(\omega, \lambda)$ is a solution of problem (3.1) if and only if there are $(x, y) \in X_1 \times X_2, u \in$ $S(x, \omega), v \in T(y, \lambda)$ such that

$$
\begin{cases}\nx = R_{\rho,A_1}^{M(\cdot,x,\omega)}[A_1(x) - \rho(p(x,\omega) - E(x,v,\omega))],\\
y = R_{\varrho,A_2}^{N(\cdot,y,\lambda)}[A_2(y) - \varrho(h(y,\lambda) - F(u,y,\lambda))],\n\end{cases} (4.1)
$$

where $R_{aA_1}^{M(\cdot,x,\omega)}$ $_{\rho,A_1}^{M(\cdot,x,\omega)} = (A_1 + \rho M(\cdot,x,\omega))^{-1}$ and $R_{\varrho,A_2}^{N(\cdot,y,\lambda)}$ $_{\varrho,A_2}^{N(\cdot,y,\lambda)} = (A_2 + \varrho N(\cdot,y,\lambda))^{-1}$ are the corresponding parametric resolvent operator in the first argument of parametrically (A_1, η_1) -accretive operator of $M(\cdot, \cdot, \cdot)$, parametric (A_2, η_2) -accretive operator of $N(\cdot, \cdot, \cdot)$, respectively, A_i is a parametrically r_i -strongly accretive mapping for $i = 1, 2$ and $\rho, \rho > 0$.

Proof. For each fixed $(\omega, \lambda) \in \Omega \times \Lambda$, from the definition of the parametric resolvent operator $R_{aA_1}^{M(\cdot,x,\omega)}$ $\mathcal{L}^{M(\cdot,x,\omega)}_{\rho,A_1} = (A_1+\rho M(\cdot,x,\omega))^{-1}$ of $M(\cdot,x,\omega)$ and $R^{N(\cdot,y,\lambda)}_{\varrho,A_2}$ $\frac{d^{\gamma}(x,y,\lambda)}{d^{\gamma}(x,A_2)} =$ $(A_2 + \rho N(\cdot, y, \lambda))^{-1}$ of $N(\cdot, y, \lambda)$, respectively, we know that there exists $x \in$ $X_1, y \in X_2, u \in S(x, \omega), v \in T(y, \lambda)$ such that (3.1) holds if and only if

$$
\begin{cases} A_1(x) - \rho(p(x,\omega) - E(x,v,\omega)) \in A_1(x) + \rho M(x,x,\omega), \\ A_2(y) - \rho(h(y,\lambda) - F(u,y,\lambda)) \in A_2(y) + \rho N(y,y,\lambda). \end{cases}
$$

It follows from the definition of $Q(\omega, \lambda)$ that $(x, y) \in Q(\omega, \lambda)$ is a solution of problem (3.1) if and only if there exists $(x, y) \in X_1 \times X_2, u \in S(x, \omega), v \in$ $T(y, \lambda)$ such that equations (4.1) holds.

Now we prove that problem (2.1) is equivalent to problem (3.1).

Lemma 4.2. Problem (2.1) has a solution (z, t, x, y, u, v) with $u \in S(x, \omega)$, $v \in T(y, \lambda)$ if and only if problem (3.1) has a solution (x, y, u, v) with $u \in$ $S(x, \omega), v \in T(y, \lambda)$, where

$$
x = R_{\rho,A_1}^{M(\cdot,x,\omega)}(z), \ y = R_{\rho,A_2}^{N(\cdot,y,\lambda)}(t)
$$
\n(4.2)

and

$$
z = A_1(x) - \rho(p(x, \omega) - E(x, v, \omega)),
$$

\n
$$
t = A_2(y) - \varrho(h(y, \lambda) - F(u, y, \lambda)).
$$

Proof. Let (x, y, u, v) with $u \in S(x, \omega), v \in T(y, \lambda)$ be a solution of problem (3.1). Then from Lemma 4.1. it is a solution of the following system of equations: \mathbf{v}

$$
x = R_{\rho,A_1}^{M(\cdot,x,\omega)}[A_1(x) - \rho(p(x,\omega) - E(x,v,\omega))],
$$

$$
y = R_{\rho,A_2}^{N(\cdot,y,\lambda)}[A_2(y) - \rho(h(y,\lambda) - F(u,y,\lambda))].
$$

By using the fact $R_{aA_1}^{M(\cdot,x,\omega)}$ $\frac{M(\cdot,x,\omega)}{\rho,A_1}=I-A_1(J_{\rho,A_1}^{M(\cdot,x,\omega)}$ $\hat{R}^{M(\cdot,x,\omega)}_{\rho,A_1}), R^{N(\cdot,y,\lambda)}_{\varrho,A_2} = I - A_2(J_{\varrho,A_2}^{N(\cdot,y,\lambda)})$ $\binom{N(\cdot,y,\lambda)}{g,A_2}$ and (4.1), we have

$$
R_{\rho,A_1}^{M(\cdot,x,\omega)}[A_1(x) - \rho(p(x,\omega) - E(x,v,\omega))]
$$

= $[A_1(x) - \rho(p(x,\omega) - E(x,v,\omega))]$
 $- A_1(J_{\rho,A_1}^{M(\cdot,x,\omega)}[A_1(x) - \rho(p(x,\omega) - E(x,v,\omega))])$
= $A_1(x) - \rho(p(x,\omega) - E(x,v,\omega)) - A_1(x)$
= $-\rho(p(x,\omega) - E(x,v,\omega))$

and

$$
R_{\varrho,A_2}^{N(\cdot,y,\lambda)}[A_2(y) - \varrho(h(y,\lambda) - F(u,y,\lambda))]
$$

= $A_2(y) - \varrho(h(y,\lambda) - F(u,y,\lambda))$
 $- A_2(J_{\varrho,A_2}^{N(\cdot,y,\lambda)}[A_2(y) - \varrho(h(y,\lambda) - F(u,y,\lambda))])$
= $A_2(y) - \varrho(h(y,\lambda) - F(u,y,\lambda)) - A_2(y)$
= $-\varrho(h(y,\lambda) - F(u,y,\lambda))$

which imply that

$$
p(x,\omega) + \rho^{-1} R_{\rho,A_1}^{M(\cdot,x,\omega)}(z) = E(x,v,\omega),
$$

$$
h(y,\lambda) + \rho^{-1} R_{\rho,A_2}^{N(\cdot,y,\lambda)}(t) = F(u,y,\lambda)
$$

with

$$
z = A_1(x) - \rho(p(x, \omega) - E(x, v, \omega))
$$

and

$$
t = A_2(y) - \varrho(h(y, \lambda) - F(u, y, \lambda)).
$$

That is, (z, t, x, y, u, v) with $u \in S(x, \omega), v \in T(y, \lambda)$ is a solution of problem $(2.1).$

Conversely, letting (z, t, x, y, u, v) with $u \in S(x, \omega), v \in T(y, \lambda)$ is a solution of problem (2.1), then

$$
p(x, \omega) - E(x, v, \omega) = -\rho^{-1} R_{\rho, A_1}^{M(\cdot, x, \omega)}(z),
$$

$$
h(y, \lambda) - F(u, y, \lambda) = -\varrho^{-1} R_{\varrho, A_2}^{N(\cdot, y, \lambda)}(t),
$$

$$
\rho[p(x, \omega) - E(x, v, \omega)] = -R_{\rho, A_1}^{M(\cdot, x, \omega)}(z) = A_1(J_{\rho, A_1}^{M(\cdot, x, \omega)}(z)) - z,
$$

$$
\varrho[h(y, \lambda) - F(u, y, \lambda)] = -R_{\varrho, A_2}^{N(\cdot, y, \lambda)}(t) = A_2(J_{\varrho, A_2}^{N(\cdot, y, \lambda)}(t)) - t.
$$
(4.3)

It follows that (4.2) and (4.3) that

$$
\rho[p(x,\omega) - E(x,v,\omega)] = A_1(J_{\rho,A_1}^{M(\cdot,x,\omega)}(A_1(x) - \rho(p(x,\omega) - E(x,v,\omega)))) - A_1(x) + \rho(p(x,\omega) - E(x,v,\omega)),
$$

$$
\varrho[h(y,\lambda) - F(u,y,\lambda)] = A_2(J_{\varrho,A_2}^{N(\cdot,y,\lambda)}(A_2(y) - \varrho(h(y,\lambda) - F(u,y,\lambda))))
$$

-
$$
A_2(y) + \varrho(h(y,\lambda) - F(u,y,\lambda)),
$$

which imply that

$$
A_1(x) = A_1(J_{\rho,A_1}^{M(\cdot,x,\omega)}(A_1(x) - \rho(p(x,\omega) - E(x,v,\omega))))
$$

$$
A_2(y) = A_2(J_{\rho,A_2}^{N(\cdot,y,\lambda)}(A_2(y) - \rho(h(y,\lambda) - F(u,y,\lambda))))
$$

Hence

$$
x = J_{\rho,A_1}^{M(\cdot,x,\omega)}(A_1(x) - \rho(p(x,\omega) - E(x,v,\omega))),
$$

$$
y = J_{\rho,A_2}^{N(\cdot,y,\lambda)}(A_2(y) - \rho(h(y,\lambda) - F(u,y,\lambda))),
$$

that is, (x, y, u, v) with $u \in S(x, \omega), v \in T(y, \lambda)$ is a solution of problem (3.1). Alternative Proof. Let

$$
z = A_1(x) - \rho(p(x, \omega) - E(x, v, \omega)),
$$

$$
t = A_2(y) - \rho(h(y, \lambda) - F(u, y, \lambda)).
$$

Then by (4.2) we have

$$
x = J_{\rho,A_1}^{M(\cdot,x,\omega)}(z), \ y = J_{\rho,A_2}^{N(\cdot,y,\lambda)}(t)
$$

and

$$
z = A_1(J_{\rho,A_1}^{M(\cdot,x,\omega)}(z)) - \rho(p(x,\omega) - E(x,v,\omega)),
$$

$$
t = A_2(J_{\rho,A_2}^{N(\cdot,y,\lambda)}(t)) - \rho(h(y,\lambda) - F(u,y,\lambda)).
$$

Since

$$
A_1(J_{\rho,A_1}^{M(\cdot,x,\omega)}(z))=A_1(J_{\rho,A_1}^{M(\cdot,x,\omega)})(z)
$$

and

$$
A_2(J_{\varrho,A_2}^{N(\cdot,y,\lambda)}(t)) = A_2(J_{\varrho,A_2}^{N(\cdot,y,\lambda)})(t),
$$

we have

$$
p(x,\omega) + \rho^{-1} R_{\rho,A_1}^{M(\cdot,x,\omega)}(z) = E(x,v,\omega),
$$

$$
h(y,\lambda) + \rho^{-1} R_{\rho,A_2}^{N(\cdot,y,\lambda)}(t) = F(u,y,\lambda),
$$

which is required problem (2.1) .

From Lemma 4.1 and 4.2, we suggest the following sensitivity analysis results for the system of parametric (A, η, m) -proximal operator equations (2.1).

Theorem 4.3. Let $A_i: X_i \to X_i$ be a parametrically r_i -strongly accretive and parametrically s_i -Lipschitz continuous mapping for each $i = 1, 2, S : X_1 \times \Omega \rightarrow$ $CB(X_1)$ be a parametrically $\kappa_S - \mathcal{H}$ -Lipschitz continuous mapping and T: $X_2 \times \wedge \rightarrow CB(X_2)$ be a parametrically $\kappa_T - H$ -Lipschitz continuous mapping. Let $M: X_1 \times X_1 \times \Omega \to 2^{X_1}$ be parametrically (A_1, η_1) -accretive with constant m_1 in the first argument and N : $X_2 \times X_2 \times \wedge \rightarrow 2^{X_2}$ be parametrically (A_2, η_2) -accretive with constant m_2 in the first argument. Let $\eta_1 : X_1 \times X_1 \times$ $\Omega \to X_1$ be a parametrically τ_2 -Lipschitz continuous mapping, $\eta_2 : X_2 \times X_2 \times$ $\wedge \rightarrow X_2$ be a parametrically τ_2 -Lipschitz continuous mapping, $E: X_1 \times X_2 \times$ $\Omega \rightarrow X_1$ be a parametrically Lipschitz continuous mapping with respect to first argument with constant $\beta_E > 0$, second argument with respect to the constant $\xi_E > 0$ and parametrically (γ_E, α_E) -relaxed cocoercive with respect to A₁ and first argument of E with constants $\gamma_E > 0$, $\alpha_E > 0$. Let $p: X_1 \times \Omega \rightarrow$ X_1 be a parametrically Lipschitz continuous mapping with constant $\delta_p > 0$ and parametrically (γ_p, α_p) -relaxed cocoercive with respect to A_1 with constants $\gamma_p, \alpha_p \geq 0$. Let $F: X_1 \times X_2 \times \wedge \rightarrow X_2$ be parametrically Lipschitz continuous with respect to first and second argument with constants β_F, ξ_F , respectively. Let $h: X_2 \times \wedge \rightarrow X_2$ be parametrically Lipschitz continuous with constant $\delta_h > 0$ and parametrically (γ_h, α_h) -relaxed cocoercive with respect to A_2 with constants $\gamma_h > 0, \alpha_h > 0$, respectively. Let F be a parametrically (γ_F, α_F) relaxed cocoercive mapping with respect to A_2 and second argument of F with constants $\gamma_F, \alpha_F > 0$, respectively. If

$$
||J_{\rho,A_1}^{M(\cdot,x,\omega)}(z) - J_{\rho,A_1}^{M(\cdot,y,\omega)}(z)|| \le v_1 ||x - y|| \forall (x, y, z, \omega) \in X_1 \times X_1 \times X_1 \times \Omega; \tag{4.4}
$$

$$
||J_{\varrho,A_2}^{N(\cdot,x,\lambda)}(z) - J_{\varrho,A_2}^{N(\cdot,y,\lambda)}(z)|| \le v_2 ||x - y|| \forall (x, y, z, \lambda) \in X_2 \times X_2 \times X_2 \times \wedge; \ (4.5)
$$

with $0 < v_i < 1$ for $i = 1, 2$ and there exist constants $\rho \in (0, \frac{r_1}{m})$ $\overline{m_1}$ $\bigg), \varrho \in \left(0, \frac{r_2}{m_0}\right)$ $m₂$ \setminus such that

$$
\sqrt[4]{s_1^2 - q\rho(s_1^q(\alpha_p - \alpha_E) - \gamma_p\delta_p^q + \gamma_E\beta_E^q) + 2^q c_q \rho^q(\delta_p^q + \beta_E^q)}
$$

$$
< \tau_1^{1-q}(r_1 - \rho m_1) \left(1 - v_1 - \frac{\tau_2^{q-1} \rho \beta_F \kappa_S}{r_2 - \rho m_2}\right),
$$

$$
\sqrt[4]{s_2^2 - q\rho(s_2^q(\alpha_h - \alpha_F) - \gamma_h\delta_h^q + \gamma_F\xi_F^q) + 2^q c_q \rho^q(\delta_h^q + \xi_F^q)}
$$

$$
< \tau_2^{1-q}(r_2 - \rho m_2) \left(1 - v_2 - \frac{\tau_1^{q-1} \rho \xi_E \kappa_T}{r_1 - \rho m_1}\right)
$$

(4.6)

Then for each $(\omega, \lambda) \in \Omega \times \Lambda$, the solution set $Q(\omega, \lambda)$ of problem (2.1) is a nonempty and closed subset in $X_1 \times X_2$.

Proof. In the sequel from (4.1), we first define the operator $\Phi_{\rho}: X_1 \times X_2 \times$ $\Omega\times\wedge\to X_1$ and $\Psi_\varrho:X_1\times X_2\times\Omega\times\wedge\to X_2$ as follows:

$$
\Phi_{\rho}(x, y, \omega, \lambda) = J_{\rho, A_1}^{M(\cdot, x, \omega)} [A_1(x) - \rho(p(x, \omega) - E(x, v, \omega))],
$$

$$
\Psi_{\varrho}(x, y, \omega, \lambda) = J_{\varrho, A_2}^{N(\cdot, y, \lambda)} [A_2(y) - \varrho(h(y, \lambda) - F(u, y, \lambda))]
$$
(4.7)

for all $(x, y, \omega, \lambda) \in X_1 \times X_2 \times \Omega \times \Lambda$. Now we define a norm $\|\cdot\|_1$ on $X_1 \times X_2$ by

 $||(x, y)||_1 = ||x|| + ||y|| \; \forall (x, y) \in X_1 \times X_2.$

It is well known that $(X_1 \times X_2, \|\cdot\|_1)$ is a Banach spaces [11]. For any given $\rho > 0$ and $\rho > 0$, define $G: X_1 \times X_2 \times \Omega \times \Lambda \to 2^{X_1 \times X_2}$ by

 $G_{\rho,\rho}(x, y, \omega, \lambda) = \{(\Phi_{\rho}(x, y, \omega, \lambda), \Psi_{\rho}(x, y, \omega, \lambda)) : u \in S(x, \omega), v \in T(y, \lambda)\},\$

for all $(x, y, \omega, \lambda) \in X_1 \times X_2 \times \Omega \times \Lambda$. Since $S(x, \omega) \in CB(X_1), T(y, \lambda) \in$ $CB(X_2), A_1, A_2, \eta_1, \eta_2, E, F, p, h, J_{\rho, A_1}^{M(\cdot, x, \omega)}, J_{\rho, A_2}^{N(\cdot, x, \lambda)}$ are continuous, we have $G_{\rho,\rho}(x,y,\omega,\lambda) \in CB(X_1 \times X_2).$

Now for each fixed $(\omega, \lambda) \in \Omega \times \wedge$, we show that $G_{\rho, \rho}(x, y, \omega, \lambda)$ is a multivalued contractive mapping. In fact, for any $(x, y, \omega, \lambda), (\overline{x}, \overline{y}, \omega, \lambda) \in X_1 \times$ $X_2 \times \Omega \times \Lambda$ and $(a_1, a_2) \in G_{\rho, \rho}(x, y, \omega, \lambda)$ there exists $u \in S(x, \omega), v \in T(y, \lambda)$ such that

$$
a_1 = J_{\rho,A_1}^{M(\cdot,x,\omega)}[A_1(x) - \rho(p(x,\omega) - E(x,v,\omega))],
$$

\n
$$
a_2 = J_{\rho,A_2}^{N(\cdot,y,\lambda)}[A_2(y) - \rho(h(y,\lambda) - F(u,y,\lambda))].
$$

Note that $S(\bar{x}, \omega) \in CB(X_1), T(\bar{y}, \lambda) \in CB(X_2)$. It follows from Nadler's Theorem [22] that there exists $\overline{u} \in S(\overline{x}, \omega) \in CB(X_1), \overline{v} \in T(\overline{y}, \lambda) \in CB(X_2)$ such that

$$
||u - \overline{u}|| \leq \mathcal{H}(S(x,\omega), S(\overline{x}, \omega)), ||v - \overline{v}|| \leq \widetilde{\mathcal{H}}(T(y,\lambda), T(\overline{y}, \lambda)).
$$
 (4.8)

Setting

$$
b_1 = J_{\rho,A_1}^{M(\cdot,\overline{x},\omega)} [A_1(\overline{x}) - \rho(p(\overline{x},\omega) - E(\overline{x},\overline{v},\omega))],
$$

\n
$$
b_2 = J_{\rho,A_2}^{N(\cdot,\overline{y},\lambda)} [A_2(\overline{y}) - \rho(h(\overline{y},\lambda) - F(\overline{u},\overline{y},\lambda))],
$$

then we have $(b_1, b_2) \in G_{\rho, \rho}(\overline{x}, \overline{y}, \omega, \lambda)$. It follows from (4.4) and Lemma 3.14 that

$$
||a_{1} - b_{1}|| = ||J_{\rho,A_{1}}^{M(\cdot,x,\omega)}[A_{1}(x) - \rho(p(x,\omega) - E(x,v,\omega))]
$$

\n
$$
- J_{\rho,A_{1}}^{M(\cdot,\overline{x},\omega)}[A_{1}(\overline{x}) - \rho(p(\overline{x},\omega) - E(\overline{x},\overline{v},\omega))]]
$$

\n
$$
\leq ||J_{\rho,A_{1}}^{M(\cdot,\overline{x},\omega)}[A_{1}(x) - \rho(p(x,\omega) - E(x,v,\omega))]
$$

\n
$$
- J_{\rho,A_{1}}^{M(\cdot,\overline{x},\omega)}[A_{1}(x) - \rho(p(x,\omega) - E(x,v,\omega))]]
$$

\n
$$
+ ||J_{\rho,A_{1}}^{M(\cdot,\overline{x},\omega)}[A_{1}(x) - \rho(p(x,\omega) - E(x,v,\omega))]
$$

\n
$$
- J_{\rho,A_{1}}^{M(\cdot,\overline{x},\omega)}[A_{1}(\overline{x}) - \rho(p(\overline{x},\omega) - E(\overline{x},\overline{v},\omega))]]
$$

\n
$$
\leq v_{1} || x - \overline{x} || + \frac{\tau_{1}^{q-1}}{r_{1} - \rho m_{1}} || A_{1}(x) - A_{1}(\overline{x}) - \rho(p(x,\omega) - p(\overline{x},\omega)
$$

\n
$$
- E(x,v,\omega) + E(\overline{x},\overline{v},\omega)]]
$$

\n
$$
\leq v_{1} || x - \overline{x} || + \frac{\tau_{1}^{q-1}}{r_{1} - \rho m_{1}} || A_{1}(x) - A_{1}(\overline{x}) - \rho(p(x,\omega) - p(\overline{x},\omega)
$$

\n
$$
- E(x,v,\omega) + E(\overline{x},v,\omega)]] + \frac{\tau_{1}^{q-1}}{r_{1} - \rho m_{1}} \rho || E(\overline{x},v,\omega) - E(\overline{x},\overline{v},\omega) ||.
$$

Since E is parametrically Lipschitz continuous with respect to first and second argument with constants β_E, ξ_E , respectively and T is parametrically $\kappa_T - \mathcal{H}$ -Lipschitz continuous and p is a parametrically Lipschitz continuous mapping with constant $\delta_p > 0$ we have

$$
||p(x,\omega) - p(\overline{x},\omega)|| \le \delta_p ||x - \overline{x}||, \tag{4.10}
$$

$$
||E(x, v, \omega) - E(\overline{x}, v, \omega)|| \leq \beta_E ||x - \overline{x}|| \tag{4.11}
$$

and

$$
||E(\overline{x}, v, \omega) - E(\overline{x}, \overline{v}, \omega)|| \le \xi_E ||v - \overline{v}||
$$

\n
$$
\le \xi_E \widetilde{\mathcal{H}}(T(y, \lambda), T(\overline{y}, \lambda))||
$$

\n
$$
\le \xi_E \kappa_T ||y - \overline{y}||. \tag{4.12}
$$

Again from Lemma 2.1, Lemma 2.2 [26], A_1 is parametrically s_1 -Lipschitz continuous and p is a parametricaly (γ_p, α_p) -relaxed cocoercive mapping with respect to A_1 and E is parametricaly (γ_E, α_E) -relaxed cocoercive mapping with respect to A_1 and first argument of E, and from $(4.10)-(4.12)$ we have

$$
||A_1(x) - A_1(\overline{x}) - \rho((p(x, \omega) - p(\overline{x}, \omega)) - (E(x, v, \omega) - E(\overline{x}, v, \omega)))||^q
$$

\n
$$
\leq ||A_1(x) - A_1(\overline{x})||^q
$$

\n
$$
- q\rho\langle (p(x, \omega) - p(\overline{x}, \omega)) - (E(x, v, \omega) - E(\overline{x}, v, \omega)), j_q(A_1(x) - A_1(\overline{x}))) \rangle
$$

\n
$$
+ c_q\rho^q ||(p(x, \omega) - p(\overline{x}, \omega)) - (E(x, v, \omega) - E(\overline{x}, v, \omega))||^q
$$

\n
$$
\leq ||A_1(x) - A_1(\overline{x})||^q - q\rho\langle p(x, \omega) - p(\overline{x}, \omega), j_q(A_1(x) - A_1(\overline{x}))) \rangle
$$

\n
$$
+ q\rho\langle E(x, v, \omega) - E(\overline{x}, v, \omega), j_q(A_1(x) - A_1(\overline{x}))) \rangle
$$

\n
$$
+ 2^q c_q\rho^q [||p(x, \omega) - p(\overline{x}, \omega)||^q + ||E(x, v, \omega) - E(\overline{x}, v, \omega)||^q]
$$

\n
$$
\leq s_1^q ||x - \overline{x}||^q - q\rho(-\gamma_p ||p(x, \omega) - p(\overline{x}, \omega)||^q + \alpha_p ||A_1(x) - A_1(\overline{x})||^q)
$$

\n
$$
+ q\rho(-\gamma_E ||E(x, v, \omega) - E(\overline{x}, v, \omega)||^q + \alpha_E ||A_1(x) - A_1(\overline{x})||^q)
$$

\n
$$
+ 2^q c_q\rho^q [\delta_p^q ||x - \overline{x}||^q + \beta_E^q ||x - \overline{x}||^q]
$$

\n
$$
\leq s_1^q ||x - \overline{x}||^q - q\rho(-\gamma_p\delta_p^q ||x - \overline{x}||^q + \alpha_p s_1^q ||x - \overline{x}||^q)
$$

\n
$$
+ q\rho(-\gamma_E\beta_E^q ||x - \overline{x}||^q + \alpha_E s_1^q ||x - \overline{x}||^q)
$$

Hence we have

$$
||A_1(x) - A_1(\overline{x}) - \rho((p(x,\omega) - p(\overline{x},\omega)) - (E(x,v,\omega) - E(\overline{x},v,\omega)))||
$$

\n
$$
\leq \sqrt[q]{s_1^q - q\rho(s_1^q(\alpha_p - \alpha_E) - \gamma_p\delta_p^q + \gamma_E\beta_E^q) + 2^q c_q \rho^q(\delta_p^q + \beta_E^q)} ||x - \overline{x}||. \tag{4.13}
$$

Combining $(4.9)-(4.13)$, we have

$$
||a_1 - b_1||
$$

\n
$$
\leq v_1 ||x - \overline{x}||
$$

\n
$$
+ \frac{\tau_1^{q-1}}{r_1 - \rho m_1} \sqrt[q]{s_1^q - q \rho (s_1^q (\alpha_p - \alpha_E) - \gamma_p \delta_p^q + \gamma_E \beta_E^q) + 2^q c_q \rho^q (\delta_p^q + \beta_E^q)} ||x - \overline{x}||
$$

\n
$$
+ \frac{\tau_1^{q-1}}{r_1 - \rho m_1} \rho \xi_E \kappa_T ||y - \overline{y}||
$$

\n
$$
\leq \theta_1 ||x - \overline{x}|| + \vartheta_1 ||y - \overline{y}||,
$$
\n(4.14)

where

$$
\theta_1 = \nu_1 + \frac{\tau_1^{q-1}}{r_1 - \rho m_1} \sqrt[q]{s_1^q - q \rho (s_1^q (\alpha_p - \alpha_E) - \gamma_p \delta_p^q + \gamma_E \beta_E^q) + 2^q c_q \rho^q (\delta_p^q + \beta_E^q)}
$$

and

$$
\vartheta_1 = \frac{\tau_1^{q-1}}{r_1 - \rho m_1} \rho \xi_E \kappa_T.
$$

Similarly from the assumptions of S , A_2 , F , h , Lemma 3.1 and Lemma 3.2 [26], we have

$$
||a_2 - b_2|| = ||J_{\varrho, A_2}^{N(\cdot, y, \lambda)}[A_2(y) - \varrho(h(y, \lambda) - F(u, y, \lambda))]
$$

\n
$$
- J_{\varrho, A_2}^{N(\cdot, \overline{y}, \lambda)}[A_2(\overline{y}) - \varrho(h(\overline{y}, \lambda) - F(\overline{u}, \overline{y}, \lambda))]]
$$

\n
$$
\leq ||J_{\varrho, A_2}^{N(\cdot, \overline{y}, \lambda)}[A_2(y) - \varrho(h(y, \lambda) - F(u, y, \lambda))]
$$

\n
$$
- J_{\varrho, A_2}^{N(\cdot, \overline{y}, \lambda)}[A_2(y) - \varrho(h(y, \lambda) - F(u, y, \lambda))]]
$$

\n
$$
+ ||J_{\varrho, A_2}^{N(\cdot, \overline{y}, \lambda)}[A_2(y) - \varrho(h(y, \lambda) - F(u, y, \lambda))]
$$

\n
$$
- J_{\varrho, A_2}^{N(\cdot, \overline{y}, \lambda)}[A_2(\overline{y}) - \varrho(h(\overline{y}, \lambda) - F(\overline{u}, \overline{y}, \lambda))]]
$$

\n
$$
\leq v_2 ||y - \overline{y}|| + \frac{\tau_2^{q-1}}{r_2 - \varrho m_2}||A_2(y) - A_2(\overline{y}) - \varrho(h(y, \lambda) - h(\overline{y}, \lambda))
$$

\n
$$
- F(u, y, \lambda) + F(\overline{u}, \overline{y}, \lambda))||
$$

\n
$$
\leq v_2 ||y - \overline{y}|| + \frac{\tau_2^{q-1}}{r_2 - \varrho m_2}||A_2(y) - A_2(\overline{y}) - \varrho(h(y, \lambda) - h(\overline{y}, \lambda))
$$

\n
$$
- F(u, y, \lambda) + F(u, \overline{y}, \lambda))||
$$

\n
$$
+ \frac{\tau_2^{q-1}}{r_2 - \varrho m_2} \varrho ||F(u, \overline{y}, \lambda) - F(\overline{u}, \overline{y}, \lambda) ||.
$$
 (4.15)

Similarly F is parametrically Lipschitz continuous with respect to first and second argument with constants β_F , ξ_F and S is parametrically $\kappa_S - \tilde{\mathcal{H}}$ -Lipschitz continuous and h is a parametrically Lipschitz continuous mapping with constant $\delta_h > 0$, we have

$$
||h(y, \lambda) - h(\overline{y}, \lambda)|| \le \delta_h ||y - \overline{y}||, \tag{4.16}
$$

$$
||F(\overline{u}, y, \lambda) - F(\overline{u}, \overline{y}, \lambda)|| \le \xi_F ||y - \overline{y}|| \tag{4.17}
$$

and

$$
||F(u, y, \lambda) - F(\overline{u}, y, \lambda)|| \leq \beta_F ||u - \overline{u}||
$$

\n
$$
\leq \beta_F \widetilde{\mathcal{H}}(S(x, \omega), S(\overline{x}, \omega))||
$$

\n
$$
\leq \beta_F \kappa_S ||x - \overline{x}||. \tag{4.18}
$$

Again from Lemma 2.1, Lemma 2.2 [26], A_2 is parametricaly s_2 -Lipschitz continuous and h is a parametrically (γ_h, α_h) -relaxed cocoercive mapping with respect to A_2 and F is a parametrically (γ_F, α_F) -relaxed cocoercive mapping with respect to A_2 and second argument, and from $(4.16)-(4.17)$, we have

$$
||A_2(y) - A_2(\overline{y}) - \varrho((h(y,\lambda) - h(\overline{y},\lambda)) - (F(u, y, \lambda) - F(u, \overline{y}, \lambda)))||^q
$$

\n
$$
\leq ||A_2(y) - A_2(\overline{y})||^q
$$

\n
$$
- q\varrho\langle (h(y,\lambda) - h(\overline{y}, \lambda)) - (F(u, y, \lambda) - F(u, \overline{y}, \lambda)), j_q(A_2(y) - A_2(\overline{y})))
$$

\n
$$
+ c_q\varrho^q ||(h(y,\lambda) - h(\overline{y}, \lambda)) - (F(u, y, \lambda) - F(u, \overline{y}, \lambda))||^q
$$

\n
$$
\leq ||A_2(y) - A_2(\overline{y})||^q - q\varrho\langle (h(y,\lambda) - h(\overline{y}, \lambda)), j_q(A_2(y) - A_2(\overline{y})))
$$

\n
$$
+ q\varrho\langle F(u, y, \lambda) - F(u, \overline{y}, \lambda), j_q(A_2(y) - A_2(\overline{y})))
$$

\n
$$
+ 2^q c_q\varrho^q [||h(y,\lambda) - h(\overline{y}, \lambda)||^q + ||F(u, y, \lambda) - F(u, \overline{y}, \lambda)||^q]
$$

\n
$$
\leq s_2^q ||y - \overline{y}||^q - q\varrho(-\gamma_h ||h(y,\lambda) - h(\overline{y}, \lambda)||^q + \alpha_h ||A_2(y) - A_2(\overline{y})||^q)
$$

\n
$$
+ q\varrho(-\gamma_F ||F(u, y, \lambda) - F(u, \overline{y}, \lambda)||^q + \alpha_F ||A_2(y) - A_2(\overline{y})||^q)
$$

\n
$$
+ 2^q c_q\varrho^q [\delta_h^q ||y - \overline{y}||^q + \xi_F^q ||y - \overline{y}||^q]
$$

\n
$$
\leq s_2^q ||y - \overline{y}||^q - q\varrho(-\gamma_h\delta_h^q ||y - \overline{y}||^q + \alpha_h s_2^q ||y - \overline{y}||^q)
$$

\n
$$
+ q\varrho(-\gamma_F\xi_F^q ||y - \overline{
$$

Hence, we have

$$
||A_2(y) - A_1(\overline{y}) - \varrho((h(y, \lambda) - h(\overline{y}, \lambda)) - (F(u, y, \lambda) - F(u, \overline{y}, \lambda)))||
$$

\$\leq \sqrt[q]{s_2^q - q\varrho(s_2^q(\alpha_h - \alpha_F) - \gamma_h \delta_h^q + \gamma_F \xi_F^q) + 2^q c_q \varrho^q(\delta_h^q + \xi_F^q)||y - \overline{y}||. (4.19)

Combining $(4.15)-(4.19)$, we have

$$
\|a_2 - b_2\|
$$

\n
$$
\leq v_2 \|y - \overline{y}\|
$$

\n
$$
+ \frac{\tau_2^{q-1}}{r_2 - \varrho m_2} \sqrt[q]{s_2^q - q\varrho (s_2^q(\alpha_h - \alpha_F) - \gamma_h \delta_h^q + \gamma_F \xi_F^q) + 2^q c_q \varrho^q (\delta_h^q + \xi_F^q)} \|y - \overline{y}\|
$$

\n
$$
+ \frac{\tau_2^{q-1}}{r_2 - \varrho m_2} \varrho \beta_F \kappa_S \|x - \overline{x}\|
$$

\n
$$
\leq \theta_2 \|x - \overline{x}\| + \vartheta_2 \|y - \overline{y}\|,
$$
\n(4.20)

where

$$
\vartheta_2 = \upsilon_2 + \frac{\tau_2^{q-1}}{r_2 - \varrho m_2} \sqrt[q]{s_2^q - q \varrho (s_2^q(\alpha_h - \alpha_F) - \gamma_h \delta_h^q + \gamma_F \xi_F^q) + 2^q c_q \varrho^q (\delta_h^q + \xi_F^q)}
$$

and

$$
\theta_2=\frac{\tau_2^{q-1}}{r_2-\varrho m_2}\varrho\beta_F\kappa_S.
$$

It follows from (4.14) and (4.20) that

$$
||a_1 - b_1|| + ||a_2 - b_2|| \le (\theta_1 + \theta_2) ||x - \overline{x}|| + (\theta_1 + \theta_2) ||y - \overline{y}||
$$

\n
$$
\le \sigma (||x - \overline{x}|| + ||y - \overline{y}||),
$$
\n(4.21)

where $\sigma = \max{\lbrace \theta_1 + \theta_2, \vartheta_1 + \vartheta_2 \rbrace}$. From conditions (4.6), we know that $\sigma < 1$. Hence from (4.21), we get

$$
d((a_1, a_2), G_{\rho, \varrho}(\overline{x}, \overline{y}, \omega, \lambda)) = \inf_{(b_1, b_2) \in G_{\rho, \varrho}(\overline{x}, \overline{y}, \omega, \lambda)} (||a_1 - b_1|| + ||a_2 - b_2||)
$$

$$
\leq -\sigma ||(x, y) - (\overline{x}, \overline{y})||.
$$

Since $(a_1, a_2) \in G_{\rho,\rho}(x, y, \omega, \lambda)$ is arbitrary, we obtain

$$
\sup_{(a_1,a_2)\in G_{\rho,\varrho}(x,y,\omega,\lambda)} d((a_1,a_2),G_{\rho,\varrho}(\overline{x},\overline{y},\omega,\lambda)) \leq -\sigma ||(x,y)-(\overline{x},\overline{y})||.
$$

By the same argument we can prove

$$
\sup_{(b_1,b_2)\in G_{\rho,\varrho}(\overline{x},\overline{y},\omega,\lambda)} d((b_1,b_2),G_{\rho,\varrho}(x,y,\omega,\lambda)) \leq -\sigma \|(x,y)-(\overline{x},\overline{y})\|.
$$

It follows from the definition of Hausdorff metric $\widetilde{\mathcal{H}}$ on $CB(X_1 \times X_2)$ that

$$
\mathcal{H}(G_{\rho,\varrho}(x,y,\omega,\lambda),G_{\rho,\varrho}(\overline{x},\overline{y},\omega,\lambda))\leq-\sigma\|(x,y)-(\overline{x},\overline{y})\|.
$$

for all $(x, \overline{x}, \omega) \in X_1 \times X_1 \times \Omega$, $(y, \overline{y}, \lambda) \in X_2 \times X_2 \times \Lambda$, that is, $G_{\rho, \rho}(x, y, \omega, \lambda)$ is a multi-valued contractive mapping which is uniform with respect to $(\omega, \lambda) \in$ $\Omega \times \Lambda$. By the fixed point theorem of Nadler [22], for each $(\omega, \lambda) \in \Omega \times$ \wedge , $G_{\rho,\varrho}(x,y,\omega,\lambda)$ has a fixed point $(x(\omega), y(\lambda)) \in X_1 \times X_2$, that is, $(x, y) \in$ $G_{\rho,\rho}(x,y,\omega,\lambda)$. By the definition of G, there exists $u \in S(x,\omega), v \in T(y,\lambda)$ such that (4.1) holds. Thus it follows from Lemma 4.1 that (x, y, u, v) with $u \in S(x,\omega), v \in T(y,\lambda)$ is a solution of problem (3.1). Hence from Lemma 4.2 that (z, t, x, y, u, v) with $u \in S(x, \omega), v \in T(y, \lambda)$ is a solution of (3.1). Therefore $Q(\omega, \lambda) \neq \emptyset$ for all $(\omega, \lambda) \in \Omega \times \Lambda$. Next, we prove the closedness of the solution set $Q(\omega, \lambda)$. For each $(\omega, \lambda) \in \Omega \times \Lambda$, let $\{(z_n, t_n, x_n, y_n)\} \subset$ $Q(\omega, \lambda)$ and $z_n \to z_0, t_n \to t_0, x_n \to x_0, y_n \to y_0$ as $n \to \infty$. Then we know that there exist $u_n \in S(x_n, \omega), v_n \in T(y_n, \lambda)$ and $(x_n, y_n) \in G_{\rho, \rho}(x_n, y_n, \omega, \lambda), z_n =$ $A_1(x_n) - \rho(p(x_n, \omega) - E(x_n, v_n, \omega)), t_n = A_2(y_n) - \rho(h(y_n, \lambda) - F(u_n, y_n, \lambda)),$ and $z_0 = A_1(x_0) - \rho(p(x_0, \omega) - E(x_0, v_0, \omega)),$ $t_0 = A_2(y_0) - \varrho(h(y_0, \lambda) - F(u_0, y_0, \lambda))$. Note that for all $(\omega, \lambda) \in \Omega \times \Lambda$,

$$
\widetilde{\mathcal{H}}(G_{\rho,\varrho}(x_n,y_n,\omega,\lambda),G_{\rho,\varrho}(x_0,y_0,\omega,\lambda))\leq -\sigma \|(x_n,y_n)-(x_0,y_0)\|,
$$

It follows that

$$
d((x_0, y_0), G_{\rho, \varrho}(x_0, y_0, \omega, \lambda)) \leq ||(x_0, y_0) - (x_n, y_n)||
$$

+
$$
d((x_n, y_n), G_{\rho, \varrho}(x_n, y_n, \omega, \lambda))
$$

+
$$
\widetilde{\mathcal{H}}(G_{\rho, \varrho}(x_n, y_n, \omega, \lambda), G_{\rho, \varrho}(x_0, y_0, \omega, \lambda))
$$

$$
\leq (1 + \sigma) ||(x_n, y_n) - (x_0, y_0)||.
$$

Hence, we have $(x_0, y_0) \in G_{\rho, \rho}(x_0, y_0, \omega, \lambda)$ and $(x_0, y_0) \in Q(\omega, \lambda)$. Therefore $Q(\omega, \lambda)$ is a closed subset of $X_1 \times X_2$.

Theorem 4.4. Under the assumptions of Theorem 4.3, suppose that

- (i) for $x \in X_1, \omega \to S(x, \omega)$ is parametrically $\ell_S \widetilde{\mathcal{H}}$ -Lipschitz continuous (or continuous);
- (ii) for $y \in X_2, \lambda \to T(y, \lambda)$ is parametrically $\ell_T \widetilde{\mathcal{H}}$ -Lipschitz continuous (or continuous);
- (iii) for $x, z \in X_1, y, t \in X_2, \omega \to p(x, \omega), \omega \to E(x, y, \omega), \omega \to J_{\rho, A_1}^{M(\cdot, x, \omega)}$ $_{\rho,A_1}^{\rho,\mu_1(\cdot,x,\omega)}(z),$ $\lambda \to h(y,\lambda), \lambda \to F(x,y,\lambda)$ and $\lambda \to J_{\rho}^{N(\cdot,y,\lambda)}$ $\lim_{\varrho,A_2} \langle f, y, \lambda \rangle(t)$ are parametrically Lipschitz continuous (or continuous) with parametrically Lipschitz constants $\ell_p, \ell_E, \ell_{J_1}, \ell_h, \ell_F$ and ℓ_{J_2} , respectively.

Then the solution set $Q(\omega, \lambda)$ of problem (2.1) is parametrically Lipschitz continuous (or continuous) from $\Omega \times \Lambda$ to $X_1 \times X_2$.

Proof. From the assumptions of Theorem 4.3, for any $(\omega, \lambda), (\overline{\omega}, \overline{\lambda}) \in \Omega \times \wedge$, we know that $Q(\omega, \lambda)$ and $Q(\overline{\omega}, \overline{\lambda})$ are nonempty closed subsets of $X_1 \times X_2$. From the proof of Theorem 4.3, $G_{\rho,\rho}(x,y,\omega,\lambda)$ and $G_{\rho,\rho}(x,y,\overline{\omega},\overline{\lambda})$ are contractive mappings with same contractive constant $\sigma \in (0,1)$ and have fixed points $(x(\omega, \lambda), y(\omega, \lambda))$ and $(x(\overline{\omega}, \overline{\lambda}), y(\overline{\omega}, \overline{\lambda}))$, respectively. It follows from Lemma 3.12 and 4.2 that

$$
\mathcal{H}(Q(\omega,\lambda), Q(\overline{\omega},\overline{\lambda}))\n\leq \frac{1}{1-\sigma} \sup_{(x,y)\in X_1\times X_2} \widetilde{\mathcal{H}}(G_{\rho,\varrho}(x(\omega,\lambda), y(\omega,\lambda), \omega,\lambda), G_{\rho,\varrho}(x(\overline{\omega},\overline{\lambda}), y(\overline{\omega},\overline{\lambda}), \overline{\omega},\overline{\lambda})).
$$
\n(4.22)

Setting $(a_1, a_2) \in G_{\rho,\rho}(x(\omega,\lambda), y(\omega,\lambda), \omega, \lambda)$, then there exist $u(\omega, \lambda) \in S(x(\omega, \lambda), \omega)$, and $v(\omega, \lambda) \in T(y(\omega, \lambda), \lambda)$ such that

$$
a_1 = J_{\rho,A_1}^{M(\cdot,x(\omega,\lambda),\omega)}[A_1(x(\omega,\lambda)) - \rho(p(x(\omega,\lambda),\omega) - E(x(\omega,\lambda),v(\omega,\lambda),\omega))],
$$

\n
$$
a_2 = J_{\rho,A_2}^{N(\cdot,y(\omega,\lambda),\lambda)}[A_2(y(\omega,\lambda)) - \rho(h(y(\omega,\lambda),\lambda) - F(u(\omega,\lambda),y(\omega,\lambda),\lambda))].
$$

Since $S(x(\omega,\lambda),\omega), S(x(\overline{\omega},\overline{\lambda}),\overline{\omega}) \in CB(X_1)$ and $T(y(\omega,\lambda),\lambda), T(y(\overline{\omega},\overline{\lambda}),\overline{\lambda}) \in$ $CB(X_2)$, It follows from Nadler's Theorem [22] that there exist $u(\overline{\omega}, \overline{\lambda}) \in$

$$
S(x(\overline{\omega}, \overline{\lambda}), \overline{\omega}) \in CB(X_1), v(\overline{\omega}, \overline{\lambda}) \in T(y(\overline{\omega}, \overline{\lambda}), \overline{\lambda}) \in CB(X_2) \text{ such that}
$$

$$
||u(\omega, \lambda) - u(\overline{\omega}, \overline{\lambda})|| \leq \widetilde{\mathcal{H}}(S(x(\omega, \lambda), \omega), S(x(\overline{\omega}, \overline{\lambda}), \overline{\omega})),
$$

$$
||v(\omega, \lambda) - v(\overline{\omega}, \overline{\lambda})|| \leq \widetilde{\mathcal{H}}(T(y(\omega, \lambda), \lambda), T(y(\overline{\omega}, \overline{\lambda}), \overline{\lambda})).
$$
 (4.23)

Let

$$
b_1 = J_{\rho,A_1}^{M(\cdot,x(\overline{\omega},\overline{\lambda}),\overline{\omega})}[A_1(x(\overline{\omega},\overline{\lambda})) - \rho(p(x(\overline{\omega},\overline{\lambda}),\overline{\omega}) - E(x(\overline{\omega},\overline{\lambda}),v(\overline{\omega},\overline{\lambda}),\overline{\omega}))],
$$

\n
$$
b_2 = J_{\varrho,A_2}^{N(\cdot,y(\overline{\omega},\overline{\lambda}),\overline{\lambda})}[A_2(y(\overline{\omega},\overline{\lambda})) - \varrho(h(y(\overline{\omega},\overline{\lambda}),\overline{\lambda}) - F(u(\overline{\omega},\overline{\lambda}),y(\overline{\omega},\overline{\lambda}),\overline{\lambda}))].
$$

Then we have $(b_1, b_2) \in G_{\rho, \rho}(x(\overline{\omega}, \lambda), y(\overline{\omega}, \lambda), \overline{\omega}, \lambda)$. It follows from the assumptions on $J_{\rho A_1}^{M(\cdot,\cdot,\cdot)}$ $\mathcal{L}_{\rho,A_1}^{(N(\cdot,\cdot,\cdot)}, E, A_1, p \text{ and } T \text{ that}$

$$
||a_{1}-b_{1}||
$$
\n
$$
=||J_{\rho,A_{1}}^{M(\cdot,x(\omega,\lambda),\omega)}[A_{1}(x(\omega,\lambda))-\rho(p(x(\omega,\lambda),\omega)-E(x(\omega,\lambda),v(\omega,\lambda),\omega))]
$$
\n
$$
-J_{\rho,A_{1}}^{M(\cdot,x(\overline{\omega},\overline{\lambda}),\overline{\omega})}[A_{1}(x(\overline{\omega},\overline{\lambda}))-\rho(p(x(\overline{\omega},\overline{\lambda}),\overline{\omega})-E(x(\overline{\omega},\overline{\lambda}),v(\overline{\omega},\overline{\lambda}),\overline{\omega}))]]||
$$
\n
$$
\leq ||J_{\rho,A_{1}}^{M(\cdot,x(\overline{\omega},\overline{\lambda}),\omega)}[A_{1}(x(\omega,\lambda))-\rho(p(x(\omega,\lambda),\omega)-E(x(\omega,\lambda),v(\omega,\lambda),\omega))]
$$
\n
$$
-J_{\rho,A_{1}}^{M(\cdot,x(\overline{\omega},\overline{\lambda}),\omega)}[A_{1}(x(\overline{\omega},\overline{\lambda}))-\rho(p(x(\overline{\omega},\overline{\lambda}),\omega)-E(x(\overline{\omega},\overline{\lambda}),v(\overline{\omega},\overline{\lambda}),\omega))]]|
$$
\n
$$
+||J_{\rho,A_{1}}^{M(\cdot,x(\overline{\omega},\overline{\lambda}),\omega)}[A_{1}(x(\overline{\omega},\overline{\lambda}))-\rho(p(x(\overline{\omega},\overline{\lambda}),\omega)-E(x(\overline{\omega},\overline{\lambda}),v(\overline{\omega},\overline{\lambda}),\omega))]]|
$$
\n
$$
+||J_{\rho,A_{1}}^{M(\cdot,x(\overline{\omega},\overline{\lambda}),\overline{\omega})}[A_{1}(x(\overline{\omega},\overline{\lambda}))-\rho(p(x(\overline{\omega},\overline{\lambda}),\omega)-E(x(\overline{\omega},\overline{\lambda}),v(\overline{\omega},\overline{\lambda}),\omega))]]|
$$
\n
$$
+||J_{\rho,A_{1}}^{M(\cdot,x(\overline{\omega},\overline{\lambda}),\overline{\omega})}[A_{1}(x(\overline{\omega},\overline{\lambda}))-\rho(p(x(\overline{\omega},\overline{\lambda}),\omega)-E(x(\overline{\omega},\overline{\lambda}),v(\overline{\omega},\overline{\lambda}),\omega))]]|
$$
\n
$$
+||J_{\rho,A_{1}}^{M(\cdot,x(\overline{\omega},\overline{\lambda}),\
$$

where θ_1 and θ_1 are the constants of (4.14) and

$$
\chi_1 = \ell_{J_1} + \frac{\rho \tau_1^{q-1}(\ell_p + \ell_E)}{r_1 - \rho m_1}.
$$

Similarly, from the assumptions on $h, F, A_2, S, J_{\varrho,A_2}^{N(\cdot,\cdot,\cdot)}$, we have

$$
\|a_2 - b_2\|
$$
\n
$$
= \|J_{\varrho, A_2}^{N(\cdot, y(\omega, \lambda), \lambda)}[A_2(y(\omega, \lambda)) - \varrho(h(y(\omega, \lambda), \lambda) - F(u(\omega, \lambda), y(\omega, \lambda), \lambda))]
$$
\n
$$
- J_{\varrho, A_2}^{N(\cdot, y(\overline{\omega}, \overline{\lambda}), \overline{\lambda})}[A_2(y(\overline{\omega}, \overline{\lambda})) - \varrho(h(y(\overline{\omega}, \overline{\lambda}), \overline{\lambda}) - F(u(\overline{\omega}, \overline{\lambda}), y(\overline{\omega}, \overline{\lambda}), \overline{\lambda}))]\|
$$
\n
$$
\leq \|J_{\varrho, A_2}^{N(\cdot, y(\overline{\omega}, \overline{\lambda}), \lambda)}[A_2(y(\omega, \lambda)) - \varrho(h(y(\omega, \lambda), \lambda) - F(u(\omega, \lambda), y(\omega, \lambda), \lambda))]
$$
\n
$$
- J_{\varrho, A_2}^{N(\cdot, y(\overline{\omega}, \overline{\lambda}), \lambda)}[A_2(y(\overline{\omega}, \overline{\lambda})) - \varrho(h(y(\overline{\omega}, \overline{\lambda}), \lambda) - F(u(\overline{\omega}, \overline{\lambda}), y(\overline{\omega}, \overline{\lambda}), \lambda))]]|
$$
\n
$$
+ \|J_{\varrho, A_2}^{N(\cdot, y(\overline{\omega}, \overline{\lambda}), \lambda)}[A_2(y(\overline{\omega}, \overline{\lambda})) - \varrho(h(y(\overline{\omega}, \overline{\lambda}), \lambda) - F(u(\overline{\omega}, \overline{\lambda}), y(\overline{\omega}, \overline{\lambda}), \lambda))]]|
$$
\n
$$
+ \|J_{\varrho, A_2}^{N(\cdot, y(\overline{\omega}, \overline{\lambda}), \lambda)}[A_2(y(\overline{\omega}, \overline{\lambda})) - \varrho(h(y(\overline{\omega}, \overline{\lambda}), \lambda) - F(u(\overline{\omega}, \overline{\lambda}), y(\overline{\omega}, \overline{\lambda}), \lambda))]]|
$$
\n
$$
+ \|J_{\varrho, A_2}^{N(\cdot, y(\overline{\omega}, \overline{\lambda}), \lambda)}[A_2(y(\overline{\omega}, \overline{\lambda})) - \varrho(h(y(\overline{\omega}, \overline{\lambda}), \lambda) - F(u(\overline{\omega}, \overline{\lambda}), y(\overline{\omega}, \overline{\lambda}), \lambda))]]|
$$

where θ_2 and ϑ_2 are the constants of (4.20) and

$$
\chi_2 = \ell_{J_2} + \frac{\varrho \tau_2^{q-1} (\ell_h + \ell_F)}{r_2 - \rho m_2}.
$$

It follows from (4.24), (4.25) and (4.1) that

$$
||a_1 - b_1|| + ||a_2 - b_2|| \le (\theta_1 + \theta_2) ||x(\omega, \lambda) - x(\overline{\omega}, \overline{\lambda})||
$$

+ $(\vartheta_1 + \vartheta_2) ||y(\omega, \lambda) - y(\overline{\omega}, \overline{\lambda})||$
+ $\chi_1 ||\omega - \overline{\omega}|| + \chi_2 ||\lambda - \overline{\lambda}||$
 $\le \sigma (||a_1 - b_1|| + ||a_2 - b_2||) + \chi_1 ||\omega - \overline{\omega}|| + \chi_2 ||\lambda - \overline{\lambda}||,$

where σ is the constant of (4.21) which implies that

$$
||a_1 - b_1|| + ||a_2 - b_2|| \le \Theta(||\omega - \overline{\omega}|| + ||\lambda - \lambda||),
$$
 (4.26)

where

$$
\Theta = \frac{1}{1-\sigma} \max\{\chi_1, \chi_2\}.
$$

Hence from (4.26) we obtain

$$
\sup_{(a_1,a_2)\in G_{\rho,\varrho}(x,y,\omega,\lambda)} d((a_1,a_2),G_{\rho,\varrho}(x,y,\overline{\omega},\overline{\lambda})) \leq \Theta \|(\omega,\lambda)-(\overline{\omega},\overline{\lambda})\|.
$$

By using a similar argument as above, we get

$$
\sup_{(b_1,b_2)\in G_{\rho,\varrho}(x,y,\overline{\omega},\overline{\lambda})}d(G_{\rho,\varrho}(x,y,\omega,\lambda),(b_1,b_2))\leq \Theta\|(\omega,\lambda)-(\overline{\omega},\overline{\lambda})\|.
$$

It implies that

$$
\widetilde{\mathcal{H}}(G_{\rho,\varrho}(x,y,\omega,\lambda),G_{\rho,\varrho}(x,y,\overline{\omega},\overline{\lambda}))\leq \Theta\|(\omega,\lambda)-(\overline{\omega},\overline{\lambda})\|,
$$

for all $(x, y, \omega, \overline{\omega}, \lambda, \overline{\lambda}) \in X_1 \times X_2 \times \Omega \times \Omega \times \lambda \times \lambda$. Thus, it follows from (4.22) that

$$
\widetilde{\mathcal{H}}(Q(\omega,\lambda),Q(\overline{\omega},\overline{\lambda})) \leq \frac{\Theta}{1-\sigma} \|(\omega,\lambda)-(\overline{\omega},\overline{\lambda})\|.
$$

This proves that $Q(\omega, \lambda)$ is parametrically Lipschitz continuous in $(\omega, \lambda) \in$ $\Omega \times \Lambda$. If each operator with conditions (i) and (ii) is assumed to be continuous in $(\omega, \lambda) \in \Omega \times \Lambda$, then by similar argument as above, we show that $S(\omega)$ and $T(\lambda)$ are parametrically continuous in $(\omega, \lambda) \in \Omega \times \Lambda$.

Acknowledgement: This work was supported by the Kyungnam University Research Fund, 2016.

REFERENCES

- [1] R.P. Agarwal, N.J. Huang and M.Y. Tan, Sensitivity analysis for a new system of generalized nonlinear mixed quasi variational inclusions, Appl. Math. Lett., 17 (2004), 345–352.
- [2] G.A. Anastassiou, Salahuddin and M.K. Ahmad, Sensitivity analysis for generalized set valued variational inclusions, J. Concrete Appl. Math., 11(3-4) (2013), 292–302.
- [3] C. Baiocchia and A. Capelo, Variational and Quasi Variational Inequalities, Wiley, Neq York, 1984.
- [4] F.E. Browder, *Fixed point theory and nonlinear problems*, Proc. Symp. Pure Math., 39 (1980), 49–87.
- [5] H.W. Cao, Sensitivity analysis for a system of generalized nonlinear mixed quasi variational inclusions with H-monoton operators, J. Appl. Math., 2011 Article ID 92 1835 (2011).
- [6] S.S. Chang, H.W.J. Lee and C.K. Chan, Generalized system for relaxed cocoercive variational inequalities in Hilbert space, Applied Math. Lett., $20(3)$ (2007), 329–334.
- [7] S. Dafermos, Sensitivity analysis in variational inequalities, Math. Oper. Res., 13(3) (1988), 421–434.
- [8] X. P. Ding, Sensitivity analysis for a system of generalized mixed implicit equilibrium problems in uniformly smooth Banach spaces, Nonlinear Analysis, TMA, 73(5) (2010), 1264–1276.

- [9] K. Ding, Z.Q. He and J. Li, Sensitivity analysis for a new class of generalized strongly monlinear projection equations, Nonlinear Funct. Anal. Appl., 8(3) (2003), 423–431.
- [10] X.P. Ding and Z.B. Wang, Sensitivity analysis for a system of parametric generalized mixed quasi variational inclusions involving (K, η) -monotone mappings, Appl. Math. Comput., 214(1) (2009), 318–327.
- [11] Y.P. Fang and N.J. Huang, Iterative algorithm for a system of variational inclusions involving H-accretive operators in Banach spaces, Acta Math. Hung, $108(3)$ (2005), 183–195.
- [12] A. Farajzadeh and Salahuddin, Sensitivity analysis for nonlinear set valued variational equations in Banach frame work, J. Funct. Spaces and Appl. 2013 Article ID 258543 (2013).
- [13] J.U. Jeong, Sensitivity analysis for a system of generalized nonlinear mixed quasi variational inclusions in q-uniformly Banach spaces, Appl. Math. Comput., $202(1)$ (2008), 178–187.
- [14] M.M. Jin, Iterative algorithms for a new system of nonlinear variational inclusions with (A, η) -accretive mappings in Banach spaces, Comput. Math. Appl., 54 (2007), 579–588.
- [15] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalies and Their Applications, Academic Press, New York, 1980.
- [16] J.K. Kim, Sensitivity analysis for general nonlinear nonconvex set-valued variational inequalities in Banach spaces, Jour. of Comput. Anal. and Appl., 22(2) (2017), 327-335,
- [17] J.K. Kim, H.Y. Lan and Y.J. Cho, Solution sensitivity of generalized nonlinear parametric (A, η, m) -proximal operator system of equations in Hilbert spaces, J. Inequal. Appl., 2014, 2014:362.
- [18] H.Y. Lan, Nonlinear parametric multivalued variational inclusions systems involving (A, η) -accretive mappings in Banach spaces, Nonlinear Anal., 69(5-6) (2008), 1757– 1767.
- [19] H.Y. Lan, Y.J. Cho and R.U. Verma, On solution sensitivity of generalized relaxed cocoercive implicit quasi variational inclusions with A-monotone mappings, J. Comput. Anal Appl., 8(1) (2006), 75–89.
- [20] H.Y. Lan, Y.J. Cho and R.U. Verma, Nonlinear relaxed cocoercive variational inclusions involving (A, \cdot) -accretive mappings in Bamach spaces, Comput. Math. Appl., $51(9-10)$ (2006), 1529–1538.
- [21] T.C. Lim, On fixed point stability for set valued contractive mappings with applications to generalized differential equations, J. Math. Anal. Appl., 110(2) (1985), 436–441.
- [22] Jr.S.B. Nadler, Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475–488.
- [23] Salahuddin, Parametric generalized set valued variational inclusions and resolvent equations, J. Math. Anal. Appl., 298 (2004), 146-156.
- [24] R.U. Verma, Sensitivity analysis for relaxed cocoercive nonlinear quasi variational inclusions, J. Appl. Math. Stoch. Anal., 2006, Article ID 52041 (2006).
- [25] R.U. Verma, Role of A-monotonicity in sensitivity analysis for relaxed cocoercive nonlinear quasi variational inclusions and resolvent operator techniques, Nonlinear Funct. Anal. Appl., 11(4) (2006), 577–588.
- [26] H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16(12) (1991), 1127–1138.