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Abstract. In this work, we study the behaviour and sensitivity analysis of solution set for
a system of generalized nonlinear equations with parametricaly (A, n, m)-accretive mapping

in g-uniformly smooth Banach spaces.

1. INTRODUCTION

Nonlinear variational inequalities and variational inclusions are providing
mathematical models to some problems arising in optimization and controls,
economics and engineering sciences [3, 4, 15]. Sensitivity analysis for solutions
of variational inequalities with single-valued mappings have been studied by
many authors (see [7, 16]).

By using the resolvent operator techniques, Agarwal et al. [1], Jeong [13]
studied a new system of parametric generalized nonlinear mixed quasi vari-
ational inclusion in Hilbert spaces and in L,(p > 2) spaces, respectively. In
2008, using the concepts and techniques of resolvent operator, Lan [18] stud-
ied the behaviour and sensitivity analysis of solution set for a new system of
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generalized parametric variational inclusions with (A, n)-accretive mappings
in Banach spaces.

Recently Kim et al. [17] considered the methods of parametric (A,n, m)-
proximal operator to studied the behaviour and sensitivity analysis of the
solution set for a system of equations in Hilbert spaces.

In this work, we study the behaviour and sensitivity analysis of solution set
for a system of generalized nonlinear equations in g-uniformly smooth Banach
spaces. The present results improve and extend many results in the literatures.

2. BASIC FOUNDATION

Let X be a Banach space with dual space X* and (-, -) be the dual pairing
between X and X*, C'B(X) denotes the family of all nonempty closed bounded
subsets of X and 2% denote the family of all nonempty subset of X. The
generalized duality mapping J, : X — 2X" is defined by

Jo(z) = {z" € X* : {z,2") = |l]|%, ||| = [l2]|*7 } Yz € X,

where ¢ > 1 is a constant. In particular J = J; is called the normalized duality
mapping. It is well known that J; is single-valued if X™ is strictly convex and
that

Jo(x) = [l2][* Ja(w), ¥ # 0.
If X = H is a Hilbert space, then Jy becomes the identity mapping of H. The
modulus of smoothness of X is the function px : [0,00) — [0, 00) defined by

1
px)=sup {5 (o ol + o= i) =1 el < 1ol < 1}

A Banach space X is called uniformly smooth if

t

lim LX( )
t—0 ¢

X is called g-uniformly smooth if there exists a constant ¢ > 0 such that

px(t) <ct? g > 1.
Note that J, is single-valued if X is uniformly smooth. It is know that

=0.

p — uniformly smooth if 1 <p <0,

Ly(l,) or WP = ) )
2 — uniformly smooth if p > 2.

A Banach space X is said to be uniformly convex if given € > 0 there exists
0 > 0 such that for all z,y € X with [|z]| < 1,|ly]| <1 and ||z — y|| > e,

1
I3@+yll <1-5

It is well known that Ly, [, and Sobolev spaces W}, (1 < p < o) are uniformly
convex.



Solution sensitivity for a system of nonlinear equations 3

Lemma 2.1. Let r and s be two non negative real numbers. Then
(r+s)7 <29(r? + 7).
Proof.
(r+ )7 < (2max{r, s})? = 29 (max{r, s})? < 29(r? 4 s%).
O

Lemma 2.2. ([26]) A space X is q-uniformly smooth if and only if there exists
a constant ¢ > 0 such that for all x,y € X

Iz +yll* <[zl + ¢(y, dqg()) + cqllyll-

In this paper, we consider the following system of (A, n, m)-proximal oper-
ator equation systems. For each fixed (w,\) € Q x A finding (z,t), (z,y) €
X1 x Xg such that u € S(z,w),v € T'(y,\) and

_ M(-xw
#QWﬂ”&L)@=ﬂmw%

By, A) + 0 'Ry SPV (1) = Fu,y, ),

(2.1)

where (2 and A are two nonempty open subsets of g-uniformly smooth Banach
spaces in which the parameter w and X takes values, respectively.

S X1 xQ—=2% and T : Xy x A — 2%2 are set-valued mappings, F : X; x
Xox Q= X, F: Xox X1 xA—=Xo, f: X1 xQ—= X1,9: Xgx A — Xo,m:
XixX1xQ — X1,m2 : XoxXoxA — Xo,p: X1 xQ — Xjand h: Xox A\ — Xo
are nonlinear single-valued mappings, A1 : X7 — X1,4s : X9 — X5 are
mappings, M : X1 x X1 x Q — 2% is an (A, 1, my)-accretive mapping with
f(X1,w)NdomM(-, z,w) # 0 and for all (t,\) € Xo x A, N : X9 X X9 X A —
2X2 is an (Asg, 72, mo)-accretive mapping with g(Xa, A) N domN (-, ¢, ) # 0,
respectively.

M(-,z,w M(-,z,w N(-y,A N(-y,A
Rp,/(h =14 (Jp,fgl )) and RQ,I(‘Xzy =14 (Jw(lzy )> ’

where [ is an identity mapping.
M(-,x,w M(-,x,w N(-,y,A N(-,y,A\
Ay (@) = An () ), An (150 ®) = Az (150) 0
and R)07) = (A1 + pM (-, z,w) ™!, RYGYY = (A + oN(-,y,\)7! for all
z,z € X1,y,t € Xo,u € S(x,w),v € T(y,\) and (w,A) € Q X A.

For appropriate and suitable choice of E, F,M,N,S,T, f,qg,p, h, A;,n; and
X fori = 1,2, one see that problem (2.1) is a generalized version of some prob-
lems which includes a number (systems) of (parametric) quasi variational in-
clusions, (parametric) generalized quasi variational inclusions studied by many
authors as special cases (see [2, 5, 8, 9, 10, 12, 19, 23, 24, 25]).
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3. PRELIMINARIES

In the sequel, let A be a nonempty open subset of g-uniformly smooth
Banach space X in which the parameter A takes values.

Definition 3.1. Let A: X x A — X, n: X x X x A = X be single-valued
mappings. The mapping A is said to be

(i) parametrically accretive if
(A(z,N) — Ay, A), Jg(x —y)) >0, V,y € X, X € A;
(ii) parametrically strictly accretive if
(Az, A) = Ay, A), Jg(x —y)) = 0, x #y, Yo,y € X, A €N

(iii) parametrically ~-strongly accretive if

(A(z,A) = Ay, M), jg(z = y)) 2 ylle —yll?, Vo,y € X, A e N
(iv) parametrically r-strongly n-accretive if

(A, A) = Ay, A), dq(n(z, 9))) = rllz —yll?, Yo,y € X, A €A

Definition 3.2. A single-valued mapping 1 : X x X x A = X is said to be
parametrically 7-Lipschitz continuous if there exists a constant 7 > 0 such
that

In(z,y, M < [lz —yll, Yo,y € X, A € A
Definition 3.3. Let A: X xA — X, n: X x X X A — X be two single-valued
mappings. The set-valued mapping M : X x X x A — 2% is said to be
(i) parametrically m-relaxed n-accretive if there exists a constant m > 0
such that
(u=w,jq(n(z,y, X)) = —m|lz -yl

forall x,y € X,u € M(-,xz,\),v € M(-,y,\);
(ii) parametrically (A, n, m)-accretive if
(1) M is parametrically m-relaxed n-accretive mapping;
(2) (A4 pM)(X) = X for every p > 0.
Definition 3.4. A mapping T : X x X x A — X is said to be

(i) parametrically m-relaxed accretive in the first argument if there exists
a constant m > 0 such that

<T(.Z‘,U, )‘) - T(y,u,)\),jq(x - y)> > _me - qu7
for all (z,y,u,\) € X x X x X X A;
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(ii) parametrically s-cocoercive in the first argument if there exists a con-
stant s > 0 such that

<T($v u, >‘) - T(y’ u, A)va(x - y)) 2 SHT(LL‘, u, >‘) - T(y) u, )‘)qu
for all (z,y,u,A) € X x X x X X A;

(iii) parametrically «y-relaxed cocoercive with respect to A: X x A — X in
the first argument of 7" if there exists a constant v > 0 such that
(T(z,u, A) =T (y,u, A), jg(A(x) = A(y))) = =T (2, u, \) = T(y,u, A%,
for all (z,y,u,A) € X x X x X X A;

(iv) parametrically (7, «)-relaxed cocoercive with respect to A : X XA — X
in the first argument of T if there exists constants € > 0 and o > 0
such that
<T<LL‘, u, A) - T(ya u, )‘)7 jq(A(.%') - A(y))> > _’YHT(J’U u, )‘) - T(y? u, )\) Hq

+allA(z) — A(y)||,
for all (z,y,u,A) € X x X x X X A;

(v) parametrically p-Lipschitz continuous if there exists a constant p > 0
such that

1T (2, u, A) = T(y, u, N[ < pllz =y,
for all (z,y,u,A) € X x X x X x A.

Remark 3.5. When X = H is a real Hilbert space, then the Definition
3.1 reduces to the definition of parametrically monotonicity, parametrically
strict monotonicity and parametrically strong monotonicity with respect to
A, respectively (see [6, 14]).

Example 3.6. Let T : X XA — X be a parametrically nonexpansive mapping.
If we set F' = I — T where [ is an identity mapping, then F' is parametrically
%—cocoercive.

Proof. For any two elements x,y € X, A\ € A, we have

1F (2, A) = F(y, M)|]?

= |(I = T)(2,A) = (I = T)(y, M)|]?

I=T)(x,A) = (I =T)(y, A\, =T)(z,A\) — (I =T)(y,\)
Nz =yl = (z -y, T(z,X) = T(y, \)]

( =y, F(z,A) = F(y,\).

1

Hence F' is parametrically 5-cocoercive. O

2
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Example 3.7. Let C be a nonempty closed convex subset of X and a projec-
tion mapping P : X x A — C be a parametrically nonexpansive. Then P is
parametrically 1-cocoercive.

Proof. For any z,y € X, A € A, we have

Thus P is parametrically 1-cocoercive. Il
Example 3.8. A parametricaly r-strongly monotone (and hence parametri-

cally r-expanding) mapping 7 : X x A — X is parametrically (r-+72, 1)-relaxed
cocoercive with respect to I.

Proof. For any two elements x,y € X, A € X, we have
IT (2, A) = Ty, MII* =l —yll,
(T(x,A) = T(y, A),x —y) > r|z -yl
and so
HT(‘Ta A) - T(y7 )‘)HQ + <T(‘T7 A) - T(y7 )\),IE - y> > (T + TQ)”‘T - y||27
for all z,y € X, A € A. Hence, we have
<T({E7 )‘) - T(y7 )‘)7 T — y) > (_1)HT(:C7 )‘) - T(y7 A)Hz + (7’ + Tz)Hx - yH27
for all z,y € X, A € A. Therefore T is parametrically (r + 2, 1)-relaxed coco-

ercive with respect to I. O

Remark 3.9. Clearly every parametrically m-cocoercive mapping is paramet-
rically m-relaxed cocoercive while each parametrically r-strongly monotone
mapping is parametrically (r + r2, 1)-relaxed cocoercive with respect to I.

Definition 3.10. A mapping p: X x A — X is said to be
(i) parametrically J-strongly accretive with respect to the first argument
if there exists a constant ¢ € (0, 1) such that
(p(xv)‘) _p(yu )\),jq(fﬁ - y)> > 5”1‘ - qu,V%y € Xa AE A;
(ii) parametrically o-Lipschitz continuous with respect to the first argu-
ment if there exists a constant o > 0 such that

Hp(xa)\) _p(y7 >‘)H > O'H.’E - qu7 vxvy € X7)‘ e A.

Definition 3.11. Let F': X X A — 2% be a multi-valued mapping. Then F
is said to be parametricaly 7-H-Lipschitz continuous in the first argument if
there exists a constant 7 > 0 such that

H(F (2, ), F(y, A) < 7llz =y, Yo,y € X, A e A,
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where H : 2% x 2X - (=00, 400) U {400} is the Hausdorff metric i.e.,
H(A, B) = max {Sup inf ||z — y||, sup inf ||z — y”} VA, B € 2%,
z€AYEB z€BYEA

Lemma 3.12. ([21]) Let (X,d) be a complete metric space and T1,Ts : X —
CB(X) be two set-valued contractive mappings with same contractive constant
t € (0,1) i.e.,

H(Ti(x), Ti(y)) < td(z,y), Yo,y € X,i=1,2.
Then

H(F (T, F(TY) < —— sup AT (1), To(x)),
zeX

where F(T1) and F(Ty) are fixed point sets of T1 and Ts, respectively.

Lemma 3.13. Letn : X x X x A = X be a single-valued mapping. Let
A: X x AN — X be a parametrically r-strictly n-accretive mapping and M :
X x A — 2% be a parametrically (A, n)-accretive mapping. Then for a constant
p > 0, the parametric resolvent operator associated with A and M is defined
by

R(x) = (A+ pM)~!(z), Yz € X.

Note that R%;ln = (A+ pM)~!is a single-valued mapping. We remark that
M is a parametrically (A,n, m)-accretive mapping with respect to the first
argument for any fixed (z,\) € X x A, we define

RMC=NN (@) = (A4 pM(-,2, )" (@), Vo € D(M),
which is called a parametric resolvent operator associated with A and M (-, z, A).

Lemma 3.14. Let X be a qg-uniformly smooth Banach space, n: X X X XN\ —
X be a single-valued parametrically T-Lipschitz continuous mapping, A : X X
A — X be a parametrically r-strongly n-accretive mapping and M : X x X X
A — 2% be a parametrically (A, n,m)-accretive mapping. Then the parametric

resolvent operator RZ)WA" X = X s TT_q;m -Lipschitz continuous, i.e.,
M ) 7>\7 M ) 7)\7 Tq_l
B w) — By V)| < e =yl Yy € XA € A

In connection with the parametric (A, n, m)-proximal operator equation sys-
tems (2.1), we consider the following generalized parametric variational inclu-
sion systems: for each fixed (w,A) € @ x A finding (z,u) € X; x Xo,u €
S(x,w),veT(y,\) and

{0 € p(r,w) — E(z,v,w) + M(x,z,w),

0€h(y,\)— F(u,y,\) + N(y,y, \). (3:1)
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Now, for each fixed (w, A) € £ x A, the solution set Q(w, A) of problem (2.1)
is denoted by

Q(w,\) = {(z,t,:v,y) € X1 xXoxX1xXo:Ju € S(x,w),v € T(y,\) such that

_ M(-,zw
p(z,w) +p 1Rp71§1 )(z) = E(z,v,w) and

Py, )+ 0 RSPV () = Flu,y, \) |-

In this works, our aim is to study the behaviour of the solution set Q(w, \)
and the conditions on these operators T, S, F, E, M, N, p, h,n1, 12, A1, A2 under
which the function Q(w, ) is continuous or Lipschitz continuous with respect
to the parameter (w,A) € Q x A.

4. SENSITIVITY ANALYSIS FOR SOLUTION SETS

In the sequel, we first transfer the problem (3.1) into a problem of finding
parametric fixed point of the associated parametric (A, 7, m)-resolvent opera-
tor.

Lemma 4.1. For each fized (w,\) € Q x A, an elements (z,y) € Q(w, )
is a solution of problem (3.1) if and only if there are (z,y) € X1 x Xo,u €
S(z,w),v € T(y,\) such that

T = Rf)\fff(l.l,z,w) [A1(z) — p(p(z,w) — E(x,v,w))], (4.1)
NGy _
y = RYGUD[As(y) — olh(y, \) — Flu,y, \)],
where R, = (Ar4+pM (- 2,w)) ™ and Ry {2 = (Az+oN (.. N) ™" are

the corresponding parametric resolvent operator in the first argument of para-
metrically (A1, m)-accretive operator of M(-, -, ), parametric (Ag, n2)-accretive
operator of N(-,-,-), respectively, A; is a parametrically r;-strongly accretive
mapping for i = 1,2 and p, o > 0.

Proof. For each fixed (w, \) € Q x A, from the definition of the parametric re-
M Tyl — N X 7)‘
solvent operator Rp’f(hm W) (A1 +pM(-,z,w))~ ! of M(-,z,w) and RQM(L‘;” ) —
(A + oN(-,,A)) 7! of N(-,y, ), respectively, we know that there exists = €
X1,y € Xo,u € S(z,w),v € T(y,A) such that (3.1) holds if and only if

Al(x) - p(p(ac,w) - E(x,v,w)) € Al(x) + pM(x’wi)’
AQ(y) - Q(h(y7 )‘) - F(uvyv A)) € A?(y) + QN(yvyv A)

It follows from the definition of Q(w, ) that (x,y) € Q(w, A) is a solution of
problem (3.1) if and only if there exists (z,y) € X; x Xo,u € S(z,w),v €
T'(y, A) such that equations (4.1) holds. O

Now we prove that problem (2.1) is equivalent to problem (3.1).
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Lemma 4.2. Problem (2.1) has a solution (z,t,x,y,u,v) with v € S(z,w),
v € T(y,\) if and only if problem (3.1) has a solution (x,y,u,v) with u €
S(z,w),v € T(y,\), where

N(-y,A)

=Ry (), y = Ry 5 (1) (4:2)
and
2 = A1(2) — p(pl,w) — B, 0,0)),
t = Az(y) — o(h(y, \) = F(u,y, A)).
Proof. Let (z,y,u,v) with u € S(x,w),v € T(y,\) be a solution of problem

(3.1). Then from Lemma 4.1. it is a solution of the following system of

equations:

v = R0 A () — plp(z,w) — Bz, v,0))),

y =RV A () — o(h(y, A) — F(u,y, \)].

By using the fact R, ( zw) =1- Al(Jjﬁ'l’m’w)) Révﬁl;y’k) =1— A (Jé\ig;y’)‘))
and (4.1), we have

RPN A () — p(pl,w) — B(x,v,w))]
= [Ai(=) — p(p <x w) — B(z,v,w))]
— A (L0 A () - plp(e,w) — Bz, v,w))))

= A1<x> p(p(x,w) — B(w,v,w)) — A ()

—p(p(z,w) — B(w,v,w))
and
RNV 45(y) — o(h(y, N) — Fu,y,\)]
= Aa(y

) — o(h(y, A) — F(u,y,\))

— As(IN5E V[ As(y) — e(hly, A) — F(u,y,\)))

) —o(h(y,A) — F(u,y, ) — Az2(y)

= —o(h(y,\) — Flu,y,\))
which imply that

p,w) + p RS (2) = B(x,v,0),

By, N) + ¢ 'R UV (1) = Fu,y, A)
with
2= Ay(z) - pl(p(z, w) — E(x,v,w))

and
t= AQ(y) - Q(h(y7 )‘) - F(u7y7 )‘))
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That is, (z,t,z,y,u,v) with u € S(x,w),v € T(y,\) is a solution of problem
(2.1).

Conversely, letting (z,t, x,y, u,v) with u € S(z,w),v € T(y, A) is a solution
of problem (2.1), then

_ M(-,x,w
pla,w) = E(z,v,w) = —p ' RM059 (),

By, \) — F(u,y,\) = —0 'R GV (1),
plp(z,w) = E(z,v,0)] = =Ry (2) = A (L0059 (2)) - 2,
olh(y, ) — F(u,y, )] = —RY(#V (1) = 4,00V (1) — . (4.3)

It follows that (4.2) and (4.3) that

plp(z,w) — B(z,v,w)] = A1 (L4 (A (2) — pl(p(z, w) — B(x,v,w))))
— (@) + p(p(a, w) — E(x,v,0)),

Q[h(ya A) = F(u,y, A)] = AZ(Jé\,CEl;y7>\) (A2<y) —o(h(y,A) — F(u,y, A))))
- A2(y) + Q(h(ya >‘) - F(ua Y, )‘))’
which imply that

Ay(z) = A (V07 (A () - p(pla,w) — E(z,v,0))),

Aa(y) = Ao (TP (Aaly) — o(h(y, A) — Flu,y, \))).
Hence
z = I (A (@) — pp(a,w) — B(x,v,w))),
y = J00N (As(y) — oAy, N) — Flu,y,\)),

that is, (z,y,u,v) with u € S(z,w),v € T(y, A) is a solution of problem (3.1).
Alternative Proof. Let

z = Ay(x) - p(p(z,w) — E(z,v,w)),

t= AQ(y) - Q(h(y’ )‘) - F(u7y7 )‘))
Then by (4.2) we have

©T,w SYA
v = I (), g = Th ()
and .
2= M (I (2)) — plple,w) — Bz, v,w)),
t = As(INCIN (1)) = o(hly, N) — Flu,y,\).
Since

M(-,x,w M(-,x,w
AT (2) = AT (2)
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and
N(-,y,A Ny,
Ao N (0) = Aol i) @),
we have
1 pM(-z,w) o
p(a:,w) +p Rp,Al (Z) - E(m,v,w),
— YA
By, A) + 0 Ry SNV (1) = Flu,y,0),
which is required problem (2.1). =

From Lemma 4.1 and 4.2, we suggest the following sensitivity analysis re-
sults for the system of parametric (A, n, m)-proximal operator equations (2.1).

Theorem 4.3. Let A; : X; — X; be a parametrically r;-strongly accretive and
parametrically s;-Lipschitz continuous mapping for each i =1,2,5: X1 X {) —
CB(X1) be a parametrically ks — H-Lipschitz continuous mapping and T :
X9 x N = CB(X3) be a parametrically kp — ?q-Lipschitz continuous mapping.
Let M : X1 x X1 xQ — 251 pe parametrically (A1, n1)-accretive with constant
my in the first argument and N : Xo x Xo X A — 2%X2 be parametrically
(Ag,m2)-accretive with constant mo in the first argument. Let m : X1 x X3 X
Q — X3 be a parametrically To-Lipschitz continuous mapping, n2 : Xo X Xo X
A = Xo be a parametrically mo-Lipschitz continuous mapping, E : X7 x Xg X
Q — Xy be a parametrically Lipschitz continuous mapping with respect to
first argument with constant Bg > 0, second argument with respect to the
constant £g > 0 and parametrically (vg, ap)-relaxed cocoercive with respect to
Ay and first argument of E with constants yg > 0,ag > 0. Let p: X1 x 2 —
X1 be a parametrically Lipschitz continuous mapping with constant d, > 0
and parametrically (7yp, o) -relazed cocoercive with respect to Ay with constants
Vp,ap > 0. Let F': X1 X Xo x A = Xa be parametrically Lipschitz continuous
with respect to first and second argument with constants Bp, &, respectively.
Let h : Xo x A — Xo be parametrically Lipschitz continuous with constant
Op > 0 and parametrically (v, ap)-relaxed cocoercive with respect to Ay with
constants vy, > 0,ap > 0, respectively. Let F be a parametrically (vp,aF)-
relaxed cocoercive mapping with respect to As and second argument of F with
constants yr,ap > 0, respectively. If

05 () IOV ()] < won e~y V(@ y, 2,0) € X1 x X1 x X1 x€; (4.4)

TN (2) = INCPD ()| < val|lz—yl¥(x, v, 2, A) € Xox Xax X2 X A; (4.5)

with 0 < v; < 1 fori=1,2 and there exist constants p € (O, %) ,0 € (0, %)
such that
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{/ st — ap(si(ap — ap) — Wwop + YELE) + 29cep?(3f + BE)

q—1
<7 Yy — pma) (1 —y - 2 OO QﬁFﬁs) ; (4.6)

T2 — EMma

{/55 — qo(si(an — ap) — oL + Yr€L) + 29¢409(6] + £F)
qu_lprﬂT>

1—
<1y Urg—omo) |1 —vy—
r1— pmy

Then for each (w,\) € Q x A, the solution set Q(w,\) of problem (2.1) is a
nonempty and closed subset in X1 X Xo.

Proof. In the sequel from (4.1), we first define the operator ®, : X; x Xo x
Qx A — Xqpand ¥, X7 X Xo X Q x A= X5 as follows:

(i, y,w, \) = ot A (2) — p(p(e,w) — B, v,w))),

Wy(r,y,0,A) = SOV A (y) — o(h(y, A) — Flu,y,N)] (4.7)

for all (z,y,w, A) € X1 X Xa x Q x A. Now we define a norm || - ||; on X1 x Xo
by

Iz o)l = llzll + llyll V(z,y) € X1 x Xa.
It is well known that (X7 x Xo, | - ||1) is a Banach spaces [11]. For any given
p>0and p >0, define G : X; x X x Q x A = 2X1XX2 1y

GP,Q(xayaw7)‘) = {(Qp(x?yawa)\)a q/g($7y7wv)‘)) tu e S(w,w),v S T(yv A)}:
for all (z,y,w,\) € X1 x X3 x Q x A. Since S(z,w) € CB(X1),T(y,\) €

CB(X3),A1,As,m1,m2, E, F,p, h, J, élxw), ngg N are continuous, we have

Gpo(z,y,w,\) € CB(X1 x Xa).

Now for each fixed (w,\) € 2 x A, we show that G, ,(z,y,w, ) is a multi-
valued contractive mapping. In fact, for any (z,y,w,\),(Z,7y,w, ) € X1 X
Xo x Q x A and (a1, a2) € Gpo(z,y,w, ) there exists u € S(z,w),v € T(y, \)
such that
x’

al —J ww)[A1($ —p(p E(z,v,w))],

) (z,w) =
a2 = ‘]Q A;y’ [A2(y) - Q( (y> ) F(U,y,)\))]
Note that S(Z,w) € CB(X1),T(y,\) € CB(X3). It follows from Nadler’s
Theorem [22] that there exists u € S(7,w) € CB(X1),v € T(y,\) € CB(X32)
such that

>

Hu _ﬂ” < %(S(x,w),S(f,w)),
lo =3l <H(T(y,A), T(H, \)- (4.8)
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Setting
b = S0P A(@) — p(p(@ W) — BT, 7,w))],

bo = J0 Y [Aa(5) — o(h(5, ) — F (3,5, V),

then we have (b1,b2) € G, (T, 7, w, ). It follows from (4.4) and Lemma 3.14
that

lar — bl = 17C"[Ar(2) — plp(e,w) — E(z,v,w))
— I A(@) - plp(E,w) — BT, T,w)

< I AL () ~ plp(e,w) — Bz, v,w))

— I A (2) — plple,w) — Bz, 0,w)

+ M7 Ay (2) — plp(a, w) — E(x,v,w))]

— IMEPNAN(@) - p(p(T,w) — E@,7,w)]| (4.9)
qg—1
< uille =3l + - Av@) - Au(@) - plp(e,w) — ()

- E(IL’,U,W) + E(fvﬁ)w))n
q—1
< ville =3l + o Au@) - Au@) - plp(e,w) — ()

Tq_l
— E(z,v,w) + E(Z,v,w))| + 7p\|E($ v,w) — E(Z,7,w)].

Since E is parametrically Lipschitz continuous with respect to first and second
argument with constants Bg, g, respectively and T is parametrically kK — H-
Lipschitz continuous and p is a parametrically Lipschitz continuous mapping
with constant J, > 0 we have

[p(z,w) = p(T, w)|| < dpllz — 7], (4.10)
|E(z,v,w) — E(T,v,w)| < Bellz —T| (4.11)
and
1E(Z,v,w) — E(T,v,w)| < &pllv -
< e H(T(y, A, TG, )]
< &errlly =7 (4.12)

Again from Lemma 2.1, Lemma 2.2 [26], A; is parametrically s;-Lipschitz
continuous and p is a parametricaly (7p, op)-relaxed cocoercive mapping with
respect to A; and F is parametricaly (vg,ag)-relaxed cocoercive mapping
with respect to A; and first argument of F, and from (4.10)-(4.12) we have
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[A1(z) = A1(T) — p((p(z,w) = p(T,w)) = (E(z,v,w) = E(T,v,w)))|
< [JAr(z) — A (@)
—4p{(p(z,w) = p(T,w)) = (E(z,v,0) = E(T,v,0)), jq(A1(z) — A1(T)))
+ ¢l (p(z,w) = p(T,w)) = (E(z,v,w) — E(T,v,w))|
< [JAr(z) = @) = gp(p(z,w) = p(T,w), Jo(Ar(z) — A1(T)))
+qp(E(z,0,0) = E(T,v,0), jq(A1(z) — A1(7)))
+2%cp? [[Ip(z, w) = p(T, W) |* + | E(2,0,0) = E(T,v,w)]|]
< sille —2[7 = ap(=llp(z, w) = p@, W) + || Ar () — Ar()]7)
+ap(—EelE(r,v,0) = E@,v,0)[|! + ap|Ai(z) — A1 (Z)]|7)
+ 20cqp [0fllw — 7| + B llw — 7]
< sille — 2|7 — ap(—opllz — T + apsille — z7)
+ap(—veBglle — 7|7 + apsille —T|7) + 2%cp? [0F + BE] [l — 7|7
< [s1 — ap(s{(ap — ap) — W0} + 786E) + 2%cep? (5] + BE)] Iz — ||

Hence we have

[A1(z) — A1(Z) — p((p(z,w) — p(T,w)) — (B(z,v,w) — E(T,v,w)))|
< /51— ap(siap — a) — 188 + 1B + 20c,p(5) + )|l — 7. (4.13)

Combining (4.9)-(4.13), we have

llar — b1

< vz -7

q—1
7_ J—
T /st qp(s¥(ap — o) — 10+ 1mBh) + 2ieopt(5] + BL) o — ]
T — pmy
7t
—L——ptprrlly — 7|
rL— pmy
< O1flz —z[| + V1 lly — yll, (4.14)
where
q—1
-
0 =vi + rl—lipml ‘\Z/s'f — qp(si(op — ap) — Wop + YEBE) + 29cqp?(0p + BE)
and
q—1
-
V1 = ———p€EkT.

r1L— pma
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Similarly from the assumptions of S, A, F, h, Lemma 3.1 and Lemma 3.2 [26],
we have

laz = bal = |70 5V [Aa(y) — o(h(y, A) — F(u,y, \))
— TNV Ay () — o(h(F, ) — F@.g,\)
<INV As(y) — oy, A) — Flu,,A))]

— TN Aa(y) — o(h(y, A) — Flu,y, V)|

+ 1INV [As(y) — o(hly, A) — Flu,y, N))]

— IV A7) — o(h(F, ) — F, )]

<l 1+ Ay) — 425) oA )~ h Y
~ FluyX) + FE, 7))

< vally =9l + ;q;\lAz( ) = A2(7) — o(h(y, A) — h(F, A)
~ FluyX) + Pl )

q—1
T2

r2 — ema

]
|

+ ol F(u, 7, A) — F(u,y,\)|. (4.15)

Similarly F'is parametrically Lipschitz continuous with respect to first and sec-
ond argument with constants Sr, £ and S is parametrically kg — ﬁ—Lipschitz
continuous and h is a parametrically Lipschitz continuous mapping with con-
stant d, > 0, we have

17y, A) = 1y, M| < dnlly = ¥lI, (4.16)

[1F (W, y, A) — F(@,7,\)| <&rlly -7l (4.17)

and

1E(u,y,A) = F(w,y, || < Brllu -l

< ﬁpﬁ(S(:E, w)v S(f7w))”
< Brrslz — 7. (4.18)

Again from Lemma 2.1, Lemma 2.2 [26], Ay is parametricaly so-Lipschitz
continuous and h is a parametrically (-, ap)-relaxed cocoercive mapping with
respect to Ag and F' is a parametrically (v, ap)-relaxed cocoercive mapping
with respect to A2 and second argument, and from (4.16)-(4.17), we have
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[A2(y) — A2(7) — o((h(y, A) — h(", A)) — (F(u,y, A) — F(u, 7, M)
< || A2(y) — A2()||
—qo((h(y, A) = (@, A)) — (F(u,y,A) = F(u, 7, N)), §q(A2(y) — A2(7)))
+cq0|(h(y, A) = h(g,N) = (F(u,y, ) = F(u,7,\))||
<[ A2(y) — A2@? — qo{(h(y, A) = h(Y, N)), jq(A2(y) — A2(¥)))
+ qo(F(u,y, \) — F(u, 7, ), jq(A2(y) — A2(7)))
+ 2940 [|h(y, A) = R(G, V|| + || F(uw, y, A) = F(u,5,A)||]
< sslly = 7ll? = qo(—mlh(y, A) — h(@, M9 + anlA2(y) — A2(7)[|9)
+ qo(—vr||F (u, y, A) — F'(u, 7, \)[|7 + ar| A2(y) — A2(@)[|9)
+ 27,07 (07 ly — FI|7 + £ lly — 71|7]
< sslly =7l — qo(—mIilly — gll? + cnsslly — 7l
+ qo(—rflly =l + arsilly — 719 + 29,07 [6] + &5] ly — 7l
< [s3 — qo(s3(an — ar) — 6} +vrEh) + 29¢,07 (67 + 1) ] lly — |2

Hence, we have

[42(y) — A1 (H) = o((h(y, A) = h(F, A)) — (F'(u,y, A) = F(u, 5, M)
< {/S% — qo(sj(an — ap) — Wby +YréE) + 29cq01(6; + Ex)lly — 7l (4.19)

Combining (4.15)-(4.19), we have

llag — ba|

< vy -7
q—1

T _
+ P— {’/53 —qo(s3(an — ap) — o) +YrER) + 29¢,07(0) + ) ly — 7|

a1
—2——pBrrg|r — 7|
g — M2
< Oollz —Z|| + V2lly — ¥, (4.20)

where

-1
Tq

Uy =vg + P {/8% — qo(s3(an — ar) =y + YrER) + 29c407(5), + &)

and
q—1
.
o = —=——0BFKs.
T2 — 02
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It follows from (4.14) and (4.20) that

a1 — bl + [Jaz — ba|| < (61 + O2)[|x —Z| + (91 + D2)[ly — V|

o([le =zl + lly = yll), (4.21)

IA A

where o = max{6; + 02,91 + ¥2}. From conditions (4.6), we know that o < 1.
Hence from (4.21), we get

d ) 7G 7777 7A - .f _b —"_ _b
((a1,a2), Gy o(T, 7, w, A)) (bl,b2)€égg(§’y’wm(\\a1 1l + [laz — bal])

< —oll(z,y) — @Y.

Since (a1,a2) € Gpo(x,y,w, A) is arbitrary, we obtain

sup d((a’17 a’2)7 GP’Q(E? Y, w, )‘)) < —O'”(ZE, y) - (Ea y)”
(a17a2)€GPaQ(l’7y7w1>‘)

By the same argument we can prove

sup d((b1,b2), Gpo(z,y,w,N)) < —0of(z,y) — (Z,7)].
(b1,02)E€G), o (Z,7,w,\)

It follows from the definition of Hausdorff metric H on CB (X7 x X9) that

H(prg(xvyawaA)’ GPyQ(T? Y,w, )‘)) < _O-H(l‘ay) - (Ta y)”

for all (z,7,w) € X1 x X1 xQ, (y,7,A) € Xox Xg XA, that is, G, ,(x,y,w, A) is
a multi-valued contractive mapping which is uniform with respect to (w, \) €
Q x A. By the fixed point theorem of Nadler [22], for each (w,\) € Q X
N, Gpo(x,y,w,A) has a fixed point (z(w),y(N)) € X1 x X, that is, (z,y) €
Gpo(x,y,w,\). By the definition of G, there exists u € S(z,w),v € T(y,\)
such that (4.1) holds. Thus it follows from Lemma 4.1 that (z,y,u,v) with
u € S(x,w),v € T(y,A) is a solution of problem (3.1). Hence from Lemma
4.2 that (z,t,2,y,u,v) with u € S(z,w),v € T(y,A) is a solution of (3.1).
Therefore Q(w, \) # 0 for all (w,\) € Q x A. Next, we prove the closedness
of the solution set Q(w, ). For each (w,\) € Q x A, let {(zn,tn, Tn,yn)} C
Q(w, ) and z,, — 20, tn — to, Ty, — To,Yn — Yo as n — 0o. Then we know that
there exist u, € S(xn,w),vn € T(yYn, A) and (n, yn) € Gpo(Tn, Yn,w, A), 2n =
A1($n) - P(p(CUnaw) - E(xn,vn,w)),tn = A2(yn) - Q(h(yn7 )\) - F(una Yn, A)),
and zp = Aj(x0) — p(p(zo,w) — E(x0,v0,w)),

to = A2(yo) — o(h(yo, A) — F(uo,y0, \)). Note that for all (w,\) € Q x A,

H(Gp,g(xnv Yn, W, A)'} Gp,g(x():yvaa A)) S _UH(xn7yTL) - (.%'(), yO)”:
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It follows that

d((z0,90), Gp,o(z0, yo,w, X)) < [[(zo, yo) = (@, yn)|
+ d((zn, Yn)s Gpo(Tn, Yn,w, A))
—I—ﬁ(Gp@(xn,yn,w,)\),Gp,g(zo,yo,w,)\))
< (1 +0)[[(@n, yn) — (o, yo) I

Hence, we have (xq,y0) € Gp,o(20,Y0,w, A) and (z9,%0) € Q(w, ). Therefore
Q(w, ) is a closed subset of X1 x Xo. O

Theorem 4.4. Under the assumptions of Theorem 4.3, suppose that
(i) forz € X1,w — S(x,w) is parametrically s — H-Lipschitz continuous
(or continuous);
(ii) fory e Xo, A\ — T(y, A) is parametrically {p — H-Lipschitz continuous
(or continuous);

(iii) forz,z € X1,y,t € Xo,w = p(z,w),w — E(z,y,w )w%J%lzw)(z),

A = h(y,\), N = F(z,y,\) and A\ — Jgjg;y’)‘)(t) are parametrically
Lipschitz continuous (or continuous) with parametrically Lipschitz con-
stants Uy, Lp, Ly, lh, Lr and £ ,, respectively.
Then the solution set Q(w, A) of problem (2.1) is parametrically Lipschitz con-
tinuous (or continuous) from Q x A to X1 x Xo.

Proof. From the assumptions of Theorem 4.3, for any (w, \), (0, ) € QX A, we
know that Q(w, \) and Q(@, \) are nonempty closed subsets of X1 x Xo. From
the proof of Theorem 4.3, G o(z,y,w, ) and G, ,(x,y,w, ) are contractive
mappings with same contractive constant ¢ € (0,1) and have fixed points
(z(w, \),y(w, \)) and (z(w, \),y(w, \)), respectively. It follows from Lemma
3.12 and 4.2 that

H(Q(w, \), Q@, X))

1 ~ _ _ _

<7 sup H(Gpo(x(w, A), y(w, N),w, X), Gpo(x(@, ), y(w, A),w, N)).
-0 (x,y)GXl X Xo

(4.22)

Setting (a1, a2) € Gpo(x(w, A),y(w, A),w, A), then there exist
u(w, ) € S(z(w,N),w), and v(w, \) € T'(y(w, \), \) such that
),

a1 = IO A (2(0,A) — p(pla(w, ), w) — Bz(w, A), v(w, A),w))],

az = IV [y (w, N) — o(h(y(w, A), A) = Fu(w, A), y(w, X), A))].

Since S(x(w, \),w), S(z(@,\),w) € CB(X;) and T(y(w, ), \), T(y(@, X),})
CB(X3), It follows from Nadler’s Theorem [22] that there exist u(w,\)
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Sy (@,A),A — Y — T\ Y =Y (= X)X
by = Ty YV [Aa(y(@. ) — e(h(y(@, %), %) — F(u@, %), y(@,A), ).
Then we have (b1, b2) € G, ,(z(@, \), y(@, A),w, A). It follows from the assump-
tions on Jé\ﬁ;"'), E,A{,p and T that

lax — b
= [N A (2w, A) = pp(a(w, N, w) — E(z(w, A),v(w, X),w))]
Jjﬁf”’@ [A1(2(@, ) = p(p(x(@, ), ®) — E(z(@, X), v(@, X),@))]|
) )
) )

— IIEEND 4y (2@, X)) — plp(e(@, N),w) — E(z(@,X), 0@, X))l
+ 2T END Ay (2@, X)) - plp(a(@, V), w) — E(z(@, X), v(@, A),w))]

P
— IFEND 4, (@@, X)) — plp(a(@,X), @) — Be@,N), v@, 1), @)
< 01|z(w, A) — 2@, V)| + W1 y(w, A) — y@, V]| + £, | — D]
q—1
(@, 3), )~ p(e(@,2),9)]

HIE((@, ), 0@, \),w) = Ez(@, A), v(@, A), )]

< Orflz(w, A) — 2@, N[ + d1lly(w, A) —y@ M| + £y [lw =3

q—1
oyl — @l + el — @)
< Oilla(w. X) = 2@ D) + Al ) —v@ N +xalle ~zl, (424)

where 01 and ¥, are the constants of (4.14) and

Pﬁqil(ep +{p)

X1 = €J1 +
— pm1
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)

Similarly, from the assumptions on h, F, As, S, Jg,g.;’ , we have
laz — ba||
, )A
= 17257V g (y(w, A)) = o(hly(w, A), A) = F(u(w, ), y(w, ), \)

)

—%ﬁ““&”mmeX»—mm<wX>

< JIVGEEIN 4y (y(w, A)) — o(h(y(w, A),
)

—Jﬁﬂ“ﬁ”mxm@X>—mmm

o,

)

A) = F(u(@, A), y(@, ), M)
A) = F(u(w, A),y(w,A), A))]

7X)7)\ )

&l

+ [ INCVENN A (y(@, X)) — o(h(y@,N), A) — F(u(@, X), y(@, X), A)]
— JNCIENN A (@, N)) — olh(y(@, N), A) — F(u@, V), y(@, 1), V)|

0,42

)
TN END 4 (@, X)) — olh(y(@, ), A) — F(u(@, 3), y(@, 3), \))]

— JNCVENN Ay (y(@, ) — o(hly(@, X), N) — Flu(@, N), y(@, 2), V)]l
< sl (w, A) — (@, V)| + Paly(w, A) — y(@, V)| + LA = A
qg—1
22 [ln(y(@, X), A) — hy(@,2), |
T2 oma
+ [ F (u(@, N, y(@, N, A) = F(u(@, N, y(@, 2), M|
< Oal|z(w, A) — (@, M) + V2 ly(w, A) — y(@, V)| + Ly [|A = A
1y - -
+ 7’22—7@”2 [zhH)\ — M+ Lp||X - )\”]
< Oal|z(w, N) — (@, M) + P2l y(w, A) — y(@, )| + xallA = Al (4.25)

where 05 and ¥ are the constants of (4.20) and
ord (b + tr)
re —pmy
It follows from (4.24), (4.25) and (4.1) that
Jar = ball + laz — bol| < (81 + 83) (. ) — 2(@. )]
+ (01 + 92) [y (w, 2) -y (@, V)
+x1llw — @)+ xallA 3]
< ol — bul+ flaz = bol) + xa ke =31+ xlA = A,

X2 :EJQ +

where o is the constant of (4.21) which implies that
lla = bu]| + llag = bal| < O(|lw = | + A = Al (4.26)
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where .
0=— .
o max{x1, X2}
Hence from (4.26) we obtain

sSup d((a17 a2)7 GPyQ(xa Y, W, X)) < @H (wv )‘) - (w7 X) H
(a1,a2)€G), o(x,y,w,\)

By using a similar argument as above, we get

sup  d(Gpe(z,y,w,A), (b, 02)) < O|(w, A) — (@, N)]-
(bl,b2)er,g(x,y,D,)\)

It implies that
H(G o, 5,0, N), G o, 3,3, X)) < O|(w, A) — @, N,

for all (x,y,w,w, A\, ) € X1 x Xo x 2 x Qx A x A. Thus, it follows from (4.22)
that

HQ( ), Q@ N) < 0w, )~ @ V)|

This proves that Q(w,\) is parametrically Lipschitz continuous in (w,\) €
Qx A. If each operator with conditions (7) and (4¢) is assumed to be continuous
in (w,\) € 2 x A, then by similar argument as above, we show that S(w) and
T'(X) are parametrically continuous in (w, \) € Q x A. O
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