
Nonlinear Functional Analysis and Applications
Vol. 22, No. 1 (2017), pp. 1–22

ISSN: 1229-1595(print), 2466-0973(online)

http://nfaa.kyungnam.ac.kr/journal-nfaa
Copyright c© 2017 Kyungnam University Press

KUPress

SOLUTION SENSITIVITY FOR A SYSTEM OF
GENERALIZED NONLINEAR EQUATIONS

IN BANACH SPACES

Jong Kyu Kim1 and Salahuddin2

1Department of Mathematics Educaion
Kyungnam University, Changwon, Gyeongnam, 51767, Korea

e-mail: jongkyuk@kyungnam.ac.kr

2Department of Mathematics
Jazan University, Jazan, Kingdom of Saudi Arabia

e-mail: salahuddin12@mailcity.com

Abstract. In this work, we study the behaviour and sensitivity analysis of solution set for

a system of generalized nonlinear equations with parametricaly (A, η,m)-accretive mapping

in q-uniformly smooth Banach spaces.

1. Introduction

Nonlinear variational inequalities and variational inclusions are providing
mathematical models to some problems arising in optimization and controls,
economics and engineering sciences [3, 4, 15]. Sensitivity analysis for solutions
of variational inequalities with single-valued mappings have been studied by
many authors (see [7, 16]).

By using the resolvent operator techniques, Agarwal et al. [1], Jeong [13]
studied a new system of parametric generalized nonlinear mixed quasi vari-
ational inclusion in Hilbert spaces and in Lp(p ≥ 2) spaces, respectively. In
2008, using the concepts and techniques of resolvent operator, Lan [18] stud-
ied the behaviour and sensitivity analysis of solution set for a new system of
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generalized parametric variational inclusions with (A, η)-accretive mappings
in Banach spaces.

Recently Kim et al. [17] considered the methods of parametric (A, η,m)-
proximal operator to studied the behaviour and sensitivity analysis of the
solution set for a system of equations in Hilbert spaces.

In this work, we study the behaviour and sensitivity analysis of solution set
for a system of generalized nonlinear equations in q-uniformly smooth Banach
spaces. The present results improve and extend many results in the literatures.

2. Basic Foundation

Let X be a Banach space with dual space X∗ and 〈·, ·〉 be the dual pairing
between X and X∗, CB(X) denotes the family of all nonempty closed bounded
subsets of X and 2X denote the family of all nonempty subset of X. The
generalized duality mapping Jq : X → 2X

∗
is defined by

Jq(x) =
{
x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖q, ‖x∗‖ = ‖x‖q−1

}
∀x ∈ X,

where q > 1 is a constant. In particular J = J2 is called the normalized duality
mapping. It is well known that Jq is single-valued if X∗ is strictly convex and
that

Jq(x) = ‖x‖q−2J2(x), ∀x 6= 0.

If X = H is a Hilbert space, then J2 becomes the identity mapping of H. The
modulus of smoothness of X is the function ρX : [0,∞)→ [0,∞) defined by

ρX(t) = sup

{
1

2
(‖x+ y‖+ ‖x− y‖)− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t

}
.

A Banach space X is called uniformly smooth if

lim
t→0

ρX(t)

t
= 0.

X is called q-uniformly smooth if there exists a constant c > 0 such that

ρX(t) ≤ ctq, q > 1.

Note that Jq is single-valued if X is uniformly smooth. It is know that

Lp(lp) or W p
m =

{
p− uniformly smooth if 1 < p < 0,

2− uniformly smooth if p ≥ 2.

A Banach space X is said to be uniformly convex if given ε > 0 there exists
δ > 0 such that for all x, y ∈ X with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε,

‖1

2
(x+ y)‖ ≤ 1− δ.

It is well known that Lp, lp and Sobolev spaces W p
m(1 < p <∞) are uniformly

convex.
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Lemma 2.1. Let r and s be two non negative real numbers. Then

(r + s)q ≤ 2q(rq + sq).

Proof.

(r + s)q ≤ (2 max{r, s})q = 2q(max{r, s})q ≤ 2q(rq + sq).

�

Lemma 2.2. ([26]) A space X is q-uniformly smooth if and only if there exists
a constant cq > 0 such that for all x, y ∈ X

‖x+ y‖q ≤ ‖x‖q + q〈y, jq(x)〉+ cq‖y‖q.

In this paper, we consider the following system of (A, η,m)-proximal oper-
ator equation systems. For each fixed (ω, λ) ∈ Ω × ∧ finding (z, t), (x, y) ∈
X1 ×X2 such that u ∈ S(x, ω), v ∈ T (y, λ) and{

p(x, ω) + ρ−1R
M(·,x,ω)
ρ,A1

(z) = E(x, v, ω),

h(y, λ) + %−1R
N(·,y,λ)
%,A2

(t) = F (u, y, λ),
(2.1)

where Ω and ∧ are two nonempty open subsets of q-uniformly smooth Banach
spaces in which the parameter ω and λ takes values, respectively.
S : X1×Ω→ 2X1 and T : X2×∧ → 2X2 are set-valued mappings, E : X1×

X2×Ω→ X1, F : X2×X1×∧ → X2, f : X1×Ω→ X1, g : X2×∧ → X2, η1 :
X1×X1×Ω→ X1, η2 : X2×X2×∧ → X2, p : X1×Ω→ X1 and h : X2×∧ → X2

are nonlinear single-valued mappings, A1 : X1 → X1, A2 : X2 → X2 are
mappings, M : X1 ×X1 ×Ω→ 2X1 is an (A1, η1,m1)-accretive mapping with
f(X1, ω) ∩ domM(·, z, ω) 6= ∅ and for all (t, λ) ∈ X2 × ∧, N : X2 ×X2 × ∧ →
2X2 is an (A2, η2,m2)-accretive mapping with g(X2, λ) ∩ domN(·, t, λ) 6= ∅,
respectively.

R
M(·,x,ω)
ρ,A1

= I −A1

(
J
M(·,x,ω)
ρ,A1

)
and R

N(·,y,λ)
%,A2

= I −A2

(
J
N(·,y,λ)
%,A2

)
,

where I is an identity mapping.

A1

(
J
M(·,x,ω)
ρ,A1

(z)
)

= A1

(
J
M(·,x,ω)
ρ,A1

)
(z), A2

(
J
N(·,y,λ)
%,A2

(t)
)

= A2

(
J
N(·,y,λ)
%,A2

)
(t)

and R
M(·,x,ω)
ρ,A1

= (A1 + ρM(·, x, ω))−1, R
N(·,y,λ)
%,A2

= (A2 + %N(·, y, λ))−1 for all

x, z ∈ X1, y, t ∈ X2, u ∈ S(x, ω), v ∈ T (y, λ) and (ω, λ) ∈ Ω× ∧.

For appropriate and suitable choice of E,F,M,N, S, T, f, g, p, h,Ai, ηi and
Xi for i = 1, 2, one see that problem (2.1) is a generalized version of some prob-
lems which includes a number (systems) of (parametric) quasi variational in-
clusions, (parametric) generalized quasi variational inclusions studied by many
authors as special cases (see [2, 5, 8, 9, 10, 12, 19, 23, 24, 25]).
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3. Preliminaries

In the sequel, let ∧ be a nonempty open subset of q-uniformly smooth
Banach space X in which the parameter λ takes values.

Definition 3.1. Let A : X × ∧ → X, η : X × X × ∧ → X be single-valued
mappings. The mapping A is said to be

(i) parametrically accretive if

〈A(x, λ)−A(y, λ), jq(x− y)〉 ≥ 0, ∀x, y ∈ X,λ ∈ ∧;

(ii) parametrically strictly accretive if

〈A(x, λ)−A(y, λ), jq(x− y)〉 = 0, x 6= y,∀x, y ∈ X,λ ∈ ∧;

(iii) parametrically γ-strongly accretive if

〈A(x, λ)−A(y, λ), jq(x− y)〉 ≥ γ‖x− y‖q, ∀x, y ∈ X,λ ∈ ∧;

(iv) parametrically r-strongly η-accretive if

〈A(x, λ)−A(y, λ), jq(η(x, y))〉 ≥ r‖x− y‖q, ∀x, y ∈ X,λ ∈ ∧.

Definition 3.2. A single-valued mapping η : X ×X × ∧ → X is said to be
parametrically τ -Lipschitz continuous if there exists a constant τ > 0 such
that

‖η(x, y, λ)‖ ≤ ‖x− y‖, ∀x, y ∈ X,λ ∈ ∧.

Definition 3.3. Let A : X×∧ → X, η : X×X×∧ → X be two single-valued
mappings. The set-valued mapping M : X ×X × ∧ → 2X is said to be

(i) parametrically m-relaxed η-accretive if there exists a constant m > 0
such that

〈u− v, jq(η(x, y, λ))〉 ≥ −m‖x− y‖q,

for all x, y ∈ X,u ∈M(·, x, λ), v ∈M(·, y, λ);
(ii) parametrically (A, η,m)-accretive if

(1) M is parametrically m-relaxed η-accretive mapping;
(2) (A+ ρM)(X) = X for every ρ > 0.

Definition 3.4. A mapping T : X ×X × ∧ → X is said to be

(i) parametrically m-relaxed accretive in the first argument if there exists
a constant m > 0 such that

〈T (x, u, λ)− T (y, u, λ), jq(x− y)〉 ≥ −m‖x− y‖q,

for all (x, y, u, λ) ∈ X ×X ×X × ∧;



Solution sensitivity for a system of nonlinear equations 5

(ii) parametrically s-cocoercive in the first argument if there exists a con-
stant s > 0 such that

〈T (x, u, λ)− T (y, u, λ), jq(x− y)〉 ≥ s‖T (x, u, λ)− T (y, u, λ)‖q,

for all (x, y, u, λ) ∈ X ×X ×X × ∧;
(iii) parametrically γ-relaxed cocoercive with respect to A : X ×∧ → X in

the first argument of T if there exists a constant γ > 0 such that

〈T (x, u, λ)−T (y, u, λ), jq(A(x)−A(y))〉 ≥ −γ‖T (x, u, λ)−T (y, u, λ)‖q,

for all (x, y, u, λ) ∈ X ×X ×X × ∧;
(iv) parametrically (γ, α)-relaxed cocoercive with respect to A : X×∧ → X

in the first argument of T if there exists constants ε > 0 and α > 0
such that

〈T (x, u, λ)− T (y, u, λ), jq(A(x)−A(y))〉 ≥ −γ‖T (x, u, λ)− T (y, u, λ)‖q

+ α‖A(x)−A(y)‖q,

for all (x, y, u, λ) ∈ X ×X ×X × ∧;
(v) parametrically µ-Lipschitz continuous if there exists a constant µ > 0

such that

‖T (x, u, λ)− T (y, u, λ)‖ ≤ µ‖x− y‖,

for all (x, y, u, λ) ∈ X ×X ×X × ∧.

Remark 3.5. When X = H is a real Hilbert space, then the Definition
3.1 reduces to the definition of parametrically monotonicity, parametrically
strict monotonicity and parametrically strong monotonicity with respect to
A, respectively (see [6, 14]).

Example 3.6. Let T : X×∧ → X be a parametrically nonexpansive mapping.
If we set F = I − T where I is an identity mapping, then F is parametrically
1
2 -cocoercive.

Proof. For any two elements x, y ∈ X,λ ∈ ∧, we have

‖F (x, λ)− F (y, λ)‖2

= ‖(I − T )(x, λ)− (I − T )(y, λ)‖2

= 〈(I − T )(x, λ)− (I − T )(y, λ), (I − T )(x, λ)− (I − T )(y, λ)〉
≤ 2[‖x− y‖2 − 〈x− y, T (x, λ)− T (y, λ)〉]
= 2〈x− y, F (x, λ)− F (y, λ)〉.

Hence F is parametrically 1
2 -cocoercive. �
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Example 3.7. Let C be a nonempty closed convex subset of X and a projec-
tion mapping P : X × ∧ → C be a parametrically nonexpansive. Then P is
parametrically 1-cocoercive.

Proof. For any x, y ∈ X,λ ∈ ∧, we have

‖P (x, λ)− P (y, λ)‖2 = 〈P (x, λ)− P (y, λ), P (x, λ)− P (y, λ)〉
≤ 〈x− y, P (x, λ)− P (y, λ)〉.

Thus P is parametrically 1-cocoercive. �

Example 3.8. A parametricaly r-strongly monotone (and hence parametri-
cally r-expanding) mapping T : X×∧ → X is parametrically (r+r2, 1)-relaxed
cocoercive with respect to I.

Proof. For any two elements x, y ∈ X,λ ∈ X, we have

‖T (x, λ)− T (y, λ)‖2 ≥ r‖x− y‖,

〈T (x, λ)− T (y, λ), x− y〉 ≥ r‖x− y‖2

and so

‖T (x, λ)− T (y, λ)‖2 + 〈T (x, λ)− T (y, λ), x− y〉 ≥ (r + r2)‖x− y‖2,
for all x, y ∈ X,λ ∈ ∧. Hence, we have

〈T (x, λ)− T (y, λ), x− y〉 ≥ (−1)‖T (x, λ)− T (y, λ)‖2 + (r + r2)‖x− y‖2,
for all x, y ∈ X,λ ∈ ∧. Therefore T is parametrically (r + r2, 1)-relaxed coco-
ercive with respect to I. �

Remark 3.9. Clearly every parametrically m-cocoercive mapping is paramet-
rically m-relaxed cocoercive while each parametrically r-strongly monotone
mapping is parametrically (r + r2, 1)-relaxed cocoercive with respect to I.

Definition 3.10. A mapping p : X × ∧ → X is said to be

(i) parametrically δ-strongly accretive with respect to the first argument
if there exists a constant δ ∈ (0, 1) such that

〈p(x, λ)− p(y, λ), jq(x− y)〉 ≥ δ‖x− y‖q, ∀x, y ∈ X,λ ∈ ∧;

(ii) parametrically σ-Lipschitz continuous with respect to the first argu-
ment if there exists a constant σ > 0 such that

‖p(x, λ)− p(y, λ)‖ ≥ σ‖x− y‖q, ∀x, y ∈ X,λ ∈ ∧.

Definition 3.11. Let F : X × ∧ → 2X be a multi-valued mapping. Then F

is said to be parametricaly τ -H̃-Lipschitz continuous in the first argument if
there exists a constant τ > 0 such that

H̃(F (x, λ), F (y, λ)) ≤ τ‖x− y‖, ∀x, y ∈ X,λ ∈ ∧,
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where H̃ : 2X × 2X → (−∞,+∞) ∪ {+∞} is the Hausdorff metric i.e.,

H̃(A,B) = max

{
sup
x∈A

inf
y∈B
‖x− y‖, sup

x∈B
inf
y∈A
‖x− y‖

}
, ∀A,B ∈ 2X .

Lemma 3.12. ([21]) Let (X, d) be a complete metric space and T1, T2 : X →
CB(X) be two set-valued contractive mappings with same contractive constant
t ∈ (0, 1) i.e.,

H̃(Ti(x), Ti(y)) ≤ td(x, y), ∀x, y ∈ X, i = 1, 2.

Then

H̃(F (Ti), F (Ti)) ≤
1

1− t
sup
x∈X
H̃(T1(x), T2(x)),

where F (T1) and F (T2) are fixed point sets of T1 and T2, respectively.

Lemma 3.13. Let η : X × X × ∧ → X be a single-valued mapping. Let
A : X × ∧ → X be a parametrically r-strictly η-accretive mapping and M :
X×∧ → 2X be a parametrically (A, η)-accretive mapping. Then for a constant
ρ > 0, the parametric resolvent operator associated with A and M is defined
by

RM,η
ρ,A (x) = (A+ ρM)−1(x), ∀x ∈ X.

Note that RM,η
ρ,A = (A+ ρM)−1 is a single-valued mapping. We remark that

M is a parametrically (A, η,m)-accretive mapping with respect to the first
argument for any fixed (z, λ) ∈ X × ∧, we define

R
M(·,z,λ),η
ρ,A (x) = (A+ ρM(·, z, λ))−1(x), ∀x ∈ D(M),

which is called a parametric resolvent operator associated withA andM(·, z, λ).

Lemma 3.14. Let X be a q-uniformly smooth Banach space, η : X×X×∧ →
X be a single-valued parametrically τ -Lipschitz continuous mapping, A : X ×
∧ → X be a parametrically r-strongly η-accretive mapping and M : X ×X ×
∧ → 2X be a parametrically (A, η,m)-accretive mapping. Then the parametric

resolvent operator RM,η
ρ,A : X → X is τq−1

r−ρm -Lipschitz continuous, i.e.,

‖RM(·,z,λ),η
ρ,A (x)−RM(·,z,λ),η

ρ,A (y)‖ ≤ τ q−1

r − ρm
‖x− y‖, ∀x, y ∈ X,λ ∈ ∧.

In connection with the parametric (A, η,m)-proximal operator equation sys-
tems (2.1), we consider the following generalized parametric variational inclu-
sion systems: for each fixed (ω, λ) ∈ Ω × ∧ finding (x, u) ∈ X1 × X2, u ∈
S(x, ω), v ∈ T (y, λ) and{

0 ∈ p(x, ω)− E(x, v, ω) +M(x, x, ω),

0 ∈ h(y, λ)− F (u, y, λ) +N(y, y, λ).
(3.1)
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Now, for each fixed (ω, λ) ∈ Ω×∧, the solution set Q(ω, λ) of problem (2.1)
is denoted by

Q(ω, λ) =
{

(z, t, x, y) ∈ X1×X2×X1×X2 : ∃u ∈ S(x, ω), v ∈ T (y, λ) such that

p(x, ω) + ρ−1R
M(·,x,ω)
ρ,A1

(z) = E(x, v, ω) and

h(y, λ) + %−1R
N(·,y,λ)
%,A2

(t) = F (u, y, λ)
}
.

In this works, our aim is to study the behaviour of the solution set Q(ω, λ)
and the conditions on these operators T, S, F,E,M,N, p, h, η1, η2, A1, A2 under
which the function Q(ω, λ) is continuous or Lipschitz continuous with respect
to the parameter (ω, λ) ∈ Ω× ∧.

4. Sensitivity Analysis for Solution sets

In the sequel, we first transfer the problem (3.1) into a problem of finding
parametric fixed point of the associated parametric (A, η,m)-resolvent opera-
tor.

Lemma 4.1. For each fixed (ω, λ) ∈ Ω × ∧, an elements (x, y) ∈ Q(ω, λ)
is a solution of problem (3.1) if and only if there are (x, y) ∈ X1 × X2, u ∈
S(x, ω), v ∈ T (y, λ) such that{

x = R
M(·,x,ω)
ρ,A1

[A1(x)− ρ(p(x, ω)− E(x, v, ω))],

y = R
N(·,y,λ)
%,A2

[A2(y)− %(h(y, λ)− F (u, y, λ))],
(4.1)

where R
M(·,x,ω)
ρ,A1

= (A1+ρM(·, x, ω))−1 and R
N(·,y,λ)
%,A2

= (A2+%N(·, y, λ))−1 are
the corresponding parametric resolvent operator in the first argument of para-
metrically (A1, η1)-accretive operator of M(·, ·, ·), parametric (A2, η2)-accretive
operator of N(·, ·, ·), respectively, Ai is a parametrically ri-strongly accretive
mapping for i = 1, 2 and ρ, % > 0.

Proof. For each fixed (ω, λ) ∈ Ω×∧, from the definition of the parametric re-

solvent operator R
M(·,x,ω)
ρ,A1

= (A1 +ρM(·, x, ω))−1 of M(·, x, ω) and R
N(·,y,λ)
%,A2

=

(A2 + %N(·, y, λ))−1 of N(·, y, λ), respectively, we know that there exists x ∈
X1, y ∈ X2, u ∈ S(x, ω), v ∈ T (y, λ) such that (3.1) holds if and only if{

A1(x)− ρ(p(x, ω)− E(x, v, ω)) ∈ A1(x) + ρM(x, x, ω),

A2(y)− %(h(y, λ)− F (u, y, λ)) ∈ A2(y) + %N(y, y, λ).

It follows from the definition of Q(ω, λ) that (x, y) ∈ Q(ω, λ) is a solution of
problem (3.1) if and only if there exists (x, y) ∈ X1 × X2, u ∈ S(x, ω), v ∈
T (y, λ) such that equations (4.1) holds. �

Now we prove that problem (2.1) is equivalent to problem (3.1).
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Lemma 4.2. Problem (2.1) has a solution (z, t, x, y, u, v) with u ∈ S(x, ω),
v ∈ T (y, λ) if and only if problem (3.1) has a solution (x, y, u, v) with u ∈
S(x, ω), v ∈ T (y, λ), where

x = R
M(·,x,ω)
ρ,A1

(z), y = R
N(·,y,λ)
%,A2

(t) (4.2)

and
z = A1(x)− ρ(p(x, ω)− E(x, v, ω)),

t = A2(y)− %(h(y, λ)− F (u, y, λ)).

Proof. Let (x, y, u, v) with u ∈ S(x, ω), v ∈ T (y, λ) be a solution of problem
(3.1). Then from Lemma 4.1. it is a solution of the following system of
equations:

x = R
M(·,x,ω)
ρ,A1

[A1(x)− ρ(p(x, ω)− E(x, v, ω))],

y = R
N(·,y,λ)
%,A2

[A2(y)− %(h(y, λ)− F (u, y, λ))].

By using the fact R
M(·,x,ω)
ρ,A1

= I − A1(J
M(·,x,ω)
ρ,A1

), R
N(·,y,λ)
%,A2

= I − A2(J
N(·,y,λ)
%,A2

)

and (4.1), we have

R
M(·,x,ω)
ρ,A1

[A1(x)− ρ(p(x, ω)− E(x, v, ω))]

= [A1(x)− ρ(p(x, ω)− E(x, v, ω))]

−A1(J
M(·,x,ω)
ρ,A1

[A1(x)− ρ(p(x, ω)− E(x, v, ω))])

= A1(x)− ρ(p(x, ω)− E(x, v, ω))−A1(x)

= −ρ(p(x, ω)− E(x, v, ω))

and

R
N(·,y,λ)
%,A2

[A2(y)− %(h(y, λ)− F (u, y, λ))]

= A2(y)− %(h(y, λ)− F (u, y, λ))

−A2(J
N(·,y,λ)
%,A2

[A2(y)− %(h(y, λ)− F (u, y, λ))])

= A2(y)− %(h(y, λ)− F (u, y, λ))−A2(y)

= −%(h(y, λ)− F (u, y, λ))

which imply that

p(x, ω) + ρ−1R
M(·,x,ω)
ρ,A1

(z) = E(x, v, ω),

h(y, λ) + %−1R
N(·,y,λ)
%,A2

(t) = F (u, y, λ)

with
z = A1(x)− ρ(p(x, ω)− E(x, v, ω))

and
t = A2(y)− %(h(y, λ)− F (u, y, λ)).
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That is, (z, t, x, y, u, v) with u ∈ S(x, ω), v ∈ T (y, λ) is a solution of problem
(2.1).

Conversely, letting (z, t, x, y, u, v) with u ∈ S(x, ω), v ∈ T (y, λ) is a solution
of problem (2.1), then

p(x, ω)− E(x, v, ω) = −ρ−1RM(·,x,ω)
ρ,A1

(z),

h(y, λ)− F (u, y, λ) = −%−1RN(·,y,λ)
%,A2

(t),

ρ[p(x, ω)− E(x, v, ω)] = −RM(·,x,ω)
ρ,A1

(z) = A1(J
M(·,x,ω)
ρ,A1

(z))− z,

%[h(y, λ)− F (u, y, λ)] = −RN(·,y,λ)
%,A2

(t) = A2(J
N(·,y,λ)
%,A2

(t))− t. (4.3)

It follows that (4.2) and (4.3) that

ρ[p(x, ω)− E(x, v, ω)] = A1(J
M(·,x,ω)
ρ,A1

(A1(x)− ρ(p(x, ω)− E(x, v, ω))))

−A1(x) + ρ(p(x, ω)− E(x, v, ω)),

%[h(y, λ)− F (u, y, λ)] = A2(J
N(·,y,λ)
%,A2

(A2(y)− %(h(y, λ)− F (u, y, λ))))

−A2(y) + %(h(y, λ)− F (u, y, λ)),

which imply that

A1(x) = A1(J
M(·,x,ω)
ρ,A1

(A1(x)− ρ(p(x, ω)− E(x, v, ω)))),

A2(y) = A2(J
N(·,y,λ)
%,A2

(A2(y)− %(h(y, λ)− F (u, y, λ)))).

Hence

x = J
M(·,x,ω)
ρ,A1

(A1(x)− ρ(p(x, ω)− E(x, v, ω))),

y = J
N(·,y,λ)
%,A2

(A2(y)− %(h(y, λ)− F (u, y, λ))),

that is, (x, y, u, v) with u ∈ S(x, ω), v ∈ T (y, λ) is a solution of problem (3.1).
Alternative Proof. Let

z = A1(x)− ρ(p(x, ω)− E(x, v, ω)),

t = A2(y)− %(h(y, λ)− F (u, y, λ)).

Then by (4.2) we have

x = J
M(·,x,ω)
ρ,A1

(z), y = J
N(·,y,λ)
%,A2

(t)

and

z = A1(J
M(·,x,ω)
ρ,A1

(z))− ρ(p(x, ω)− E(x, v, ω)),

t = A2(J
N(·,y,λ)
%,A2

(t))− %(h(y, λ)− F (u, y, λ)).

Since

A1(J
M(·,x,ω)
ρ,A1

(z)) = A1(J
M(·,x,ω)
ρ,A1

)(z)
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and

A2(J
N(·,y,λ)
%,A2

(t)) = A2(J
N(·,y,λ)
%,A2

)(t),

we have

p(x, ω) + ρ−1R
M(·,x,ω)
ρ,A1

(z) = E(x, v, ω),

h(y, λ) + %−1R
N(·,y,λ)
%,A2

(t) = F (u, y, λ),

which is required problem (2.1). �

From Lemma 4.1 and 4.2, we suggest the following sensitivity analysis re-
sults for the system of parametric (A, η,m)-proximal operator equations (2.1).

Theorem 4.3. Let Ai : Xi → Xi be a parametrically ri-strongly accretive and
parametrically si-Lipschitz continuous mapping for each i = 1, 2, S : X1×Ω→
CB(X1) be a parametrically κS − H̃-Lipschitz continuous mapping and T :

X2×∧ → CB(X2) be a parametrically κT −H̃-Lipschitz continuous mapping.
Let M : X1×X1×Ω→ 2X1 be parametrically (A1, η1)-accretive with constant
m1 in the first argument and N : X2 × X2 × ∧ → 2X2 be parametrically
(A2, η2)-accretive with constant m2 in the first argument. Let η1 : X1 ×X1 ×
Ω→ X1 be a parametrically τ2-Lipschitz continuous mapping, η2 : X2 ×X2 ×
∧ → X2 be a parametrically τ2-Lipschitz continuous mapping, E : X1 ×X2 ×
Ω → X1 be a parametrically Lipschitz continuous mapping with respect to
first argument with constant βE > 0, second argument with respect to the
constant ξE > 0 and parametrically (γE , αE)-relaxed cocoercive with respect to
A1 and first argument of E with constants γE > 0, αE > 0. Let p : X1 × Ω→
X1 be a parametrically Lipschitz continuous mapping with constant δp > 0
and parametrically (γp, αp)-relaxed cocoercive with respect to A1 with constants
γp, αp ≥ 0. Let F : X1 ×X2 ×∧ → X2 be parametrically Lipschitz continuous
with respect to first and second argument with constants βF , ξF , respectively.
Let h : X2 × ∧ → X2 be parametrically Lipschitz continuous with constant
δh > 0 and parametrically (γh, αh)-relaxed cocoercive with respect to A2 with
constants γh > 0, αh > 0, respectively. Let F be a parametrically (γF , αF )-
relaxed cocoercive mapping with respect to A2 and second argument of F with
constants γF , αF > 0, respectively. If

‖JM(·,x,ω)
ρ,A1

(z)−JM(·,y,ω)
ρ,A1

(z)‖ ≤ υ1‖x−y‖∀(x, y, z, ω) ∈ X1×X1×X1×Ω; (4.4)

‖JN(·,x,λ)
%,A2

(z)−JN(·,y,λ)
%,A2

(z)‖ ≤ υ2‖x−y‖∀(x, y, z, λ) ∈ X2×X2×X2×∧; (4.5)

with 0 < υi < 1 for i = 1, 2 and there exist constants ρ ∈
(

0, r1m1

)
, % ∈

(
0, r2m2

)
such that
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q

√
s21 − qρ(sq1(αp − αE)− γpδqp + γEβ

q
E) + 2qcqρq(δ

q
p + βqE)

< τ1−q1 (r1 − ρm1)

(
1− υ1 −

τ q−12 %βFκS
r2 − %m2

)
, (4.6)

q

√
s22 − q%(sq2(αh − αF )− γhδqh + γF ξ

q
F ) + 2qcq%q(δ

q
h + ξqF )

< τ1−q2 (r2 − %m2)

(
1− υ2 −

τ q−11 ρξEκT
r1 − ρm1

)
Then for each (ω, λ) ∈ Ω × ∧, the solution set Q(ω, λ) of problem (2.1) is a
nonempty and closed subset in X1 ×X2.

Proof. In the sequel from (4.1), we first define the operator Φρ : X1 × X2 ×
Ω× ∧ → X1 and Ψ% : X1 ×X2 × Ω× ∧ → X2 as follows:

Φρ(x, y, ω, λ) = J
M(·,x,ω)
ρ,A1

[A1(x)− ρ(p(x, ω)− E(x, v, ω))],

Ψ%(x, y, ω, λ) = J
N(·,y,λ)
%,A2

[A2(y)− %(h(y, λ)− F (u, y, λ))] (4.7)

for all (x, y, ω, λ) ∈ X1×X2×Ω×∧. Now we define a norm ‖ · ‖1 on X1×X2

by
‖(x, y)‖1 = ‖x‖+ ‖y‖ ∀(x, y) ∈ X1 ×X2.

It is well known that (X1 ×X2, ‖ · ‖1) is a Banach spaces [11]. For any given
ρ > 0 and % > 0, define G : X1 ×X2 × Ω× ∧ → 2X1×X2 by

Gρ,%(x, y, ω, λ) = {(Φρ(x, y, ω, λ),Ψ%(x, y, ω, λ)) : u ∈ S(x, ω), v ∈ T (y, λ)} ,
for all (x, y, ω, λ) ∈ X1 × X2 × Ω × ∧. Since S(x, ω) ∈ CB(X1), T (y, λ) ∈
CB(X2), A1, A2, η1, η2, E, F, p, h, J

M(·,x,ω)
ρ,A1

, J
N(·,x,λ)
%,A2

are continuous, we have

Gρ,%(x, y, ω, λ) ∈ CB(X1 ×X2).

Now for each fixed (ω, λ) ∈ Ω× ∧, we show that Gρ,%(x, y, ω, λ) is a multi-
valued contractive mapping. In fact, for any (x, y, ω, λ), (x, y, ω, λ) ∈ X1 ×
X2 ×Ω×∧ and (a1, a2) ∈ Gρ,%(x, y, ω, λ) there exists u ∈ S(x, ω), v ∈ T (y, λ)
such that

a1 = J
M(·,x,ω)
ρ,A1

[A1(x)− ρ(p(x, ω)− E(x, v, ω))],

a2 = J
N(·,y,λ)
%,A2

[A2(y)− %(h(y, λ)− F (u, y, λ))].

Note that S(x, ω) ∈ CB(X1), T (y, λ) ∈ CB(X2). It follows from Nadler’s
Theorem [22] that there exists u ∈ S(x, ω) ∈ CB(X1), v ∈ T (y, λ) ∈ CB(X2)
such that

‖u− u‖ ≤ H̃(S(x, ω), S(x, ω)),

‖v − v‖ ≤ H̃(T (y, λ), T (y, λ)). (4.8)
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Setting

b1 = J
M(·,x,ω)
ρ,A1

[A1(x)− ρ(p(x, ω)− E(x, v, ω))],

b2 = J
N(·,y,λ)
%,A2

[A2(y)− %(h(y, λ)− F (u, y, λ))],

then we have (b1, b2) ∈ Gρ,%(x, y, ω, λ). It follows from (4.4) and Lemma 3.14
that

‖a1 − b1‖ = ‖JM(·,x,ω)
ρ,A1

[A1(x)− ρ(p(x, ω)− E(x, v, ω))]

− JM(·,x,ω)
ρ,A1

[A1(x)− ρ(p(x, ω)− E(x, v, ω))]‖

≤ ‖JM(·,x,ω)
ρ,A1

[A1(x)− ρ(p(x, ω)− E(x, v, ω))]

− JM(·,x,ω)
ρ,A1

[A1(x)− ρ(p(x, ω)− E(x, v, ω))]‖

+ ‖JM(·,x,ω)
ρ,A1

[A1(x)− ρ(p(x, ω)− E(x, v, ω))]

− JM(·,x,ω)
ρ,A1

[A1(x)− ρ(p(x, ω)− E(x, v, ω))]‖ (4.9)

≤ υ1‖x− x‖+
τ q−11

r1 − ρm1
‖A1(x)−A1(x)− ρ(p(x, ω)− p(x, ω)

− E(x, v, ω) + E(x, v, ω))‖

≤ υ1‖x− x‖+
τ q−11

r1 − ρm1
‖A1(x)−A1(x)− ρ(p(x, ω)− p(x, ω)

− E(x, v, ω) + E(x, v, ω))‖+
τ q−11

r1 − ρm1
ρ‖E(x, v, ω)− E(x, v, ω)‖.

Since E is parametrically Lipschitz continuous with respect to first and second

argument with constants βE , ξE , respectively and T is parametrically κT −H̃-
Lipschitz continuous and p is a parametrically Lipschitz continuous mapping
with constant δp > 0 we have

‖p(x, ω)− p(x, ω)‖ ≤ δp‖x− x‖, (4.10)

‖E(x, v, ω)− E(x, v, ω)‖ ≤ βE‖x− x‖ (4.11)

and

‖E(x, v, ω)− E(x, v, ω)‖ ≤ ξE‖v − v‖

≤ ξEH̃(T (y, λ), T (y, λ))‖
≤ ξEκT ‖y − y‖. (4.12)

Again from Lemma 2.1, Lemma 2.2 [26], A1 is parametrically s1-Lipschitz
continuous and p is a parametricaly (γp, αp)-relaxed cocoercive mapping with
respect to A1 and E is parametricaly (γE , αE)-relaxed cocoercive mapping
with respect to A1 and first argument of E, and from (4.10)-(4.12) we have
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‖A1(x)−A1(x)− ρ((p(x, ω)− p(x, ω))− (E(x, v, ω)− E(x, v, ω)))‖q

≤ ‖A1(x)−A1(x)‖q

− qρ〈(p(x, ω)− p(x, ω))− (E(x, v, ω)− E(x, v, ω)), jq(A1(x)−A1(x))〉
+ cqρ

q‖(p(x, ω)− p(x, ω))− (E(x, v, ω)− E(x, v, ω))‖q

≤ ‖A1(x)−A1(x)‖q − qρ〈p(x, ω)− p(x, ω), jq(A1(x)−A1(x))〉
+ qρ〈E(x, v, ω)− E(x, v, ω), jq(A1(x)−A1(x))〉
+ 2qcqρ

q [‖p(x, ω)− p(x, ω)‖q + ‖E(x, v, ω)− E(x, v, ω)‖q]
≤ sq1‖x− x‖

q − qρ(−γp‖p(x, ω)− p(x, ω)‖q + αp‖A1(x)−A1(x)‖q)
+ qρ(−γE‖E(x, v, ω)− E(x, v, ω)‖q + αE‖A1(x)−A1(x)‖q)
+ 2qcqρ

q
[
δqp‖x− x‖q + βqE‖x− x‖

q
]

≤ sq1‖x− x‖
q − qρ(−γpδqp‖x− x‖q + αps

q
1‖x− x‖

q)

+ qρ(−γEβqE‖x− x‖
q + αEs

q
1‖x− x‖

q) + 2qcqρ
q
[
δqp + βqE

]
‖x− x‖q

≤
[
sq1 − qρ(sq1(αp − αE)− γpδqp + γEβ

q
E) + 2qcqρ

q(δqp + βqE)
]
‖x− x‖q.

Hence we have

‖A1(x)−A1(x)− ρ((p(x, ω)− p(x, ω))− (E(x, v, ω)− E(x, v, ω)))‖

≤ q

√
sq1 − qρ(sq1(αp − αE)− γpδqp + γEβ

q
E) + 2qcqρq(δ

q
p + βqE)‖x− x‖. (4.13)

Combining (4.9)-(4.13), we have

‖a1 − b1‖
≤ υ1‖x− x‖

+
τ q−11

r1 − ρm1

q

√
sq1 − qρ(sq1(αp − αE)− γpδqp + γEβ

q
E) + 2qcqρq(δ

q
p + βqE)‖x− x‖

+
τ q−11

r1 − ρm1
ρξEκT ‖y − y‖

≤ θ1‖x− x‖+ ϑ1‖y − y‖, (4.14)

where

θ1 = υ1 +
τ q−11

r1 − ρm1

q

√
sq1 − qρ(sq1(αp − αE)− γpδqp + γEβ

q
E) + 2qcqρq(δ

q
p + βqE)

and

ϑ1 =
τ q−11

r1 − ρm1
ρξEκT .
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Similarly from the assumptions of S,A2, F, h, Lemma 3.1 and Lemma 3.2 [26],
we have

‖a2 − b2‖ = ‖JN(·,y,λ)
%,A2

[A2(y)− %(h(y, λ)− F (u, y, λ))]

− JN(·,y,λ)
%,A2

[A2(y)− %(h(y, λ)− F (u, y, λ))]‖

≤ ‖JN(·,y,λ)
%,A2

[A2(y)− %(h(y, λ)− F (u, y, λ))]

− JN(·,y,λ)
%,A2

[A2(y)− %(h(y, λ)− F (u, y, λ))]‖

+ ‖JN(·,y,λ)
%,A2

[A2(y)− %(h(y, λ)− F (u, y, λ))]

− JN(·,y,λ)
%,A2

[A2(y)− %(h(y, λ)− F (u, y, λ))]‖

≤ υ2‖y − y‖+
τ q−12

r2 − %m2
‖A2(y)−A2(y)− %(h(y, λ)− h(y, λ)

− F (u, y, λ) + F (u, y, λ))‖

≤ υ2‖y − y‖+
τ q−12

r2 − %m2
‖A2(y)−A2(y)− %(h(y, λ)− h(y, λ)

− F (u, y, λ) + F (u, y, λ))‖

+
τ q−12

r2 − %m2
%‖F (u, y, λ)− F (u, y, λ)‖. (4.15)

Similarly F is parametrically Lipschitz continuous with respect to first and sec-

ond argument with constants βF , ξF and S is parametrically κS−H̃-Lipschitz
continuous and h is a parametrically Lipschitz continuous mapping with con-
stant δh > 0, we have

‖h(y, λ)− h(y, λ)‖ ≤ δh‖y − y‖, (4.16)

‖F (u, y, λ)− F (u, y, λ)‖ ≤ ξF ‖y − y‖ (4.17)

and

‖F (u, y, λ)− F (u, y, λ)‖ ≤ βF ‖u− u‖

≤ βF H̃(S(x, ω), S(x, ω))‖
≤ βFκS‖x− x‖. (4.18)

Again from Lemma 2.1, Lemma 2.2 [26], A2 is parametricaly s2-Lipschitz
continuous and h is a parametrically (γh, αh)-relaxed cocoercive mapping with
respect to A2 and F is a parametrically (γF , αF )-relaxed cocoercive mapping
with respect to A2 and second argument, and from (4.16)-(4.17), we have
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‖A2(y)−A2(y)− %((h(y, λ)− h(y, λ))− (F (u, y, λ)− F (u, y, λ)))‖q

≤ ‖A2(y)−A2(y)‖q

− q%〈(h(y, λ)− h(y, λ))− (F (u, y, λ)− F (u, y, λ)), jq(A2(y)−A2(y))〉
+ cq%

q‖(h(y, λ)− h(y, λ))− (F (u, y, λ)− F (u, y, λ))‖q

≤ ‖A2(y)−A2(y)‖q − q%〈(h(y, λ)− h(y, λ)), jq(A2(y)−A2(y))〉
+ q%〈F (u, y, λ)− F (u, y, λ), jq(A2(y)−A2(y))〉
+ 2qcq%

q [‖h(y, λ)− h(y, λ)‖q + ‖F (u, y, λ)− F (u, y, λ)‖q]
≤ sq2‖y − y‖

q − q%(−γh‖h(y, λ)− h(y, λ)‖q + αh‖A2(y)−A2(y)‖q)
+ q%(−γF ‖F (u, y, λ)− F (u, y, λ)‖q + αF ‖A2(y)−A2(y)‖q)
+ 2qcq%

q
[
δqh‖y − y‖

q + ξqF ‖y − y‖
q
]

≤ sq2‖y − y‖
q − q%(−γhδqh‖y − y‖

q + αhs
q
2‖y − y‖

q)

+ q%(−γF ξqF ‖y − y‖
q + αF s

q
2‖y − y‖

q) + 2qcq%
q
[
δqh + ξqF

]
‖y − y‖q

≤
[
sq2 − q%(sq2(αh − αF )− γhδqh + γF ξ

q
F ) + 2qcq%

q(δqh + ξqF )
]
‖y − y‖q.

Hence, we have

‖A2(y)−A1(y)− %((h(y, λ)− h(y, λ))− (F (u, y, λ)− F (u, y, λ)))‖

≤ q

√
sq2 − q%(sq2(αh − αF )− γhδqh + γF ξ

q
F ) + 2qcq%q(δ

q
h + ξqF )‖y − y‖. (4.19)

Combining (4.15)-(4.19), we have

‖a2 − b2‖
≤ υ2‖y − y‖

+
τ q−12

r2 − %m2

q

√
sq2 − q%(sq2(αh − αF )− γhδqh + γF ξ

q
F ) + 2qcq%q(δ

q
h + ξqF )‖y − y‖

+
τ q−12

r2 − %m2
%βFκS‖x− x‖

≤ θ2‖x− x‖+ ϑ2‖y − y‖, (4.20)

where

ϑ2 = υ2 +
τ q−12

r2 − %m2

q

√
sq2 − q%(sq2(αh − αF )− γhδqh + γF ξ

q
F ) + 2qcq%q(δ

q
h + ξqF )

and

θ2 =
τ q−12

r2 − %m2
%βFκS .
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It follows from (4.14) and (4.20) that

‖a1 − b1‖+ ‖a2 − b2‖ ≤ (θ1 + θ2)‖x− x‖+ (ϑ1 + ϑ2)‖y − y‖
≤ σ(‖x− x‖+ ‖y − y‖), (4.21)

where σ = max{θ1 + θ2, ϑ1 + ϑ2}. From conditions (4.6), we know that σ < 1.
Hence from (4.21), we get

d((a1, a2), Gρ,%(x, y, ω, λ)) = inf
(b1,b2)∈Gρ,%(x,y,ω,λ)

(‖a1 − b1‖+ ‖a2 − b2‖)

≤ −σ‖(x, y)− (x, y)‖.

Since (a1, a2) ∈ Gρ,%(x, y, ω, λ) is arbitrary, we obtain

sup
(a1,a2)∈Gρ,%(x,y,ω,λ)

d((a1, a2), Gρ,%(x, y, ω, λ)) ≤ −σ‖(x, y)− (x, y)‖.

By the same argument we can prove

sup
(b1,b2)∈Gρ,%(x,y,ω,λ)

d((b1, b2), Gρ,%(x, y, ω, λ)) ≤ −σ‖(x, y)− (x, y)‖.

It follows from the definition of Hausdorff metric H̃ on CB(X1 ×X2) that

H̃(Gρ,%(x, y, ω, λ), Gρ,%(x, y, ω, λ)) ≤ −σ‖(x, y)− (x, y)‖.

for all (x, x, ω) ∈ X1×X1×Ω, (y, y, λ) ∈ X2×X2×∧, that is, Gρ,%(x, y, ω, λ) is
a multi-valued contractive mapping which is uniform with respect to (ω, λ) ∈
Ω × ∧. By the fixed point theorem of Nadler [22], for each (ω, λ) ∈ Ω ×
∧, Gρ,%(x, y, ω, λ) has a fixed point (x(ω), y(λ)) ∈ X1 × X2, that is, (x, y) ∈
Gρ,%(x, y, ω, λ). By the definition of G, there exists u ∈ S(x, ω), v ∈ T (y, λ)
such that (4.1) holds. Thus it follows from Lemma 4.1 that (x, y, u, v) with
u ∈ S(x, ω), v ∈ T (y, λ) is a solution of problem (3.1). Hence from Lemma
4.2 that (z, t, x, y, u, v) with u ∈ S(x, ω), v ∈ T (y, λ) is a solution of (3.1).
Therefore Q(ω, λ) 6= ∅ for all (ω, λ) ∈ Ω × ∧. Next, we prove the closedness
of the solution set Q(ω, λ). For each (ω, λ) ∈ Ω × ∧, let {(zn, tn, xn, yn)} ⊂
Q(ω, λ) and zn → z0, tn → t0, xn → x0, yn → y0 as n→∞. Then we know that
there exist un ∈ S(xn, ω), vn ∈ T (yn, λ) and (xn, yn) ∈ Gρ,%(xn, yn, ω, λ), zn =
A1(xn) − ρ(p(xn, ω) − E(xn, vn, ω)), tn = A2(yn) − %(h(yn, λ) − F (un, yn, λ)),
and z0 = A1(x0)− ρ(p(x0, ω)− E(x0, v0, ω)),
t0 = A2(y0)− %(h(y0, λ)− F (u0, y0, λ)). Note that for all (ω, λ) ∈ Ω× ∧,

H̃(Gρ,%(xn, yn, ω, λ), Gρ,%(x0, y0, ω, λ)) ≤ −σ‖(xn, yn)− (x0, y0)‖,



18 J. K. Kim and Salahuddin

It follows that

d((x0, y0), Gρ,%(x0, y0, ω, λ)) ≤ ‖(x0, y0)− (xn, yn)‖
+ d((xn, yn), Gρ,%(xn, yn, ω, λ))

+ H̃(Gρ,%(xn, yn, ω, λ), Gρ,%(x0, y0, ω, λ))

≤ (1 + σ)‖(xn, yn)− (x0, y0)‖.

Hence, we have (x0, y0) ∈ Gρ,%(x0, y0, ω, λ) and (x0, y0) ∈ Q(ω, λ). Therefore
Q(ω, λ) is a closed subset of X1 ×X2. �

Theorem 4.4. Under the assumptions of Theorem 4.3, suppose that

(i) for x ∈ X1, ω → S(x, ω) is parametrically `S −H̃-Lipschitz continuous
(or continuous);

(ii) for y ∈ X2, λ→ T (y, λ) is parametrically `T − H̃-Lipschitz continuous
(or continuous);

(iii) for x, z ∈ X1, y, t ∈ X2, ω → p(x, ω), ω → E(x, y, ω), ω → J
M(·,x,ω)
ρ,A1

(z),

λ → h(y, λ), λ → F (x, y, λ) and λ → J
N(·,y,λ)
%,A2

(t) are parametrically

Lipschitz continuous (or continuous) with parametrically Lipschitz con-
stants `p, `E , `J1 , `h, `F and `J2, respectively.

Then the solution set Q(ω, λ) of problem (2.1) is parametrically Lipschitz con-
tinuous (or continuous) from Ω× ∧ to X1 ×X2.

Proof. From the assumptions of Theorem 4.3, for any (ω, λ), (ω, λ) ∈ Ω×∧, we
know that Q(ω, λ) and Q(ω, λ) are nonempty closed subsets of X1×X2. From
the proof of Theorem 4.3, Gρ,%(x, y, ω, λ) and Gρ,%(x, y, ω, λ) are contractive
mappings with same contractive constant σ ∈ (0, 1) and have fixed points
(x(ω, λ), y(ω, λ)) and (x(ω, λ), y(ω, λ)), respectively. It follows from Lemma
3.12 and 4.2 that

H̃(Q(ω, λ), Q(ω, λ))

≤ 1

1− σ
sup

(x,y)∈X1×X2

H̃(Gρ,%(x(ω, λ), y(ω, λ), ω, λ), Gρ,%(x(ω, λ), y(ω, λ), ω, λ)).

(4.22)

Setting (a1, a2) ∈ Gρ,%(x(ω, λ), y(ω, λ), ω, λ), then there exist
u(ω, λ) ∈ S(x(ω, λ), ω), and v(ω, λ) ∈ T (y(ω, λ), λ) such that

a1 = J
M(·,x(ω,λ),ω)
ρ,A1

[A1(x(ω, λ))− ρ(p(x(ω, λ), ω)− E(x(ω, λ), v(ω, λ), ω))],

a2 = J
N(·,y(ω,λ),λ)
%,A2

[A2(y(ω, λ))− %(h(y(ω, λ), λ)− F (u(ω, λ), y(ω, λ), λ))].

Since S(x(ω, λ), ω), S(x(ω, λ), ω) ∈ CB(X1) and T (y(ω, λ), λ), T (y(ω, λ), λ) ∈
CB(X2), It follows from Nadler’s Theorem [22] that there exist u(ω, λ) ∈
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S(x(ω, λ), ω) ∈ CB(X1), v(ω, λ) ∈ T (y(ω, λ), λ) ∈ CB(X2) such that

‖u(ω, λ)− u(ω, λ)‖ ≤ H̃(S(x(ω, λ), ω), S(x(ω, λ), ω)),

‖v(ω, λ)− v(ω, λ)‖ ≤ H̃(T (y(ω, λ), λ), T (y(ω, λ), λ)). (4.23)

Let

b1 = J
M(·,x(ω,λ),ω)
ρ,A1

[A1(x(ω, λ))− ρ(p(x(ω, λ), ω)− E(x(ω, λ), v(ω, λ), ω))],

b2 = J
N(·,y(ω,λ),λ)
%,A2

[A2(y(ω, λ))− %(h(y(ω, λ), λ)− F (u(ω, λ), y(ω, λ), λ))].

Then we have (b1, b2) ∈ Gρ,%(x(ω, λ), y(ω, λ), ω, λ). It follows from the assump-

tions on J
M(·,·,·)
ρ,A1

, E,A1, p and T that

‖a1 − b1‖

= ‖JM(·,x(ω,λ),ω)
ρ,A1

[A1(x(ω, λ))− ρ(p(x(ω, λ), ω)− E(x(ω, λ), v(ω, λ), ω))]

− JM(·,x(ω,λ),ω)
ρ,A1

[A1(x(ω, λ))− ρ(p(x(ω, λ), ω)− E(x(ω, λ), v(ω, λ), ω))]‖

≤ ‖JM(·,x(ω,λ),ω)
ρ,A1

[A1(x(ω, λ))− ρ(p(x(ω, λ), ω)− E(x(ω, λ), v(ω, λ), ω))]

− JM(·,x(ω,λ),ω)
ρ,A1

[A1(x(ω, λ))− ρ(p(x(ω, λ), ω)− E(x(ω, λ), v(ω, λ), ω))]‖

+ ‖JM(·,x(ω,λ),ω)
ρ,A1

[A1(x(ω, λ))− ρ(p(x(ω, λ), ω)− E(x(ω, λ), v(ω, λ), ω))]

− JM(·,x(ω,λ),ω)
ρ,A1

[A1(x(ω, λ))− ρ(p(x(ω, λ), ω)− E(x(ω, λ), v(ω, λ), ω))]‖

+ ‖JM(·,x(ω,λ),ω)
ρ,A1

[A1(x(ω, λ))− ρ(p(x(ω, λ), ω)− E(x(ω, λ), v(ω, λ), ω))]

− JM(·,x(ω,λ),ω)
ρ,A1

[A1(x(ω, λ))− ρ(p(x(ω, λ), ω)− E(x(ω, λ), v(ω, λ), ω))]‖

≤ θ1‖x(ω, λ)− x(ω, λ)‖+ ϑ1‖y(ω, λ)− y(ω, λ)‖+ `J1‖ω − ω‖

+
τ q−11 ρ

r1 − ρm1
[‖p(x(ω, λ), ω)− p(x(ω, λ), ω)‖

+ ‖E(x(ω, λ), v(ω, λ), ω)− E(x(ω, λ), v(ω, λ), ω)‖]
≤ θ1‖x(ω, λ)− x(ω, λ)‖+ ϑ1‖y(ω, λ)− y(ω, λ)‖+ `J1‖ω − ω‖

+
τ q−11 ρ

r1 − ρm1
[`p‖ω − ω‖+ `E‖ω − ω‖]

≤ θ1‖x(ω, λ)− x(ω, λ)‖+ ϑ1‖y(ω, λ)− y(ω, λ)‖+ χ1‖ω − ω‖, (4.24)

where θ1 and ϑ1 are the constants of (4.14) and

χ1 = `J1 +
ρτ q−11 (`p + `E)

r1 − ρm1
.
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Similarly, from the assumptions on h, F,A2, S, J
N(·,·,·)
%,A2

, we have

‖a2 − b2‖

= ‖JN(·,y(ω,λ),λ)
%,A2

[A2(y(ω, λ))− %(h(y(ω, λ), λ)− F (u(ω, λ), y(ω, λ), λ))]

− JN(·,y(ω,λ),λ)
%,A2

[A2(y(ω, λ))− %(h(y(ω, λ), λ)− F (u(ω, λ), y(ω, λ), λ))]‖

≤ ‖JN(·,y(ω,λ),λ)
%,A2

[A2(y(ω, λ))− %(h(y(ω, λ), λ)− F (u(ω, λ), y(ω, λ), λ))]

− JN(·,y(ω,λ),λ)
%,A2

[A2(y(ω, λ))− %(h(y(ω, λ), λ)− F (u(ω, λ), y(ω, λ), λ))]‖

+ ‖JN(·,y(ω,λ),λ)
%,A2

[A2(y(ω, λ))− %(h(y(ω, λ), λ)− F (u(ω, λ), y(ω, λ), λ))]

− JN(·,y(ω,λ),λ)
%,A2

[A2(y(ω, λ))− %(h(y(ω, λ), λ)− F (u(ω, λ), y(ω, λ), λ))]‖

+ ‖JN(·,y(ω,λ),λ)
%,A2

[A2(y(ω, λ))− %(h(y(ω, λ), λ)− F (u(ω, λ), y(ω, λ), λ))]

− JN(·,y(ω,λ),λ)
%,A2

[A2(y(ω, λ))− %(h(y(ω, λ), λ)− F (u(ω, λ), y(ω, λ), λ))]‖

≤ θ2‖x(ω, λ)− x(ω, λ)‖+ ϑ2‖y(ω, λ)− y(ω, λ)‖+ `J2‖λ− λ‖

+
τ q−12 %

r2 − %m2
[‖h(y(ω, λ), λ)− h(y(ω, λ), λ)‖

+ ‖F (u(ω, λ), y(ω, λ), λ)− F (u(ω, λ), y(ω, λ), λ)‖]
≤ θ2‖x(ω, λ)− x(ω, λ)‖+ ϑ2‖y(ω, λ)− y(ω, λ)‖+ `J2‖λ− λ‖

+
τ q−12 %

r2 − %m2

[
`h‖λ− λ‖+ `F ‖λ− λ‖

]
≤ θ2‖x(ω, λ)− x(ω, λ)‖+ ϑ2‖y(ω, λ)− y(ω, λ)‖+ χ2‖λ− λ‖, (4.25)

where θ2 and ϑ2 are the constants of (4.20) and

χ2 = `J2 +
%τ q−12 (`h + `F )

r2 − ρm2
.

It follows from (4.24), (4.25) and (4.1) that

‖a1 − b1‖+ ‖a2 − b2‖ ≤ (θ1 + θ2)‖x(ω, λ)− x(ω, λ)‖
+ (ϑ1 + ϑ2)‖y(ω, λ)− y(ω, λ)‖
+ χ1‖ω − ω‖+ χ2‖λ− λ‖
≤ σ(‖a1 − b1‖+ ‖a2 − b2‖) + χ1‖ω − ω‖+ χ2‖λ− λ‖,

where σ is the constant of (4.21) which implies that

‖a1 − b1‖+ ‖a2 − b2‖ ≤ Θ(‖ω − ω‖+ ‖λ− λ‖), (4.26)
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where

Θ =
1

1− σ
max{χ1, χ2}.

Hence from (4.26) we obtain

sup
(a1,a2)∈Gρ,%(x,y,ω,λ)

d((a1, a2), Gρ,%(x, y, ω, λ)) ≤ Θ‖(ω, λ)− (ω, λ)‖.

By using a similar argument as above, we get

sup
(b1,b2)∈Gρ,%(x,y,ω,λ)

d(Gρ,%(x, y, ω, λ), (b1, b2)) ≤ Θ‖(ω, λ)− (ω, λ)‖.

It implies that

H̃(Gρ,%(x, y, ω, λ), Gρ,%(x, y, ω, λ)) ≤ Θ‖(ω, λ)− (ω, λ)‖,

for all (x, y, ω, ω, λ, λ) ∈ X1×X2×Ω×Ω×∧×∧. Thus, it follows from (4.22)
that

H̃(Q(ω, λ), Q(ω, λ)) ≤ Θ

1− σ
‖(ω, λ)− (ω, λ)‖.

This proves that Q(ω, λ) is parametrically Lipschitz continuous in (ω, λ) ∈
Ω×∧. If each operator with conditions (i) and (ii) is assumed to be continuous
in (ω, λ) ∈ Ω×∧, then by similar argument as above, we show that S(ω) and
T (λ) are parametrically continuous in (ω, λ) ∈ Ω× ∧. �
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