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Abstract. In this paper, we consider the stochastic viral infection model with immune

impairment and variable diffusion rate. We prove the global existence of unique strong solu-

tion. Using the Lyapunov method, we find sufficient conditions for the stochastic asymptotic

stability of equilibrium solutions of this model. Finally, establish the existence of a unique

ergodic stationary distribution and illustrate our results.

1. Introduction

Mathematical modeling has been an important approach in analyzing the
spread and control of infectious diseases. A simple model may play a significant
role in the development of a better understanding of the disease and the various
drug therapy strategies used against it.

During the process of viral infection, a host is induced which is initially rapid
and nonspecific (natural killer cells, macrophage cells, etc.) and then delayed
and specific (cytotoxic T lymphocyte cells, antibody cell). But in most virus
infections, cytotoxic T lymphocyte (CTL) cells which attack infected cells, and
antibody cells which attack viruses, play a critical part in antiviral defense. In
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order to investigate the role of the population dynamics of viral infection with
CTL response, Regoes [12] and Wang [14] construct a mathematical model
describing the basic dynamics of the interaction between activated CD4+ T
cells, x(t), infected CD4+ T cells, y(t), and immune cells, z(t). The model is
given by

dx

dt
= s− µx− βxy,

dy

dt
= βxy − ay − pyz,

dz

dt
= cy − bz −myz.

(1.1)

where activated CD4+ T cells are produced at a rate of s cells day−1, decay
at a rate µ day−1, and can become infected at a rate that is proportional to
the number of infected CD4+ T cells y(t) with a transmission rate constant β
day−1 cell−1. The infected CD4+ T cells are assumed to decay at the rate of
a day−1. The CTL responses eliminate at a rate that is proportional to the
number of CTLs with a killing rate constant p day−1 cell−1, proliferate at the
rate of c day−1 and decay at a rate of b day−1 and the immune impairment
rate m day−1 cell−1. Let us assume that µ ≤ min

{
a
2 , b
}
.

The model (1.1) can have at most two equilibrium solutions, namely unin-
fected equilibrium solution E1 = (x1, y1, z1), where

x1 =
s

µ
, y1 = 0, z1 = 0

and infected equilibrium solution E2 = (x2, y2, z2), where

x2 =
1

β

(
a+

cpy2
b+my2

)
,

y2 =
1

2A

{
−B +

√
B2 + 4Ab(sβ − aµ)

}
,

z2 =
cy2

b+my2
,

where A = β(am + cp) and B = abβ + cµp − m(sβ − aµ). The infected
equilibrium solution exists if the condition

R0 =
sβ

aµ
> 1,

where R0 is the basic reproduction number, holds.

Wang [14] have investigated the global stability of uninfected equilibrium
and infected equilibrium solutions of the model (1.1).
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However, any system is inevitably affected by the environmental noise, it is
an important component in an ecosystem. May [9] has revealed that due to
environmental fluctuation, the birth rate, death rate, transmission coefficient
and other parameters involved with the system exhibit random fluctuations
to a greater or lesser extent. Mao et al. [8] found the presence of even a
small amount of white noise can suppress a potential population explosion.
Therefore, it is important to investigate the effect of random fluctuations in
the environment on population dynamics.

There are many types of approaches for applying modeling techniques of
stochastic differential equation (SDE) to introduce environmental noises into
biological systems. One of the technique is parameter perturbation, which
is the most commonly used procedure in constructing SDE models [3, 7,
10, 11, 13, 16]. In recent years, several authors have studied the effect of
environmental noise on the transmission dynamics of diseases by proposing
epidemic SDE model with stochastic disturbances via the above technique
[5, 6, 11, 13, 15, 16].

Using the above technique, we perturbed the deterministic system (1.1), by
a white noise and obtained a stochastic counterpart by replacing the rates β

by β + F (x, y, z)
dW

dt
where F is locally Lipschitz-continuous functions on D

and W is Wiener processes defined on a filtered complete probability space
(Ω,F , {Ft}t≥0,P).

The stochastic model takes a form as,

dx = (s− µx− βxy) dt− xyF (x, y, z)dW,

dy = (βxy − ay − pyz) dt+ xyF (x, y, z)dW,

dz = (cy − bz −myz) dt,
(1.2)

where the functions F is locally Lipschitz-continuous on D and

D =

{
(x, y, z) ∈ R3 : x > 0, y > 0, z > 0, x+ y +

a

2c
z ≤ s

µ

}
.

The rest of this paper is organized as follows. In section 2, we discuss
existence of a unique global solution for the stochastic model (1.2). In section
3, we discuss the stochastic asymptotic stability of uninfected equilibrium and
the infected equilibrium with the help of Lyapunov functions. In section 4, we
show the existence of a unique ergodic stationary distribution. In section 5,
we visualize our results.
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2. Existence of a unique global solution

In this section, we discuss existence of a unique global solution of the model
(1.2).

Consider the d-dimensional stochastic differential equation of the form

dX(t) = f(X(t), t)dt+ g(X(t), t)dW (t) (2.1)

with an initial value X(t0) = X0, t0 ≤ t ≤ T <∞, where f : Rd× [t0, T ]→ Rd
and g : Rd × [t0, T ] → Rd×m are Borel measurable, W = {W (t)}t≥t0 is an

Rm-valued Wiener process, and X0 is an Rd-valued random variable.

The infinitesimal generator L associated with the SDE (2.1) is given by

L =
∂

∂t
+

d∑
i=1

fi(x, t)
∂

∂xi
+

1

2

m∑
i,j=1

(
g(x, t)gT (x, t)

)
ij

∂2

∂xi∂xj
. (2.2)

Theorem 2.1. (D-invariance. Khasminskii [4] as appears in [2]) Let D and
Dn be open sets in Rd with

Dn ⊆ Dn+1, Dn ⊆ D and D =
⋃
n

Dn

and suppose f and g satisfy the existence and uniqueness conditions for so-
lutions of (2.1) on each set {(t, x) : t > t0, x ∈ Dn}. Suppose there is a
non-negative continuous function V : D× [t0, T ]→ R+ with continuous partial
derivatives and satisfying LV ≤ cV for some positive constant c and t > t0,
x ∈ D. If also,

inf
t>t0, x∈D\Dn

V (x, t)→∞ as n→∞,

then for any X0 independent of W (t) such that P(X0 ∈ D) = 1, there is a
unique Markovian, continuous time solution X(t) of (2.1) with X(0) = X0,
and X(t) ∈ D for all t > 0 (a.s.).

Now, we prove existence of a unique global solution of (1.2).

Theorem 2.2. Let (x(t0), y(t0), z(t0)) = (x0, y0, z0) ∈ D, and (x0, y0, z0) is
independent of W (t). Then the stochastic model (1.2), admits a unique con-
tinuous time, Markovian global solution (x(t), y(t), z(t)) on t ≥ t0 and this
solution is invariant (a.s.) with respect to D.

Proof. We use Theorem 2.1 and follow ideas of [13]. Since the coefficients of
the system (1.2), are locally Lipschitz-continuous and satisfy linear growth
condition on D, for any initial value (x0, y0, z0) ∈ D, there is a unique local
solution on t ∈ [t0, τ(D)), where τ(D) is the random time of first exit of stochas-
tic process (x(t), y(t), z(t)) from the domain D, started in (x(s), y(s), z(s)) =
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(x0, y0, z0) ∈ D at the initial time s ∈ [t0,∞). To make this solution global,
we need to prove that

P(τ(D) =∞) = 1 a.s.

Let

Dn :=

{
(x, y, z) : e−n < x <

s

µ
− e−n, e−n < y <

s

µ
− e−n,

e−n <
a

2c
z <

s

µ
− e−n, x+ y +

a

2c
z ≤ s

µ

}
for n ∈ N. The system (1.2), has a unique solution up to stopping time τ(Dn).
Let

V (x, y, z) = x− lnx+

(
s

µ
− x
)
− ln

(
s

µ
− x
)

+ y − ln y

+

(
s

µ
− a

2c
z

)
− ln

(
s

µ
− a

2c
z

)
,

(2.3)

defined on D and assume that E (V (x, y, z)) < ∞. Note that V (x, y, z) ≥ 4

for (x, y, z) ∈ D. Let W (x, y, z, t) = e−c(t−s)V (x, y, z), defined on D × [s,∞),
where

c =
1

4

(
2µ+

3

2
a+

(
β +

2cp

a
+ b

)
s

µ
+ (β +m)

(
s

µ

)2
)

+
3

8

(
s

µ

)2

sup
(x,y,z)∈D

F 2(x, y, z).

Apply the infinitesimal operator L on equation (2.3), we obtain

LV (x, y, z) = (s− µx− βxy)

 1(
s

µ
− x
) − 1

x

+ (βxy − ay − pyz)
(

1− 1

y

)

+ (cy − bz −myz) a
2c

 1(
s

µ
− a

2c
z

) − 1



+
1

2
x2y2F 2(x, y, z)

 1(
s

µ
− x
)2 +

1

x2
+

1

y2

 .
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After a little algebra, we have

LV (x, y, z) = µ− βxy(
s

µ
− x
) − s

x
+ µ+ βy + βxy − ay − pyz − βx+ a

+ pz +
a

2

y(
s

µ
− a

2c
z

) − ab

2c

z(
s

µ
− a

2c
z

) − am

2c

yz(
s

µ
− a

2c
z

)
− a

2
y +

ab

2c
z +

am

2c
yz +

1

2

x2y2(
s

µ
− x
)2F

2(x, y, z)

+
1

2
y2F 2(x, y, z) +

1

2
x2F 2(x, y, z).

Since x+ y + a
2cz ≤

s

µ
, we have

LV (x, y, z) ≤ 2µ+
3

2
a+ βy + βxy + (p+

ab

2c
)z +

am

2c
yz

+ x2F 2(x, y, z) +
1

2
y2F 2(x, y, z),

LV (x, y, z) ≤ 2µ+
3

2
a+

(
β +

2cp

a
+ b

)
s

µ
+ (β +m)

(
s

µ

)2

+
3

2

(
s

µ

)2

sup
(x,y,z)∈D

F 2(x, y, z) = 4c.

Since V (x, y, z) ≥ 4 for (x, y, z) ∈ D, so LV (x, y, z) ≤ cV (x, y, z), Hence

LW (x, y, z, t) = e−c(t−s) (−cV (x, y, z) + LV (x, y, z)) ≤ 0.

Note that

inf
(x,y,z)∈D\Dn

V (x, y, z) > n+ 1 for n ∈ N.

Now define τn := min{t, τ(Dn)} and apply Dynkin’s formula to get

E [W (x(τn), y(τn), z(τn), τn)] = E [W (x(s), y(s), z(s), s)]

+ E

 τn∫
s

LW (x(u), y(u), z(u), u)du


≤ E [W (x(s), y(s), z(s), s)]

= E [V (x(s), y(s), z(s))] = E [V (x0, y0, z0)] .
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Next, to show that P(τ(Dn) < t) = 0, we take the expected value of

ec(t−τn)V (x(τn), y(τn), z(τn)).

E
[
ec(t−τn)V (x(τn), y(τn), z(τn))

]
= E

[
ec(t−s)e−c(τn−s)V (x(τn), y(τn), z(τn))

]
= E

[
ec(t−s)W (x(τn), y(τn), z(τn), τn)

]
≤ ec(t−s)E [V (x0, y0, z0)] ,

and obtain

0 ≤ P(τ(D) < t) ≤ P(τ(Dn) < t), since Dn ⊆ D
= P(τn < t)

= E(1τn<t), where 1 is the indicator function

≤ E

ec(t−τn)V (x(τ(Dn)), y(τ(Dn)), z(τ(Dn)))

inf
(x,y,z)∈D\Dn

V (x, y, z)
1τn<t


≤ ec(t−s) E (V (x0, y0, z0))

inf
(x,y,z)∈D\Dn

V (x, y, z)

≤ ec(t−s)E (V (x0, y0, z0))

n+ 1
.

Since ec(t−s)
E (V (x0, y0, z0))

n+ 1
→ 0 as n→∞ for all (x0, y0, z0) ∈ Dn (for large

n) and for all fixed t ∈ [s,∞), thus P(τ(D) < t) = P(τ(Dn) < t) = 0, for
(x0, y0, z0) ∈ D and t ≥ t0, that is, P(τ(D) =∞) = 1.

This proves the invariance property and the global existence of the solution
(x(t), y(t), z(t)) on D. Uniqueness and continuity of the solution is obtained
by Theorem 2.1. �

3. Stochastic asymptotic stability of uninfected and infected
equilibrium solutions

In this section, we discus stochastic asymptotic stability of equilibrium so-
lutions of (1.2).

Before giving the main results, we present definitions and theorem. Theo-
rem 3.4 is a useful criterion for stochastic asymptotic stability of equilibrium
solutions in terms of Lyapunov function [1].

Consider the d-dimensional SDE

dX(t) = f(X(t), t)dt+ g(X(t), t)dW (t), t ≥ t0, X(t0) = x0. (3.1)
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Assume that f and g satisfy, in addition to the existence and uniqueness
assumptions, f(x∗, t) = 0 and g(x∗, t) = 0, for equilibrium solution x∗, for
t ≥ t0. Furthermore, let’s assume that x0 be a non-random constant with
probability 1.

Definition 3.1. The equilibrium solution x∗ of the SDE (3.1) is stochastically
stable (stable in probability) if for every ε > 0 and s ≥ t0

lim
x0→x∗

P
(

sup
s≤t
‖Xs,x0(t)− x∗‖ ≥ ε

)
= 0, (3.2)

where Xs,x0(t) denotes the solution of (3.1), satisfying X(s) = x0, at time
t ≥ s.

Definition 3.2. The equilibrium solution x∗ of the SDE (3.1) is said to be
stochastically asymptotically stable if it is stochastically stable and

lim
x0→x∗

P
(

lim
t→∞

Xs,x0(t) = x∗
)

= 1. (3.3)

Definition 3.3. The equilibrium solution x∗ of the SDE (3.1) is said to be
globally stochastically asymptotically stable if it is stochastically stable and
for every x0 and every s

P
(

lim
t→∞

Xs,x0(t) = x∗
)

= 1. (3.4)

Theorem 3.4. ([1]) Assume that f and g satisfy the existence and uniqueness
assumptions and they have continuous coefficients with respect to t.

(i) Suppose that there exist a positive definite function

V ∈ C2,1 (Uh × [t0,∞)) ,

where Uh = {x ∈ Rd : ‖x− x∗‖ < h} for h > 0 such that

LV (x, t) ≤ 0, ∀ t ≥ t0, x ∈ Uh, (3.5)

then the equilibrium solution x∗ of (3.1) is stochastically stable.
(ii) If, in addition, V is decrescent (there exists a positive definite function

V1 such that V (x, t) ≤ V1(x) for all x ∈ Uh) and LV (x, t) is negative
definite, then the equilibrium solution x∗ is stochastically asymptoti-
cally stable.

(iii) If the assumptions of part ii) hold for a radially unbounded function
V ∈ C2,1

(
Rd × [t0,∞)

)
defined everywhere, then the equilibrium solu-

tion x∗ is globally stochastically asymptotically stable.
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Now, we discuss equilibrium solutions of the stochastic model (1.2). The
stochastic model (1.2) can have at most two equilibrium solutions, namely un-
infected equilibrium solution E1 = (x1, y1, z1) and infected equilibrium solu-
tion E2 = (x2, y2, z2). The infected equilibrium solution exists if the condition

R0 =
sβ

ae
> 1 and F (x2, y2, z2) = 0.

holds.

Theorem 3.5. The uninfected equilibrium solution E1 = (x1, y1, z1) of (1.2)
is globally stochastically asymptotically stable on D, if R0 ≤ 1.

Proof. We use Theorem 3.4 and define a Lyapunov function

V1(x, y, z) =
1

2
(x− x1 + y)2 + 2x1y +

px1
2c

z2. (3.6)

The infinitesimal generator L acting on the Lyapunov function V1 can be
written as:

LV1(x, y, z)
= (s− µx− βxy) (x− x1 + y) + (βxy − ay − pyz)

(
x− x1 + y + 2x1

)
+ (cy − bz −myz)

(px1
c
z
)

+ x2y2F 2(x, y, z)(1− 1),

LV1(x, y, z)
= (x− x1 + y) (s− µx− βxy + βxy − ay − pyz)

+ 2x1(βxy − ay − pyz) +
px1
c
z(cy − bz −myz).

Since E1 is equilibrium and µ ≤ a, we have

LV1(x, y, z) ≤ (x− x1 + y) (−µ(x− x1 + y)− pyz)

+ 2x1(βxy − ay − pyz) +
px1
c
z(cy − bz −myz),

LV1(x, y, z) ≤ −µ (x− x1 + y)2 − pxyz + px1yz − py2z + 2βx1xy

− 2ax1y − 2px1yz + px1yz −
pbx1
c
z2 − pmx1

c
yz2,

LV1(x, y, z) ≤ −µ (x− x1 + y)2 − pxyz − py2z − 2x1

(
a− βs

µ

)
y

− pbx1
c
z2 − pmx1

c
yz2,

LV1(x, y, z) ≤ −µ (x− x1 + y)2 − pxyz − py2z − 2ax1 (1−R0) y

− pbx1
c
z2 − pmx1

c
yz2.
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If R0 ≤ 1, then LV1(x, y, z) becomes negative definite on D. By Theorem 2.1,
the uninfected equilibrium solution E1 of the stochastic model (1.2) is globally
stochastically asymptotically stable on D. �

Theorem 3.6. The infected equilibrium solution, E2 = (x2, y2, z2) of the sys-
tem (1.2) is stochastically asymptotically stable on D if R0 > 1 and satisfies
η(x, y, z) ≤ 0, where

η(x, y, z) = −µ(x− x2)2 − bk(z − z2)2 +
1

2
x2
(
y2 + x2y2

)
F 2(x, y, z) (3.7)

for k =
px2

(c−mz2)
.

Proof. Note that the condition R0 > 1 and F (S2, I2, R2) = 0 are needed for
the existence of the infected equilibrium solution. Define a Lyapunaov function

V2(x, y, z) =
1

2
(x− x2)2 + x2

(
y − y2 − y2 ln

(
y

y2

))
+
k

2
(z − z2)2, (3.8)

where k is positive and chosen later.
The infinitesimal generator L acting on the Lyapunov function V2 can be

written as:

LV2(x, y, z) = (s− µx− βxy) (x− x2) + (βxy − ay − pyz)x2
(

1− y2
y

)
+ (cy − bz −myz) k (z − z2) +

1

2
x2y2F 2(x, y, z)

+
1

2

x2y2x
2y2

y2
F 2(x, y, z).

After a little algebra, we have

LV2(x, y, z)
= (s− µx− βxy) (x− x2) + (βx− a− pz)x2 (y − y2)

+ (cy − bz −myz) k (z − z2) +
1

2
x2
(
y2 + x2y2

)
F 2(x, y, z).

(3.9)

The following identities help to simplify LV2(x, y, z)
(i) s− µx− βxy = −µ(x− x2)− β(x− x2)y − βx2(y − y2),
(ii) βx− a− pz = β(x− x2)− p(z − z2),

(iii) cy − bz −myz = c(y − y2)− b(z − z2)−m(y − y2)z2 −my(z − z2).
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Substituting the above identities into (3.9), we get

LV2(x, y, z) = (−µ(x− x2)− β(x− x2)y − βx2(y − y2)) (x− x2)
+ (β(x− x2)− p(z − z2))x2 (y − y2)
+ (c(y−y2)−b(z−z2)−m(y−y2)z2−my(z−z2)) k (z−z2)

+
1

2
x2
(
y2 + x2y2

)
F 2(x, y, z),

LV2(x, y, z) = −µ(x− x2)2 − β(x− x2)2y − βx2(x− x2)(y − y2)
+ βx2(x− x2)(y − y2)− px2(y − y2)(z − z2)
+ ck(y − y2)(z − z2)− bk(z − z2)2 −mk(y − y2)(z − z2)z2

−mky(z − z2)2 +
1

2
x2
(
y2 + x2y2

)
F 2(x, y, z).

Choose k =
px2

(c−mz2)
, we have

LV2(x, y, z) = −µ(x− x2)2 − β(x− x2)2y − bk(z − z2)2

−mky(z − z2)2 +
1

2
x2
(
y2 + x2y2

)
F 2(x, y, z).

Hence LV2(x, y, z) = 0 only at (x2, y2, z2) and by the choice of suitable func-
tions F (x, y, z), one can obtain LV2(x, y, z) < 0 on D \ (x2, y2, z2). Hence
LV2(x, y, z) is negative definite on D for some suitable F (x, y, z). Therefore,
by Theorem 3.4, the infected equilibrium is stochastically asymptotically sta-
ble on D if R0 > 1 and for some suitable F (x, y, z) such that F (x2, y2, z2) = 0
and satisfies the condition (3.7). �

4. Stationary distribution and positive recurrence

We first present a lemma, which is a useful criterion for positive recurrence
in terms of Lyapunov function ([17]).

Consider the d-dimensional stochastic differential equation

dX(t) = b(X)dt+
k∑
r=1

σr(X)dWr(t) (4.1)

and the diffusion matrix is defined as follows

A(x) = (aij(x)), aij(x) =
k∑
r=1

σir(x)σjr(x).

Lemma 4.1. ([17]) The system (4.1) is positive recurrent if there is a bounded
open subset H of Rd with a regular (i.e., smooth) boundary and
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(i) there exist some i = 1, 2, · · · , d and a positive constant k such that

aii(x) ≥ k for any x ∈ H,

(ii) there exists a nonnegative function V : Hc → R such that V is twice
continuously differentiable and that for some θ > 0,

LV (x) ≤ −θ for any x ∈ Hc.

Moreover, the positive recurrent process X(t) has a unique stationary distri-
bution µ(.) with density in Rd such that for any Borel set B ⊂ Rd

lim
t→∞

P(t, x,B) = µ(B)

and

P

 lim
T→∞

1

T

T∫
0

f(X(t))dt =

∫
Rd

f(x)µ(dx)

 = 1

for all x ∈ Rd and f : Rd → R be a function integrable with respect to the
measure µ.

Theorem 4.2. The solution (x(t), y(t), z(t)) of system (1.2) with any positive
initial value (x(0), y(0), z(0)) ∈ D, where F (x, y, z) = f(x − x2, y − y2) is
positive recurrent and admits a unique ergodic stationary distribution in D if
R0 > 1 and

η1(x, y, z) = µ(x−x2)2+bk(z−z2)2−
1

2

(
s

µ

)2
((

s

µ

)2

+x2y2

)
F 2(x, y, z).

is positive definite on Hc for k =
px2

(c−mz2)
.

Proof. Define the following bounded open subset H of R3

H =

{
(x, y, z) ∈ D

∣∣∣ 1

N
< x <

s

µ
− 1

N
,

1

M
< y <

s

µ
− 1

M
,

1

P
<

a

2c
z <

s

µ
− 1

P

}
,

where N, M and P are sufficiently large positive constants to be chosen in the
following, x2 and y2 6∈ H and z2 ∈ H. The diffusion matrix associated with
the system (1.2) is given by

A(x, y, z) =

 x2y2F 2(x, y, z) −x2y2F 2(x, y, z) 0
−x2y2F 2(x, y, z) x2y2F 2(x, y, z) 0

0 0 0

 .
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Since H ⊂ R3
+, then

a11(x, y, z) = x2y2F 2(x, y, z)

≥ inf
(x,y,z)∈H

x2y2F 2(x, y, z)

≥ k1,

where k1 is positive constant. This implies the condition (i) in Lemma 4.1 is
satisfied. It remains for us to verify the condition (ii) in Lemma 4.1. Define
the following nonnegative function

V (x, y, z) =
1

2
(x− x2)2 + x2

(
y − y2 − y2 ln

(
y

y2

))
+
k

2
(z − z2)2

for k =
px2

(c−mz2)
. Apply L on V (x, y, z), we have

LV (x, y, z) = −µ(x− x2)2 − β(x− x2)2y − bk(z − z2)2

−mky(z − z2)2 +
1

2
x2
(
y2 + x2y2

)
F 2(x, y, z),

LV (x, y, z) ≤ −η1(x, y, z).

Since η1(x, y, z) > 0 on Hc,

η1(x, y, z) ≥ inf
(x,y,z)∈Hc

η1(x, y, z) = θ > 0.

From this, we have

LV (x, y, z) ≤ −θ for all (x, y, z) ∈ Hc.

So the condition (ii) of Lemma 4.1 is met. This completes the proof. �

We proved analytically sufficient condition for stochastic asymptotic sta-
bility of equilibrium solutions of the model (1.2) and connected to the basic
reproduction number R0. We now illustrate our analytical results.

5. Illustrative example

In this section, we visualize our results. Consider the stochastic viral infec-
tion model with immune impairment.

dx = (s− µx− βxy) dt−
(µ
s

)3
xy(x− x2)dW,

dy = (βxy − ay − pyz) dt+
(µ
s

)3
xy(x− x2)dW,

dz = (cy − bz −myz) dt,

(5.1)
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where s, µ, β, a, p, c, b and m are positive constants and

x2 =
1

β

(
a+

cpy2
b+my2

)
,

y2 =
1

2A

{
−B +

√
B2 + 4Ab(sβ − aµ)

}
,

z2 =
cy2

b+my2
,

where A = β(am+ cp) and B = abβ + cµp−m(sβ − aµ) and R0 =
sβ

aµ
.

Global existence of a unique solution of the system (5.1) in

D =

{
(x, y, z) ∈ R3 : x > 0, y > 0, z > 0, x+ y +

a

2c
z ≤ s

µ

}
is proven by Theorem 2.2.

In Figure 1(A), 1(B), 1(C) and 2(A), 2(B), 2(C), dynamics of expected
values of x, y and z versus time are plotted. They show that CD4+T cell,
Infected CD4+T cell and Immune cell populations, in average, settle around
the equilibrium. In Figure 1(D), 1(E), 1(F) and 2(D), 2(E), 2(F) display the
evaluation of the variances of x, y and z versus time. As it seen, variances
rapidly go to zero. Hence the equilibrium solutions are approached.

Figure 1 verifies Theorem 3.5 which states, if R0 = 0.8333 ≤ 1, then the
uninfected equilibrium solution E1 = (666.6667, 0, 0) of the system (5.1) is
globally stochastically asymptotically stable on D.

Figure 2 agrees to Theorem 3.6 which proves stochastic asymptotic stability
of the infected equilibrium solution E2 = (893.3824, 282.2222, 2.3346) to the
system (5.1) on D under the assumption R0 = 16.8750 > 1 and η is negative
definite, which requires non-negative of the constant

φ = µ− 1

2

(µ
s

)4(( s
µ

)2

+ x2y2

)
= 0.0200,

where

η(x, y, z) ≤ −φ(x− x2)2 − bk(z − z2)2 for k =
px2

(c−mz2)
.

If we choose the parameter s = 270, µ = 0.02, β = 0.001, a = 0.80, p = 0.04,
c = 0.025, b = 0.2 and m = 0.01, then the conditions of Theorem 4.2 are holds.
Hence the system 5.1 is positive recurrent, moreover, the positive recurrent
has unique stationary distribution in D.
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Figure 1. The uninfected equilibrium E1 = (x1, y1, z1) =
(666.6667, 0, 0) is globally asymptotically stochastically stable for the
parameters: s = 200, µ = 0.3, β = 0.001, a = 0.80, p = 0.04,
c = 0.025, b = 0.31, m = 0.01 (R0 = 0.8333 < 1).
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Figure 2. The infected equilibrium E2 = (x2, y2, z2) =
(893.3824, 282.2222, 2.3346) is globally asymptotically stochastically
stable for the parameters: s = 270, µ = 0.02, β = 0.001, a = 0.80,
p = 0.04, c = 0.025, b = 0.2, m = 0.01, (R0 = 16.8750 > 1).

6. Conclusion

In our model (1.2), we consider general diffusion term. Hence, we have
a family of stochastic model. We established in this paper, the model (1.2)
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possesses a non-negative unique solution as this is essential in any population
dynamics models. We discussed stochastic asymptotic stability of uninfected
and infected equilibria by the help of invariance principle and Lyapunov’s
second method. As common, stochastic asymptotic stability of equilibria is
connected to the basic reproduction number R0. A sufficient condition for
stochastic asymptotic stability is found in terms of parameters and functional
dependence on the variable. A remarkable fact of the criteria (3.7) is that a
sufficient condition for stability can be found even for general local Lipschitz
continuous F . Our results reveal that a certain type of stochastic perturbation
may help stabilize the system and also the solution of the system (1.2) is
positive recurrent and admits a unique ergodic stationary distribution in D.
Furthermore, we visualized our results.

Acknowledgments: This work is supported by Basic Science Research, Uni-
versity Grant Commission, India.

References

[1] L. Arnold, Stochastic Differential Equations: Theory and Applications, Wiley, New York
(1974).

[2] T.C. Gard, Introduction to Stochastic Differential Equations, Marcel Dekker, New York
and Basel (1998).

[3] C. Ji, D. Jiang and N. Shi, Multigroup SIR epidemic model with stochastic perturbation,
Phys A, 390 (2011), 1747–1762.

[4] R. Khasminskii, Stochastic Stability of Differential Equations, Sijthoff & Noordhoff,
Alpen (1980).

[5] A. Lahrouz and L. Omari, Extinction and stationary distribution of a stochastic SIRS
epidemic model with non-linear incidence, Statist. Probab. Lett., 83 (2013), 960–968.

[6] A. Lahrouz, L. Omari, D. Kiouach and A. Belmaâti, Deterministic and stochastic sta-
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